
HTCondor and Workflows:

An Introduction

HTCondor Week 2013

Kent Wenger

2

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

3

My jobs have

dependencies…

Can HTCondor help solve my

dependency problems?

Yes!

Workflows are the answer

4

What are workflows?

› General: a sequence of connected steps

› Our case

Steps are HTCondor jobs

Sequence defined at higher level

Controlled by a Workflow Management System

(WMS), not just a script

Kent’s summer 2012 workflow

Fly home

Bike to Croatia

Fly to Turkey

Get permission from
Miron to take leave

5

6

LIGO inspiral search application

› Describe…

Inspiral workflow application is the work of Duncan Brown, Caltech,

Scott Koranda, UW Milwaukee, and the LSC Inspiral group

7

Workflows – launch and forget

 › A workflow can take days, weeks or even months

› Automates tasks user could perform manually…

 But WMS takes care of automatically

› Enforces inter-job dependencies

› Includes features such as retries in the case of

failures – avoids the need for user intervention

› The workflow itself can include error checking

› The result: one user action can utilize many

resources while maintaining complex job inter-

dependencies and data flows

8

How big?

› We have users running 500k-job workflows

in production

› Depends on resources on submit machine

(memory, max. open files)

› “Tricks” can decrease resource

requirements (talk to me or Nathan Panike)

9

Workflow tools

› DAGMan: HTCondor’s workflow tool

› Pegasus: a layer on top of DAGMan that is

grid-aware and data-aware

› Makeflow: not covered in this talk

› Others…

› This talk will focus mainly on DAGMan

Pegasus WMS

› A higher level on top of DAGMan

› User creates an abstract workflow

› Pegasus maps abstract workflow to

executable workflow

› DAGMan runs executable workflow

› Doesn’t need full Condor (schedd only)

› A talk tomorrow with more details

10

11

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

12

DAG definitions

› DAGs have one or more

nodes (or vertices)

› Dependencies are

represented by arcs (or

edges). These are arrows

that go from parent to

child)

› No cycles!

A

B C

D



13

HTCondor and DAGs

› Each node

represents a

HTCondor job (or

cluster)

› Dependencies define

possible orders of job

execution

Job
A

Job
B

Job
C

Job
D

14

Albert learns DAGMan

› Directed Acyclic Graph Manager

› DAGMan allows Albert to specify the

dependencies between his HTCondor jobs,

so DAGMan manages the jobs

automatically

› Dependency example: do not run job B

until job A has completed successfully

15

Defining a DAG to DAGMan

A DAG input file defines a DAG:

file name: diamond.dag
Job A a.submit
Job B b.submit
Job C c.submit
Job D d.submit
Parent A Child B C
Parent B C Child D

A

B C

D

16

Submit description files

For node B:
file name:

b.submit

universe = vanilla

executable = B

input = B.in

output = B.out

error = B.err

log = B.log

queue

For node C:
file name:

c.submit

universe = standard

executable = C

input = C.in

output = C.out

error = C.err

log = C.log

queue

17

Jobs/clusters

› Submit description files used in a DAG can

create multiple jobs,

but they must all be in a single cluster.

› The failure of any job means the entire

cluster fails. Other jobs in the cluster are

removed.

18

Node success or failure

› A node either succeeds or
fails

› Based on the return
value of the job(s)
0 a success

not 0 a failure

› This example: C fails

› Failed nodes block
execution; DAG fails

A

B C

D

PRE and POST scripts

› Optionally associated with nodes

› Run before (PRE) and after (POST) the

actual HTCondor node job

› More details later…

19

20

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

21

Submitting the DAG to HTCondor

› To submit the entire DAG, run

condor_submit_dag DagFile

› condor_submit_dag creates a submit description

file for DAGMan, and DAGMan itself is submitted

as an HTCondor job (in the scheduler universe)

› -f(orce) option forces overwriting of existing

files

Controlling running DAGs

› condor_rm dagman_id

Removes entire workflow

• Removes all queued node jobs

• Kills PRE/POST scripts

Creates rescue DAG (more on this later)

Work done by partially-completed node jobs is lost

22

Controlling running DAGs (cont)

› condor_hold and condor_release

• “Pauses” the DAG

• Node jobs continue when DAG is held

• No new node jobs submitted

• DAGMan “catches up” when released

23

Controlling running DAGS: the

halt file

› “Pauses” the DAG

› Create a file named DagFile.halt in the
same directory as your DAG file.

