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Computing is Hard
• I will discuss personal experiences and lessons learned when 

building a new analysis system for CMS. 

• I selected four favorite problems I thought the community 
would find interesting. 

• I tell the problems, not the success storis. 

• The project has a large team (including present and past 
members). 

• Each one would give a different point-of-view. 

• So consider my words an opinion, not the word of God.



What’s in a CMS Analysis?
• For the purpose of presentation, a CMS analysis is: 

• Input: Some code tarball and configuration. 

• Input: Name of dataset. 

• Output: Dataset resulting from running the CMS 
application and user code on the input dataset. 

• The rest is just details!



Ok, maybe more details
• A dataset is composed of one or more files. 

• We break the analysis task into a set of jobs: 

• Each job can be run independently. 

• Each job reads in one or more files from the dataset. 

• The sites where the job can run are are determined 
from the location of the datasets. 

• Each job has a single result file that must return to a 
specified location.



Let’s Get CRABby
• CMS obviously has a system to do this - we found the Higgs, didn’t we? 

• CRAB = CMS Remote Analysis Builder.  Currently, CRAB2. 

• The CRAB2 client runs on the user’s development node. 

• Splitting of task to jobs is done on client. 

• Job submits are done from client. 

• Job tracking (done?  failed?  needs resubmit?) done from client. 

• Results are copied from worker node to a user-specified remote storage 
system. 

• CRAB2 allows multiple job tracking backends.  >95% jobs use HTCondor, but 
about 10 different ones have been in existence.



CRAB2
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CRAB2
• User writes a config file and 

code. 

• “crab create” 

• “crab submit” 

• “crab status” (times many) 

• “crab getoutput” 

• Retrieves stdout - job 
outputs go to storage 
service.
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CRAB2 by the numbers
• Across the system, there are: 

• 200,000 jobs / day. 

• 25,000 cores used continuously. 

• 300 users. 

• 50 execution sites 

• One user support person.



What’s Wrong With This?
• CRAB2 has some seriously annoying flaws: 

• The job “babysitter” is the user, not a running process.  [If 
a job fails 1 minute after you go to bed, it won’t be run until 
you wake up and press “resubmit”.] 

• All logic is client-side; users must install a new client to get 
bugfixes.  Users hate installing updates. 

• High rate of failures, especially stageout.  (More on this 
later) 

• Each physics group has a hapless grad student whose role in 
life is to run that group’s workflows.



Enter CRAB3
• The CRAB task is basically a 

DAG; CRAB2 relies on 
“DAGGradStudent”. 

• For CRAB3, we decided to 
have a backend which does 
task tracking instead of job 
tracking. 

• We experimented with several 
task layers, then settled on 
DAGMan about 6 months ago.
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CRAB3 Architecture
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What could possibly 
go wrong?



Interesting Problem 1: 
Remote Submit

• Strong push from CMS to centralize operations 
behind our central web portal. 

• Submit hosts are operated by a separate team. 

• Remote submit must somehow include user’s X509 
proxy certificate.



Solution: Python and 
MyProxy

• Python bindings provide the web portal with a mechanism to perform 
status queries.  The backend server uses these for job submits. 

• We have translated all the CRAB “verbs” to equivalent action on the 
DAGMan task in the schedd. 

• For example, if the DAG fails, the job goes onto HOLD; the 
equivalent of condor_release performs the resubmit. 

• User uploads their X509 proxy to a separate MyProxy server and gives 
permission to the CRAB3 backend for retrieval; the backend then 
retrieves the proxy and pushes it to the schedd with the job submit. 

• We had to extend the python bindings to allow the backend to 
periodically push updated proxies to the schedd.



Interesting Problem 2: 
Task Interaction

• When running across 50 sites, failures are a fact of life.  We use DAGMan post-
scripts extensively to determine whether a failure should be retried. 

• Inevitably, some jobs still fail (some errors require a human to examine or fix) 
permanently. 

• Consequently, the grad student then runs down the hall to yell at the 
sysadmin to fix things. 

• Once fixed, the grad student wants to be able to resubmit just that failed 
job! 

• Alternately, maybe the grad student would like to kill one DAG node while 
they investigate a job failure. 

• Whether killing or resubmitting, we don’t want to upset the rest of the jobs!  
Hence, we don’t want to use rescue DAGs.



Solution
• A wide series of hacks!!

• To kill individual running jobs, we simply remove them from the schedd 
queue. 

