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The Cooperative

language very similar to Make. Using

Makeflow, you can write simple scripts that
easily execute on hundreds or thousands of ’
machines.
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Work Queue

Work Queue is a system and library for
creating and managing scalable master-
worker style programs that scale up to
thousands machines on clusters, clouds, and
grids. Work Queue programs are easy to write|
in C, Python or Perl.

Parrot

Parrot is a transparent user-level virtual
filesystem that allows any ordinary program
to be attached to many different remote
storage systems, including HDFS, iRODS,
Chirp, and FTP.

Chirp

Chirp is a personal user-level distributed
filesystem that allows unprivileged users to share
space securely, efficiently. and conveniently.
When combined with Parrot, Chirp allows users
to create custom wide-area distributed

http://www.nd.edu/~ccl |&=




The Cooperative Computing Lab

We collaborate with people who have large
scale computing problems in science,
engineering, and other fields.

We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.

We conduct computer science research in the
context of real people and problems.

We release open source software for large
scale distributed computing.

http://www.nd.edu/~ccl



CPU Utilization for the Last Week
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A Familiar Problem




What actually happens:

3M files
of 1K each
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Some reasonable questions:

Will this workload at all on machine X?

How many workloads can | run simultaneously
without running out of storage space?

Did this workload actually behave as expected
when run on a new machine?

How is run X different from run Y?

If my workload wasn’t able to run on this
machine, where can | run it?



End users have no idea what resources
their applications actually need.

and...

Computer systems are terrible at
describing their capabilities and limits.

and...

They don’t know when to say NO.



dV/dt : Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science

Miron Livhy (UW), Ewa Deelman (USC/ISI), Douglas Thain (ND),
Frank Wuerthwein (UCSD), Bill Allcock (ANL)

... make it easier for scientists to conduct large-
scale computational tasks that use the power
of computing resources they do not own to
process data they did not collect with
applications they did not develop ...



dV/dt Project Approach

* |dentify challenging applications.

* Develop a framework that allows to
characterize the application needs, the
resource availability, and plan for their use.

* Threads of Research:
— High level planning algorithms.
— Measurement, representation, analysis.
— Resource allocation and enforcement.
— Resources: Storage, networks, memory, cores...?
— Evaluate on major DOE resources: OSG and ALCF.



Stages of Resource Management

Estimate the application resource needs

Find the appropriate computing resources
Acquire those resources

Deploy applications and data on the resources
Manage applications and resources during run.

Can we do it for one task?
How about an app composed of many tasks?



Categories of Applications

Concurrent Workloads

/\

Static Workloads Dynamic Workloads

/\

Regular Graphs Irregular Graphs
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while( more work to do)

{

foreach work unit {
t = create_task();
submit_task(t);

}

t = wait_for_task();
process_result(t);

—
@
@
@

}




Bioinformatics Portal Generates

BWA =
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Southern California Earthquake Center
CyberShake PSHA Workflow

% Description

<> Builders ask seismologists: “What will the peak
ground motion be at my new building in the next

50 years?”
< Seismologists answer this question using
Probabilistic Seismic Hazard Analysis (PSHA)

@ @
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Task Characterization/Execution

Understand the resource needs of a task

Establish expected values and limits for task
resource consumption

Launch tasks on the correct resources

Monitor task execution and resource
consumption, interrupt tasks that reach limits

Possibly re-launch task on different resources



Data Collection and Modeling
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Resource Monitor

Log File:

% resource_monitor mysim.exe #wall_.clock(useconds) con.current_processes cpu_time(useconds
virtual_memory(kB) resident_memory(kB) swap_memory(kB)
bytes read bytes_written

110 8700 376 0 385024 O

2 5 20000 326368 6100 0 27381007 1474560
3 6 20000 394412 7468 0 29735839 1503232
4 8 60000 531468 14092 0 36917793 1503232
5 8 100000 532612 16256 0 39285593 1503232

Summary File

/ \ start: 1367424802.676755
Local end: 1367424881.236612
Process exit_type: normal
Tree exit_status: 0
max_concurrent_processes: 16
wall_time: 78.559857
cpu_time: 54.181762
virtual_memory: 1051160
resident_memory: 117604
\ / swap_memory: 0
bytes read: 4847233552

bytes written: 256950272




Monitoring Strategies

Indirect

Direct

Monitor how the world changes while the
process tree is alive.

Summaries

Snapshot

Monitor what functions, and with which
arguments the process tree is calling.

getrusage and times

Reading /proc and
measuring disk at given
intervals.

Linker wrapper to libc

Available only at the end of a
process.

Blind while waiting for next
interval.

Fragile to modifications of
the environment, no statically
linked processes.



Portable Resource Management

Pegasus S )

while( more work to do) {
foreach work unit {
t = create_task();
submit_task(t);
}

t = wait_for_task();
process_result(t);

task 1 details:
cpu, ram, disk
task 2 details:

cpu, ram, disk
task 3 details:

cpu, ram, disk


http://research.cs.wisc.edu/htcondor/index.html
http://www3.nd.edu/~ccl/workflows/bwa/
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http://www3.nd.edu/~ccl/workflows/shrimp/index.html
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http://www3.nd.edu/~ccl/workflows/bwa/index.html

Completing the Cycle

Measurement

Allocate Resources
and Enforcement

CPU: 10s
RAM: 16GB

DISK: 100GB

Exception Handling
T Is it an outlier?

Historical Repository Observed Resources

CPU: 5s

RAM: 15GB
RAM DISK: 90GB




Multi-Party Resource Management

Storage
Allocator




Application to Work Queue

while( more work to do) { Binding Energles, _L::gf:rente?a:a;
. Forces, Density, a':' ‘:::?i';‘:;o"s
foreach work unit { Ay ot d experiment

t = create_task();

Evaluate differences with reference data A
. 1 1 1 erform ayesian
submit_task(t); Application Logic ﬁ. P "iiﬁa;m\

=

v 2 N
+ " ‘ Objective
\ |

\ function
t = wait_for_task(); Work Queue Library ForceBalance

}

Force Field 1

. Updare
process_result(t); parameters
} Optimization
Initial method Oprimized
parametcrs paramcrers



http://www3.nd.edu/~ccl/community/stories/forcebalance.png

Coming up soon in CCTools...

Makeflow

— Integration with resource management.
— Built-in linker pulls in deps to make a portable package.

Work Queue

— Hierarchy, multi-slot workers, cluster caching.
— Automatic scaling of workers with network capacity.

Parrot

— Integration with CVMFS for CMS and (almost?) ATLAS.
— Continuous improvement of syscall support.

Chirp

— Support for HDFS as a storage backend.

— Neat feature: search() system call.
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