› Remove halt file to resume normal
operation

› Should be noticed w/in 5 sec
(DAGMAN_USER_LOG_SCAN_INTERVAL)

› New in HTCondor version 7.7.5.

24

The halt file (cont)

› Jobs that are running will continue to run.

› POST scripts are run as jobs finish.

› No new jobs will be submitted and no PRE scripts
will be run.

› When all submitted jobs complete, DAGMan
creates a rescue DAG and exits.

› Good if load on submit machine is very high

› Avoids hold/release problem of possible duplicate
PRE/POST script instances

25

26

Monitoring a DAG: condor_q

-dag

› The -dag option associates DAG node

jobs with the parent DAGMan job.

› Shows current workflow state

› New in 7.7.5: Shows nested DAGs

properly.

27

condor_q –dag example

> condor_q -dag

-- Submitter: nwp@llunet.cs.wisc.edu : <128.105.14.28:51264> : llunet.cs.wisc.edu

 ID OWNER/NODENAME SUBMITTED RUN_TIME ST PRI SIZE CMD

 392.0 nwp 4/25 13:27 0+00:00:50 R 0 1.7 condor_dagman -f –

 393.0 |-1 4/25 13:27 0+00:00:23 R 0 0.0 1281.sh 393

 395.0 |-0 4/25 13:27 0+00:00:30 R 0 1.7 condor_dagman -f –

 399.0 |-A 4/25 13:28 0+00:00:03 R 0 0.0 1281.sh 399

4 jobs; 0 completed, 0 removed, 0 idle, 4 running, 0 held, 0 suspended

Status in DAGMan’s ClassAd

> condor_q -l 59 | grep DAG_

DAG_Status = 0

DAG_InRecovery = 0

DAG_NodesUnready = 1

DAG_NodesReady = 4

DAG_NodesPrerun = 2

DAG_NodesQueued = 1

DAG_NodesPostrun = 1

DAG_NodesDone = 3

DAG_NodesFailed = 0

DAG_NodesTotal = 12

› Sub-DAGs count as one node

› New in 7.9.5

28

29

Dagman.out file

› DagFile.dagman.out

› Logs detailed workflow history

› Mostly for debugging

› Verbosity controlled by the
DAGMAN_VERBOSITY configuration macro
and –debug n on the
condor_submit_dag command line

• 0: least verbose

• 7: most verbose

› Don’t decrease verbosity unless you really
have to.

30

Dagman.out contents

...

04/17/11 13:11:26 Submitting Condor Node A job(s)...

04/17/11 13:11:26 submitting: condor_submit -a dag_node_name' '=' 'A -a +DAGManJobId' '='

'180223 -a DAGManJobId' '=' '180223 -a submit_event_notes' '=' 'DAG' 'Node:' 'A -a

+DAGParentNodeNames' '=' '"" dag_files/A2.submit

04/17/11 13:11:27 From submit: Submitting job(s).

04/17/11 13:11:27 From submit: 1 job(s) submitted to cluster 180224.

04/17/11 13:11:27 assigned Condor ID (180224.0.0)

04/17/11 13:11:27 Just submitted 1 job this cycle...

04/17/11 13:11:27 Currently monitoring 1 Condor log file(s)

04/17/11 13:11:27 Event: ULOG_SUBMIT for Condor Node A (180224.0.0)

04/17/11 13:11:27 Number of idle job procs: 1

04/17/11 13:11:27 Of 4 nodes total:

04/17/11 13:11:27 Done Pre Queued Post Ready Un-Ready Failed

04/17/11 13:11:27 === === === === === === ===

04/17/11 13:11:27 0 0 1 0 0 3 0

04/17/11 13:11:27 0 job proc(s) currently held

...

This is a small excerpt of the dagman.out file.

