Portable Resource Management
for Data Intensive Workflows

Douglas Thain

University of Notre Dame

The Cooperative

language very similar to Make. Using

Makeflow, you can write simple scripts that
easily execute on hundreds or thousands of ’
machines.

Com pu tin g Lab e o

University of Notre Dame

Work Queue

Work Queue is a system and library for
creating and managing scalable master-
worker style programs that scale up to
thousands machines on clusters, clouds, and
grids. Work Queue programs are easy to write|
in C, Python or Perl.

Parrot

Parrot is a transparent user-level virtual
filesystem that allows any ordinary program
to be attached to many different remote
storage systems, including HDFS, iRODS,
Chirp, and FTP.

Chirp

Chirp is a personal user-level distributed
filesystem that allows unprivileged users to share
space securely, efficiently. and conveniently.
When combined with Parrot, Chirp allows users
to create custom wide-area distributed

http://www.nd.edu/~ccl |&=

The Cooperative Computing Lab

We collaborate with people who have large
scale computing problems in science,
engineering, and other fields.

We operate computer systems on the
O(10,000) cores: clusters, clouds, grids.

We conduct computer science research in the
context of real people and problems.

We release open source software for large
scale distributed computing.

http://www.nd.edu/~ccl

CPU Utilization for the Last Week

Mumber of CPlUs

G000

2000

4000

3000

2000

1000

=
g3
gy

23 24
Apr Apr

73

29
Apr

404855 (51%)
328960 (41%)
58935 (7%)
792750 (100%) CPU-Hours Total

A Familiar Problem

What actually happens:

3M files
of 1K each

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=TSgVVrfg2fU3aM&tbnid=bbdpVtxxta9sPM:&ved=0CAUQjRw&url=http://hdw.eweb4.com/out/789146.html&ei=0T6BUZzfM-f62gW-noGQAw&bvm=bv.45921128,d.b2I&psig=AFQjCNFH4mZ-ap0lwcmXZVHKV_qTNxbZ4g&ust=1367511072608940

Some reasonable questions:

Will this workload at all on machine X?

How many workloads can | run simultaneously
without running out of storage space?

Did this workload actually behave as expected
when run on a new machine?

How is run X different from run Y?

If my workload wasn’t able to run on this
machine, where can | run it?

End users have no idea what resources
their applications actually need.

and...

Computer systems are terrible at
describing their capabilities and limits.

and...

They don’t know when to say NO.

dV/dt : Accelerating the Rate of Progress
Towards Extreme Scale Collaborative Science

Miron Livhy (UW), Ewa Deelman (USC/ISI), Douglas Thain (ND),
Frank Wuerthwein (UCSD), Bill Allcock (ANL)

... make it easier for scientists to conduct large-
scale computational tasks that use the power
of computing resources they do not own to
process data they did not collect with
applications they did not develop ...

dV/dt Project Approach

* |dentify challenging applications.

* Develop a framework that allows to
characterize the application needs, the
resource availability, and plan for their use.

* Threads of Research:
— High level planning algorithms.
— Measurement, representation, analysis.
— Resource allocation and enforcement.
— Resources: Storage, networks, memory, cores...?
— Evaluate on major DOE resources: OSG and ALCF.

Stages of Resource Management

Estimate the application resource needs

Find the appropriate computing resources
Acquire those resources

Deploy applications and data on the resources
Manage applications and resources during run.

Can we do it for one task?
How about an app composed of many tasks?

Categories of Applications

Concurrent Workloads

/\

Static Workloads Dynamic Workloads

/\

Regular Graphs Irregular Graphs

00
66

while(more work to do)

{

foreach work unit {
t = create_task();
submit_task(t);

}

t = wait_for_task();
process_result(t);

—
@
@
@

}

Bioinformatics Portal Generates

BWA =
825 sub-tasks

Workflows for Makeflow

BioCompute
TSN e L
Report Bu # My Accoun jou
i
athrash1 - Home |
My Data Action My Queue
View Others' Publc Fies: Select Action: Fiter by:
Upload File / Create New Folder Step 1 - Select Input File
Your Files - [zthrash1 - (21.60 GB) Fiker by Submitter:

Select Folder:

Title Status Username
Private Files: Select File: ftest Complete |+ athrashi
None test Complete
1.assembled.unigenes.f.. [test Complete
1.ref
1.TCAdean 1.fasta Step 2 - Title, Algorithm, and Privacy ﬁ gg:z:::
2.assembled.unigenes.f.. Job Title: ltest2 Complete
22eqypti.EST-CLIPPED-S.. ' untitied lsorghum-test Complete
33eQyDl. TRANSCRIPTS-A.. Privacy: kesting - nput fl. Complete
agambiae. EST-CLIPPED.S.. Algorithm: idebug test Complete
alfa test Complete
Z“Tklgf tq.sorted.b: 26.7 MB - query(fie) Comere
.fastg.sorted.bam v 26..] - ..
fasta.sorghum bicolor... 529 MB Step 3 - Choose BLAST Databases & ervie 233?.22
et coabiim bl oo . . .

Dene

SHRIMP
5080 sub-tasks
~3h on 200 nodes

B touch x3

N
BLAST (Small) =

|

17 sub-tasks (=]
~4h on 17 nodes

N\ S

~27m on 100 nodes

http://www3.nd.edu/~ccl/workflows/bwa/
http://www3.nd.edu/~ccl/workflows/blast/
http://www3.nd.edu/~ccl/workflows/shrimp/

=
Periodograms: generate an atlas) l

of extra-solar planets o) 1
- =

* Find extra-solar planets by _ [[

— Wobbles in radial velocity of star, or — [S

— Dips in star’s intensity _ 4

210k light-curves released in July 2010 o WSU.QD.WW
Apply 3 algorithms to each curve Su,,er_wkﬂo; (@ su:f.::::ws,

S

3 different parameter sets . .
210K input, 630K output files

e 1 super-workflow

e 40 sub-workflows

e ~5,000 tasks per sub-workflow
o e 210K tasks total

R S Pegasus managed workflows

Star
Planet

‘\/

Brightness

Southern California Earthquake Center
CyberShake PSHA Workflow

% Description

<> Builders ask seismologists: “What will the peak
ground motion be at my new building in the next

50 years?”
< Seismologists answer this question using
Probabilistic Seismic Hazard Analysis (PSHA)

@ @

0.0 0.1 02 03 04 05 06 0.7 08 09 10 1.1 1.2 13 14 CyberShake DAX
3s SA (9)
239 Workflows

DAX DAX DAX DAX

* Eachsite in the input map
corresponds to one workflow

7\
e Each workflow has: /?

<> 820,000 tasks St
! >2 ! \ \
MPI codes ~ 12,000 CPU hours, / /

!
Post Processing 2,000 CPU hours @ G zoses _— 2osne -
| o =

u PP_DAX u
=
T D> -

Data footprint ~ 800GB l

s | s [omer | [rwsene]

PP DAX Template PP DAX Template

Runs on Teragrid Runs on OSG

Pegasus managed workflows Workflow Ensembles

Task Characterization/Execution

Understand the resource needs of a task

Establish expected values and limits for task
resource consumption

Launch tasks on the correct resources

Monitor task execution and resource
consumption, interrupt tasks that reach limits

Possibly re-launch task on different resources

Data Collection and Modeling

Records From

) . Task Record Many Tasks Task Profile
workflow
- « RAM: 50M
monitor > | Disk: 1G j\> RAM: 50M j‘> P
() CPU: 4C Disk: 1G RAM |
| =S CPU: 4C S I
min typ max

—— & SROICIONS

Workflow Schedule Workflow Profile Workflow Structure

Resource Monitor

Log File:

% resource_monitor mysim.exe #wall_.clock(useconds) con.current_processes cpu_time(useconds
virtual_memory(kB) resident_memory(kB) swap_memory(kB)
bytes read bytes_written

110 8700 376 0 385024 O

2 5 20000 326368 6100 0 27381007 1474560
3 6 20000 394412 7468 0 29735839 1503232
4 8 60000 531468 14092 0 36917793 1503232
5 8 100000 532612 16256 0 39285593 1503232

Summary File

/ \ start: 1367424802.676755
Local end: 1367424881.236612
Process exit_type: normal
Tree exit_status: 0
max_concurrent_processes: 16
wall_time: 78.559857
cpu_time: 54.181762
virtual_memory: 1051160
resident_memory: 117604
\ / swap_memory: 0
bytes read: 4847233552

bytes written: 256950272

Monitoring Strategies

Indirect

Direct

Monitor how the world changes while the
process tree is alive.