• To kill the task, we hold the corresponding DAGMan job.  This sends a 
SIGUSR1 signal to DAGMan, which removes all jobs from queue. 

• To resubmit jobs, we change the hold signal to SIGKILL and hold/release 
the DAGMan job. 

• On release, the wrapper will rewrite the task’s user log to change the 
exit code. 

• The condor_dagman process will restart and connect to running jobs 
using the log file.



Interesting Problem 3: 
Task Monitoring

• Each job in the user task is a node in a DAG.  What’s the state of 
the node? 

• If there is no corresponding job in the schedd, is it because 
the node failed?  The node is successful?  DAGMan has hit 
an idle job limit?  Running a post-job? 

• Worse - condor_q is too heavyweight on the schedd to allow 
users to query directly for jobs in the schedd. 

• How do we concisely present the relevant task information to 
users? 

• How do we highlight potential problems?



Solution
• The DAGMan node_status file provides information about each 

node (one line per node in the DAG). 

• The file is placed in a web-accessible directory of the schedd; 
the CRAB frontend parses it and sends it to the user. 

• We worked closely with the HTCondor team to shake the bugs 
out of the handling of this file and deliver a new file format. 

• We delivered a rewrite of the condor_q protocol to reduce the 
resources needed for queries. 

• We wrote a custom monitoring application, glidemon, to 
summarize the task status.







Interesting Problem 4: 
Output file management

• Until now, I’ve only described half the battle! 

• Depending on the user, outputs are somewhere 
between 1 and 3,000MB. 

• (Average job output size) X (# of jobs) = we can’t 
use HTCondor file transfer. 

• Instead, the job output is copied to a storage system 
the user specifies. 

• The #1 cause of failure in CRAB2 is failed stageout.



Introducing ASO
• To reduce error rates and improve CPU efficiency, 

the CRAB3 job wrapper copies output files to the 
“nearest” storage service, register the output file in 
a database, then exits. 

• The Asynchronous StageOut (ASO) server will see 
the new output file and copy it to the user-specified 
storage service. 

• Once the file is at the final location, the job can be 
marked as done.
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A Beautiful Can Of Worms
• However - DAGMan cannot mark a job as completed until ASO 

says the file has safely arrived. 

• Thus, the post-job must not exit until ASO says the transfer is 
done. 

• Each post-job takes up X MB of RAM, so we must limit the total 
number of post-jobs to Y per task. 

• Once Y post-jobs are running, no other job can complete. 

• Hence, the combination of DAGMan + ASO has the potential for 
causing head-of-line blocking behavior. 

• We must have timeouts to make sure job completion progresses.



But wait, there’s more!
• Essentially, we have two databases we must synchronize - ASO 

and DAGMan.  All actions need to be idempotent or have a 
concurrency protocol. 

• How do we prevent terabytes of data from accumulating at 
remote sites (flow control)? 

• CRAB2 had a crude and wasteful (but effective) way of 
throttling the production of output data - idle the CPU! 

• The user and post-job need an indication of whether transfers 
are progressing. 

• Similar issue exists with running jobs.



Solutions
• We don’t have any here! 

• We are looking forward to trying an upcoming 
experimental feature in 8.1.6 which allows the startd 
to start a new job while the current job is staging out. 

• Allows us to better throttle stageout without wasting 
CPU. 

• Reduces the number of services involved in the job 
lifetime - hope to reduce the surface area for bugs.



Conclusions
• CMS users don’t use DAGMan, they use CRAB3. 

• However, CRAB3 happens to rely on DAGMan for task management. 

• DAGMan automates the mundane tasks for us. 

• Ultimately, the biggest waste of resources was making physicists babysit jobs; 
wasted CPU was secondary. 

• We’ve worked closely with the HTCondor team to iron out the biggest kinks. 

• While I focussed on the interesting problems, I left out quite a few mundane 
bug fixes the team delivered for CMS by the HTCondor team. 

• DAGMan and the python bindings have been hopefully made better for the 
entire community. 

• Quite a bit of work left to do!



Future Work
• There’s an immense amount of hackery around our kill/resubmit 

procedure; we would prefer to communicate directly with the 
DAGMan process. 

• We almost certainly don’t handle all the edge cases with killing 
the post-job. 

• Our most pressing problem is the handling of the post-jobs. 

• The current best idea is to have a post-job return code that 
indicates DAGMan should re-run the post-job at a later time. 

• Users hate “stuck” jobs; we want to do a better job of providing 
feedback by allowing condor_tail or updating the job ad with the # 
of events processed.