31

Node status file

› Shows a snapshot of workflow state

Overwritten as the workflow runs

Updated atomically

› In the DAG input file:

NODE_STATUS_FILE statusFileName

[minimumUpdateTime]

› Not enabled by default

32

Node status file contents

BEGIN 1302885255 (Fri Apr 15 11:34:15 2011)

Status of nodes of DAG(s): job_dagman_node_status.dag

JOB A STATUS_DONE ()

JOB B1 STATUS_SUBMITTED (not_idle)

JOB B2 STATUS_SUBMITTED (idle)

...

Nodes total: 12

Nodes done: 8

...

DAG status: STATUS_SUBMITTED ()

Next scheduled update: 1302885258 (Fri Apr 15

11:34:18 2011)

END 1302885255 (Fri Apr 15 11:34:15 2011)

33

Jobstate.log file

› Shows workflow history

› Meant to be machine-readable (for Pegasus)

› Basically a subset of the dagman.out file

› In the DAG input file:
JOBSTATE_LOG JobstateLogFileName

› Not enabled by default

34

Jobstate.log contents

1302884424 INTERNAL *** DAGMAN_STARTED 48.0

1302884436 NodeA PRE_SCRIPT_STARTED - local -

1

1302884436 NodeA PRE_SCRIPT_SUCCESS - local -

1

1302884438 NodeA SUBMIT 49.0 local - 1

1302884438 NodeA SUBMIT 49.1 local - 1

1302884438 NodeA EXECUTE 49.0 local - 1

1302884438 NodeA EXECUTE 49.1 local – 1

...

35

Dot file

› Shows a snapshot of workflow state

› Updated atomically

› For input to the dot visualization tool

› In the DAG input file:
DOT DotFile [UPDATE] [DONT-OVERWRITE]

› To create an image
dot -Tps DotFile -o PostScriptFile

36

Dot file example

37

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

38

DAGMan configuration

› A few dozen DAGMan-specific
configuration macros (see the manual…)

› From lowest to highest precedence

HTCondor configuration files

User’s environment variables:

• _CONDOR_macroname

DAG-specific configuration file (preferable)

condor_submit_dag command line

39

Per-DAG configuration

› In DAG input file:
CONFIG ConfigFileName

or
condor_submit_dag –config

ConfigFileName ...

› Generally prefer CONFIG in DAG file over

condor_submit_dag -config or individual

arguments

› Specifying more than one configuration file is

an error.

Per-DAG configuration (cont)

› Configuration entries not related to

DAGMan are ignored

› Syntax like any other HTCondor config file

 # file name: bar.dag

 CONFIG bar.config

 # file name: bar.config

 DAGMAN_ALWAYS_RUN_POST = False

 DAGMAN_MAX_SUBMIT_ATTEMPTS = 2

40

41

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

42

Rescue DAGs

Run

Not run

A

B1

D

B2 B3

C1 C2 C3

43

Rescue DAGs (cont)

› Save the state of a partially-completed DAG

› Created when a node fails or the
condor_dagman job is removed with
condor_rm

DAGMan makes as much progress as possible in the
face of failed nodes

› DAGMan immediately exits after writing a rescue
DAG file

› Automatically run when you re-run the original
DAG (unless –f is passed to
condor_submit_dag)

Rescue DAGs (cont)

› New in HTCondor version 7.7.2, the Rescue DAG

file, by default, is only a partial DAG file

› A partial Rescue DAG file contains only

information about which nodes are done, and the

number of retries remaining for nodes with retries.

› Does not contain information such as the actual

DAG structure and the specification of the submit

file for each node job.

› Partial Rescue DAGs are automatically parsed in

combination with the original DAG file, which

contains information such as the DAG structure.

44

Rescue DAGs (cont)

› If you change something in the original

DAG file, such as changing the submit file

for a node job, that change will take effect

when running a partial Rescue DAG.

45

46

Rescue DAG naming

› DagFile.rescue001, DagFile.rescue002,

etc.

