
Building a complex user
application for CMS with

DAGMan
Brian Bockelman

Computing is Hard
• I will discuss personal experiences and lessons learned when

building a new analysis system for CMS.

• I selected four favorite problems I thought the community
would find interesting.

• I tell the problems, not the success storis.

• The project has a large team (including present and past
members).

• Each one would give a different point-of-view.

• So consider my words an opinion, not the word of God.

What’s in a CMS Analysis?
• For the purpose of presentation, a CMS analysis is:

• Input: Some code tarball and configuration.

• Input: Name of dataset.

• Output: Dataset resulting from running the CMS
application and user code on the input dataset.

• The rest is just details!

Ok, maybe more details
• A dataset is composed of one or more files.

• We break the analysis task into a set of jobs:

• Each job can be run independently.

• Each job reads in one or more files from the dataset.

• The sites where the job can run are are determined
from the location of the datasets.

• Each job has a single result file that must return to a
specified location.

Let’s Get CRABby
• CMS obviously has a system to do this - we found the Higgs, didn’t we?

• CRAB = CMS Remote Analysis Builder. Currently, CRAB2.

• The CRAB2 client runs on the user’s development node.

• Splitting of task to jobs is done on client.

• Job submits are done from client.

• Job tracking (done? failed? needs resubmit?) done from client.

• Results are copied from worker node to a user-specified remote storage
system.

• CRAB2 allows multiple job tracking backends. >95% jobs use HTCondor, but
about 10 different ones have been in existence.

CRAB2
• User writes a config file and

code.

!

!

!

!

User login host

Config
File Code

CRAB2
• User writes a config file and

code.

• “crab create”

!

!

!

User login host

Config
File CodeCode

SQLite
J J

CRAB2
• User writes a config file and

code.

• “crab create”

• “crab submit”

!

!

User login Host

Config
File CodeCode

SQLite
J J

Schedd Host

Config
File Code

Schedd
J J

CRAB2
• User writes a config file and

code.

• “crab create”

• “crab submit”

• “crab status” (times many)

!

User login Host

Config
File CodeCode

SQLite
J J

Schedd Host

Config
File Code

Schedd
J J

CRAB2
• User writes a config file and

code.

• “crab create”

• “crab submit”

• “crab status” (times many)

• “crab getoutput”

• Retrieves stdout - job
outputs go to storage
service.

User login Host

Config
File CodeCode

SQLite
J J

Schedd Host

Config
File Code

Schedd
J J

Output
File

CRAB2 by the numbers
• Across the system, there are:

• 200,000 jobs / day.

• 25,000 cores used continuously.

• 300 users.

• 50 execution sites

• One user support person.

What’s Wrong With This?
• CRAB2 has some seriously annoying flaws:

• The job “babysitter” is the user, not a running process. [If
a job fails 1 minute after you go to bed, it won’t be run until
you wake up and press “resubmit”.]

• All logic is client-side; users must install a new client to get
bugfixes. Users hate installing updates.

• High rate of failures, especially stageout. (More on this
later)

• Each physics group has a hapless grad student whose role in
life is to run that group’s workflows.

Enter CRAB3
• The CRAB task is basically a

DAG; CRAB2 relies on
“DAGGradStudent”.

• For CRAB3, we decided to
have a backend which does
task tracking instead of job
tracking.

• We experimented with several
task layers, then settled on
DAGMan about 6 months ago.

User login Host

Config
File CodeCode

CMS Web Host

CRAB3 Frontend
Server

HTTP POST

CRAB3 Architecture
Submit host

CMS CRAB3 Backend

CRAB3
Backend
Server

(Job creation, DAG
submission)

Task
Parameters
and Code

CMS Web host

CRAB3
Frontend
Server

HTTP POST HTTP GET

CRAB3 Architecture

Condor Schedd Host

Per-Task DAG

.

.

.

Job N

Job 1

.

.

.

Post Job

Post Job

Submit host
CMS CRAB3 Backend

CRAB3
Backend
Server

(Job creation, DAG
submission)

Task
Parameters
and Code

CMS Web host

CRAB3
Frontend
Server

HTTP POST HTTP GET

HTCondor submit

CRAB3 Architecture
HTCondor Schedd Host

Per-Task DAG

.

.

.

Job 1

.

.

.

ASO Job

ASO Job

glideinWMS pool

HTCondor startd

Job 1
instance

HTCondor startd

Job N
instance

(and 20,000 more)

Job N

What could possibly
go wrong?

Interesting Problem 1:
Remote Submit

• Strong push from CMS to centralize operations
behind our central web portal.

• Submit hosts are operated by a separate team.

• Remote submit must somehow include user’s X509
proxy certificate.

Solution: Python and
MyProxy

• Python bindings provide the web portal with a mechanism to perform
status queries. The backend server uses these for job submits.

• We have translated all the CRAB “verbs” to equivalent action on the
DAGMan task in the schedd.

• For example, if the DAG fails, the job goes onto HOLD; the
equivalent of condor_release performs the resubmit.

• User uploads their X509 proxy to a separate MyProxy server and gives
permission to the CRAB3 backend for retrieval; the backend then
retrieves the proxy and pushes it to the schedd with the job submit.

• We had to extend the python bindings to allow the backend to
periodically push updated proxies to the schedd.

Interesting Problem 2: 
Task Interaction

• When running across 50 sites, failures are a fact of life. We use DAGMan post-
scripts extensively to determine whether a failure should be retried.

