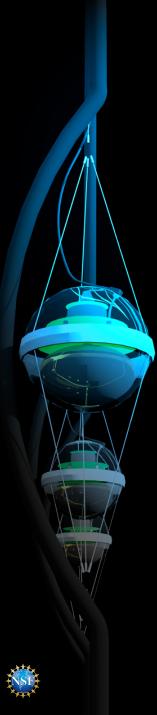
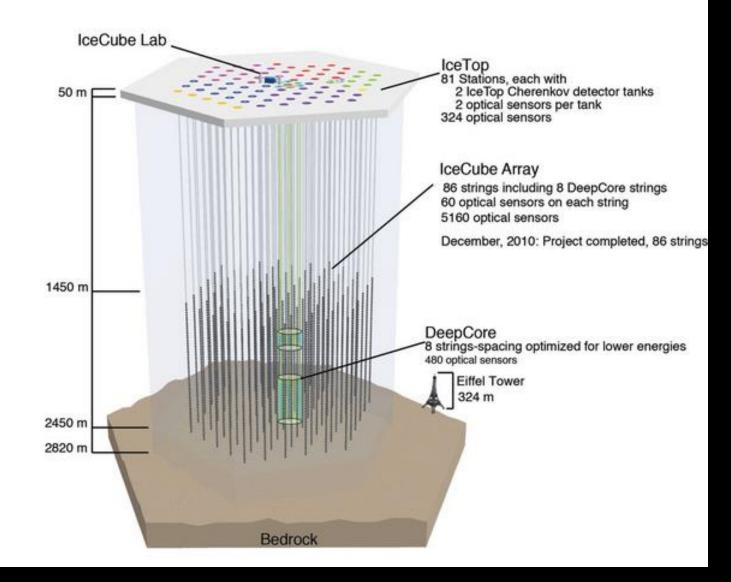
IceCube, HTCondor, and GPUs

Steve Barnet University of Wisconsin – Madison Condor Week 2014


Overview


- The Basics of IceCube
- GPUs The Motivation
- Evolution
- Summary

The IceCube Neutrino Observatory

- A kilometer scale neutrino detector
- Located at geographic South Pole
- Detects Cherenkov light from neutrino interactions

Location, Location, Location

- Why the South Pole?
- Lots of ice a great detection medium
- The ice is very clear
- Thick ice sheet sensors deep enough to provide significant background reduction

Propagation of Light

- A particle creates light when it interacts with the ice
- At what time did light hit a module?
- How much light hit the module?
- Shows us the track of the particle
- Provides information about the energy of the particle
- Clues as to the type of particle

Need to Model the Ice

- Given an interaction point, how does the light propagate through the ice?
- Ice scatters and absorbs light, so do a bit of math – voila!
- Actually, rather a lot of math (or a little math a lot of times)
- Early efforts (starting 15 years ago) approximate and create lookup tables

Problems

- The ice has structure
 - Dust layers
 - Tilt
 - Each parameter adds complexity/size to the tables
- Tables introduce (large) systematic errors

Solution – Direct Propagation

- Simulate the track of each photon through the ice
- Computationally intensive
 - Even a low energy event generates a few million photons
 - Event rate is ~ 3000 events/s
- Serious efforts in this direction began in 2009

The Story So Far

- Can we do this with CPUs?
 - Yes! Early code written in C++ ~ 2009
 - Also assembly (1.25x-.1.37x speed-up)
- Followed closely by GPU implementations
 - nVidia/CUDA based
 - 150x initial speed-up vs CPU versions

Version 1

- Initial system consumer GPUs
 - Custom-built gamer desktops
 - Proof of concept
 - No HTCondor

Version 2

- GZK-9000 cluster
- Commercial GPUs
 - 48x nVidia M2070 GPUs
 - High density, increased scale
 - Hosted at CHTC
 - HTCondor managed

Version 3

- Consumer grade GPUs
 - Cheaper (*much* cheaper 4x)
 - Split pool 32x nVidia GTX-690, 32x ATI
 Radeon 7970
 - SuperMicro based integrated by re-seller
 - HTCondor managed

Cheap GPUs – What you lose

- No Free Lunch ...
- ... or ECC either (maybe)
- ... and limited Double Precision performance
- Detailed monitoring
 - Temp & Fan speed mostly
 - No direct utilization reporting

Experiences

- Getting these stable takes time
 - For us, true for commercial & consumer alike
- Another software stack to manage
 - GPU drivers
 - SDK & execution libraries
- Consumer card market extremely variable
 - Availability
 - Many card vendors (eVGA, Asus, XFX, PNY, ...)
 - AMD (ATI) is not as "into it" as nVidia

HTCondor Config

- Start with static config
- STARTD config :

SLOT_TYPE_3 = cpus=1, mem=2000
NUM_SLOTS_TYPE_3 = 1
SLOT3_HAS_GPU = TRUE
SLOT3_GPU_NAME = "nVidia GeForce GTX 680"
SLOT3_GPU_DEV = 1
SLOT3_STARTD_ATTRS = HAS_GPU GPU_DEV GPU_NAME

USER_JOB_WRAPPER = /etc/condor/gpu_job_wrapper.sh

HTCondor Config

- STARTD cont'd:
- Wrapper script:

#!/bin/bash

gpu_dev=\$(awk -F ' = ' '/^GPU_DEV = /{print
\$2}' \$_CONDOR_MACHINE_AD)

if [-n "\$gpu_dev"]; then

export CUDA_VISIBLE_DEVICES=\$gpu_dev
export COMPUTE=:0.\$gpu_dev

export GPU_DEVICE_ORDINAL=\$gpu_dev

fi

exec "\$@"

Submit side

- GPU allocation is managed with Accounting Groups
- A job requests the GPU accounting group
 - +AccountingGroup="gpu.\$ENV(USER)"
- CUDA jobs must require CUDA:
 - requirements = HAS_CUDA
- OpenCL jobs can run anywhere, so no special requirements

Future

- It's hard to make predictions, especially about the future – Yogi Berra
- Upgrade HTCondor to development series (as we speak)
- Use TJ's new detection features

Credits

- Juan Carlos Diaz-Velez, David Schultz IceProd framework
- Dmitry Chirkin, Claudio Kopper GPU simulation development
- Vladimir Brik– GPU wrangling
- CHTC Hosting the GZK cluster, OSG support, HTCondor GPU efforts (TJ!)
- UW Madison Fast networks
- NSF IceCube M&O funding

Questions?

ALL YOUR CYCLES ARE BELONG TO CONDOR. YOU HAVE NO CHANCE TO IDLE MAKE YOUR TIME. CONDOR WER 200

Geographic