› Up to 100 by default (last is overwritten once you

hit the limit)

› Newest is run automatically when you re-submit
the original DagFile

› condor_submit_dag -dorescuefrom number to

run specific rescue DAG

Newer rescue DAGs are renamed

47

Outline

› Introduction/motivation

› Basic DAG concepts

› Running and monitoring a DAG

› Configuration

› Rescue DAGs

› Advanced DAGMan features

48

PRE and POST scripts

› DAGMan allows PRE and/or POST scripts

Not necessarily a script: any executable

Run before (PRE) or after (POST) job

Scripts run on submit machine (not execute machine)

› In the DAG input file:
Job A a.submit

Script PRE A before-script arguments

Script POST A after-script arguments

› No spaces in script name or arguments

Why PRE/POST scripts?

› Set up input

› Check output

› Create submit file or sub-DAG

(dynamically)

› Probably lots of other reasons…

49

50

DAG node with scripts

› PRE script, Job, or POST script

determines node success or

failure (table in manual gives

details)

PRE script

HTCondor

job

POST script

DAG node with scripts (cont)

› If PRE script fails, job is not run. The POST

script is run (new in 7.7.2).

Set DAGMAN_ALWAYS_RUN_POST = False

to get old behavior

51

52

Script argument

variables
› $JOB: node name

› $JOBID: Condor ID (cluster.proc) (POST only)

› $RETRY: current retry

› $MAX_RETRIES: max # of retries

› $RETURN: exit code of HTCondor/Stork job (POST only)

› $PRE_SCRIPT_RETURN: PRE script return value (POST
only)

› $DAG_STATUS: A number indicating the state of
DAGMan. See the manual for details.

› $FAILED_COUNT: the number of nodes that have failed
in the DAG

DAG node with scripts:

PRE_SKIP

› Here is the syntax:
JOB A A.cmd

SCRIPT PRE A A.pre

PRE_SKIP A non-zero integer

› If the PRE script of A exits with the indicated

value, this is normally a failure.

› Instead, the node succeeds immediately, and the

node job and POST script are skipped.

› If the PRE script fails with a different value, the

node job is skipped, and the POST script runs (as

if PRE_SKIP were not specified).
53

DAG node with scripts:

PRE_SKIP (cont)

› When the POST script runs, the
$PRE_SCRIPT_RETURN variable contains

the return value from the PRE script. (See

manual for specific cases)

› New in 7.7.2.

54

NOOP nodes

› Appending the keyword NOOP causes a job

to not be run, without affecting the DAG

structure.

› The PRE and POST scripts of NOOP

nodes will be run. If this is not desired,

comment them out.

› Can be used to test DAG structure

55

NOOP nodes (ex)

› Here is an example:
file name: diamond.dag

Job A a.submit NOOP

Job B b.submit NOOP

Job C c.submit NOOP

Job D d.submit NOOP

Parent A Child B C

Parent B C Child D

› Submitting this to DAGMan will cause

DAGMan to exercise the DAG, without

actually running node jobs.

56

57

Node retries

› For possibly transient errors

› Before a node is marked as failed. . .
Retry N times. In the DAG file:

Retry C 4

(to retry node C four times before calling the node
failed)

Retry N times, unless a node returns specific exit
code. In the DAG file:

Retry C 4 UNLESS-EXIT 2

58

Node retries, continued

› Node is retried as a whole

Job

PRE

POST

Node

Success
Unless-exit value:

node fails

One node failure:

retry

Out of retries:

node fails

59

Node variables
› To re-use submit files

› In DAG input file
VARS JobName varname="string"

[varname="string"...]

› In submit description file
$(varname)

› varname can only contain alphanumeric characters
and underscore

› varname cannot begin with “queue”

› varname is not case-sensitive

Node variables (cont)

› Value cannot contain single quotes; double

quotes must be escaped

› The variable $(JOB)contains the DAG

node name of the job.

› More than one VARS line per job is

allowed.

› DAGMan warns if a VAR is defined more

than once for a job.

60

61

Nested DAGs

62

Nested DAGs (cont)
› Runs the sub-DAG as a job within the top-level

DAG

› In the DAG input file:
SUBDAG EXTERNAL JobName DagFileName

› Any number of levels

› Sub-DAG nodes are like any other (can have

PRE/POST scripts)

› Each sub-DAG has its own DAGMan

Separate throttles for each sub-DAG

Why nested DAGs?