• Inevitably, some jobs still fail (some errors require a human to examine or fix)
permanently.

• Consequently, the grad student then runs down the hall to yell at the
sysadmin to fix things.

• Once fixed, the grad student wants to be able to resubmit just that failed
job!

• Alternately, maybe the grad student would like to kill one DAG node while
they investigate a job failure.

• Whether killing or resubmitting, we don’t want to upset the rest of the jobs!
Hence, we don’t want to use rescue DAGs.

Solution
• A wide series of hacks!!

• To kill individual running jobs, we simply remove them from the schedd
queue.

• To kill the task, we hold the corresponding DAGMan job. This sends a
SIGUSR1 signal to DAGMan, which removes all jobs from queue.

• To resubmit jobs, we change the hold signal to SIGKILL and hold/release
the DAGMan job.

• On release, the wrapper will rewrite the task’s user log to change the
exit code.

• The condor_dagman process will restart and connect to running jobs
using the log file.

Interesting Problem 3:
Task Monitoring

• Each job in the user task is a node in a DAG. What’s the state of
the node?

• If there is no corresponding job in the schedd, is it because
the node failed? The node is successful? DAGMan has hit
an idle job limit? Running a post-job?

• Worse - condor_q is too heavyweight on the schedd to allow
users to query directly for jobs in the schedd.

• How do we concisely present the relevant task information to
users?

• How do we highlight potential problems?

Solution
• The DAGMan node_status file provides information about each

node (one line per node in the DAG).

• The file is placed in a web-accessible directory of the schedd;
the CRAB frontend parses it and sends it to the user.

• We worked closely with the HTCondor team to shake the bugs
out of the handling of this file and deliver a new file format.

• We delivered a rewrite of the condor_q protocol to reduce the
resources needed for queries.

• We wrote a custom monitoring application, glidemon, to
summarize the task status.

Interesting Problem 4:
Output file management

• Until now, I’ve only described half the battle!

• Depending on the user, outputs are somewhere
between 1 and 3,000MB.

• (Average job output size) X (# of jobs) = we can’t
use HTCondor file transfer.

• Instead, the job output is copied to a storage system
the user specifies.

• The #1 cause of failure in CRAB2 is failed stageout.

Introducing ASO
• To reduce error rates and improve CPU efficiency,

the CRAB3 job wrapper copies output files to the
“nearest” storage service, register the output file in
a database, then exits.

• The Asynchronous StageOut (ASO) server will see
the new output file and copy it to the user-specified
storage service.

• Once the file is at the final location, the job can be
marked as done.

ASO - Copy
CERN

Source Site Destination Site

ASO Server,
CouchDB

Storage StorageWorker Node

CouchDB

COPY

ASO - Register
CERN

Source Site Destination Site

ASO Server,
CouchDB

Storage StorageWorker Node

CouchDB

COPY

Register

ASO - Copy to Remote
CERN

Source Site Destination Site

ASO Server,
CouchDB

Storage StorageWorker Node

CouchDB

Setup xfer Setup xfer

COPYCOPY

Register

A Beautiful Can Of Worms
• However - DAGMan cannot mark a job as completed until ASO

says the file has safely arrived.

• Thus, the post-job must not exit until ASO says the transfer is
done.

• Each post-job takes up X MB of RAM, so we must limit the total
number of post-jobs to Y per task.

• Once Y post-jobs are running, no other job can complete.

• Hence, the combination of DAGMan + ASO has the potential for
causing head-of-line blocking behavior.

• We must have timeouts to make sure job completion progresses.

But wait, there’s more!
• Essentially, we have two databases we must synchronize - ASO

and DAGMan. All actions need to be idempotent or have a
concurrency protocol.

• How do we prevent terabytes of data from accumulating at
remote sites (flow control)?

• CRAB2 had a crude and wasteful (but effective) way of
throttling the production of output data - idle the CPU!

• The user and post-job need an indication of whether transfers
are progressing.

• Similar issue exists with running jobs.

Solutions
• We don’t have any here!

• We are looking forward to trying an upcoming
experimental feature in 8.1.6 which allows the startd
to start a new job while the current job is staging out.

• Allows us to better throttle stageout without wasting
CPU.

• Reduces the number of services involved in the job
lifetime - hope to reduce the surface area for bugs.

Conclusions
• CMS users don’t use DAGMan, they use CRAB3.

• However, CRAB3 happens to rely on DAGMan for task management.

• DAGMan automates the mundane tasks for us.

• Ultimately, the biggest waste of resources was making physicists babysit jobs;
wasted CPU was secondary.

• We’ve worked closely with the HTCondor team to iron out the biggest kinks.

• While I focussed on the interesting problems, I left out quite a few mundane
bug fixes the team delivered for CMS by the HTCondor team.

• DAGMan and the python bindings have been hopefully made better for the
entire community.

• Quite a bit of work left to do!

Future Work
• There’s an immense amount of hackery around our kill/resubmit

procedure; we would prefer to communicate directly with the
DAGMan process.

• We almost certainly don’t handle all the edge cases with killing
the post-job.

• Our most pressing problem is the handling of the post-jobs.

• The current best idea is to have a post-job return code that
indicates DAGMan should re-run the post-job at a later time.

• Users hate “stuck” jobs; we want to do a better job of providing
feedback by allowing condor_tail or updating the job ad with the #
of events processed.