› DAG re-use

› Scalability

› Re-try more than one node

› Short-circuit parts of the workflow

› Dynamic workflow modification (sub-DAGs

can be created “on the fly”)

63

64

Splices

› Directly includes splice DAG’s nodes within
the top-level DAG

› In the DAG input file:
SPLICE JobName DagFileName

› Splices cannot have PRE and POST scripts
(for now)

› No retries

› Splice DAGs must exist at submit time

› Splices can be nested (and combined with
sub-DAGs)

65

Why splices?

› DAG re-use

› Advantages of splices over sub-DAGs

Reduced overhead (single DAGMan instance)

Simplicity (e.g., single rescue DAG)

Throttles apply across entire workflow

66

Throttling

› Limit load on submit machine and pool

Maxjobs limits jobs in queue/running
Maxidle submit jobs until idle limit is hit

• Can get more idle jobs if jobs are evicted

Maxpre limits PRE scripts

Maxpost limits POST scripts

› All limits are per DAGMan, not global for the
pool or submit machine

› Limits can be specified as arguments to
condor_submit_dag or in configuration

67

Node categories

Setup

Cleanup

Big job

Small job Small job Small job

Big job

Small job Small job Small job

Big job

Small job Small job Small job

68

Node category throttles

› Useful with different types of jobs that cause

different loads

› In the DAG input file:
CATEGORY JobName CategoryName

MAXJOBS CategoryName MaxJobsValue

› Applies the MaxJobsValue setting to only jobs

assigned to the given category

› Global throttles still apply

69

Cross-splice node categories

› Prefix category name with “+”

MaxJobs +init 2

Category A +init

› See the Splice section in the manual for

details

70

DAG abort

› In DAG input file:
ABORT-DAG-ON JobName AbortExitValue

 [RETURN DagReturnValue]

› If node value is AbortExitValue, the
entire DAG is aborted, implying that
queued node jobs are removed, and a
rescue DAG is created.

› Can be used for conditionally skipping
nodes (especially with sub-DAGs)

FINAL Nodes

› FINAL node always runs at end of DAG

(even on failure)

› Use FINAL in place of JOB in DAG file

› At most one FINAL node per DAG

› FINAL nodes cannot have parents or

children (but can have PRE/POST scripts)

› New in 7.7.5

71

FINAL Nodes (cont)

› Success or failure of the FINAL node

determines the success of the entire DAG

› PRE and POST scripts of FINAL nodes can
use $DAG_STATUS and $FAILED_COUNT

to determine the state of the workflow

72

73

Node priorities

› In the DAG input file:
PRIORITY JobName PriorityValue

› Determines order of submission of ready
nodes

› DAG node priorities are copied to job
priorities (including sub-DAGs)

› Does not violate or change DAG semantics

› Higher numerical value equals “better”
priority

Node priorities (cont)

› Better priority nodes are not guaranteed to

run first!

› Child nodes get the largest priority of its

own and all of its parents. Let us know if

you want a different policy.

› For sub-DAGs, pretend that the sub-DAG is

spliced in.

74

DAGMAN_HOLD_CLAIM_TIME

› An optimization introduced in HTCondor

version 7.7.5 as a configuration option

› If a DAGMan job has child nodes, it will

instruct the HTCondor schedd to hold the

machine claim for the integer number of

seconds that is the value of this option,

which defaults to 20.

› Next job starts w/o negotiation cycle, using

existing claim on startd

75

76

More information

› There’s much more detail, as well as

examples, in the DAGMan section of the

online HTCondor manual.

77

Relevant Links

› DAGMan:
http://research.cs.wisc.edu/htcondor/dag
man/dagman.html

› Pegasus: http://pegasus.isi.edu/

› Makeflow:
http://nd.edu/~ccl/software/makeflow/

› For more questions:
htcondor-admin@cs.wisc.edu

http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://research.cs.wisc.edu/htcondor/dagman/dagman.html
http://pegasus.isi.edu/
http://nd.edu/~ccl/software/makeflow/
mailto:htcondor-admin@cs.wisc.edu
mailto:htcondor-admin@cs.wisc.edu
mailto:htcondor-admin@cs.wisc.edu