Summaries

Snapshot

Monitor what functions, and with which
arguments the process tree is calling.

getrusage and times

Reading /proc and
measuring disk at given
intervals.

Linker wrapper to libc

Available only at the end of a
process.

Blind while waiting for next
interval.

Fragile to modifications of
the environment, no statically
linked processes.

Portable Resource Management

Pegasus S)

while(more work to do) {
foreach work unit {
t = create_task();
submit_task(t);
}

t = wait_for_task();
process_result(t);

task 1 details:
cpu, ram, disk
task 2 details:

cpu, ram, disk
task 3 details:

cpu, ram, disk

http://research.cs.wisc.edu/htcondor/index.html
http://www3.nd.edu/~ccl/workflows/bwa/

Frequency

Resource Visualization of SHRiMP

2266.input esfasta

splitreads ﬂ

/ python

44{//,-—-/:/./—;_/,',_’—;__, —

// \\
mapper-cs lw,m,lwml.m..l- 3000_to_4499 csfasta r 4500_to_5999 csfa: :1 1500_to_2999 esfasta 7500_to_8999 esfasta 1 ‘ 10500 t0_11999 csfasta 9000 _to. Ill«l‘l‘h\l.m.x| 6000_to wwumq..‘
1 1 T I T T
e ———— - ==
W‘ — . N B

combine sh Qﬁ @mu | output.3 unuj output 4 @nmpulll) 488 - /f
/// gaan
ombine sh g
2266.0utput §
16808 1488 4580 68080
1488 | 12080 | 4880 56800 |
1208 | 3988
_ |z 1080 | 2 spe8 | g 4088 |
10800 D 2 g
gen | .
g | 18 2 2088 £ 3p08 |
T GEa | T 288 | T
GO0 | 1@ @ g
= L 1588 | & 2eee |
433 [1 4““ [1“““ |
200 | 200 | spa | 1668 |
8 : 8 : 8 : 8
= = = = = = |-~ B -~ T -~ T -~ R - ~ O - - A - - B - - = = = = = 'y} - 'r})
=] = = = = =]
% ¢ 8 8 8 § SEBSB3 RS 8 85 § ¥ 3 3

wall_time {seconds}

cpu_tine {seconds}

resident_nemory (HB}

bytes_read {GB}

http://www3.nd.edu/~ccl/workflows/shrimp/index.html
http://www3.nd.edu/~ccl/workflows/shrimp/rmapper-cs/wall_time/index.html
http://www3.nd.edu/~ccl/workflows/shrimp/rmapper-cs/cpu_time/index.html
http://www3.nd.edu/~ccl/workflows/shrimp/rmapper-cs/resident_memory/index.html
http://www3.nd.edu/~ccl/workflows/shrimp/rmapper-cs/bytes_read/index.html

Frequency

358

3ae

258

288

158

188

a8

Outliers Ha

ppen

: BWA Example

o8
188

158
288 -

resident_nenory {(HEB}

298 -

D

3aa
3568

(

UUU3 7Y SI.422Z
000607 81.439
000489 81.466
000585 81.495
000673 81.535

% i
i l
150 |
gllll |
] |
" —_]
¥ H § H
” |
o |
L |
|
= |
} |
b |
H H H
i
) l
B 2
5 |
5 3 '
| e !
§

http://www3.nd.edu/~ccl/workflows/bwa/index.html

Completing the Cycle

Measurement

Allocate Resources
and Enforcement

CPU: 10s
RAM: 16GB

DISK: 100GB

Exception Handling
T Is it an outlier?

Historical Repository Observed Resources

CPU: 5s

RAM: 15GB
RAM DISK: 90GB

Multi-Party Resource Management

Storage
Allocator

Application to Work Queue

while(more work to do) { Binding Energles, _L::gf:rente?a:a;
. Forces, Density, a':' ‘:::?i';‘:;o"s
foreach work unit { Ay ot d experiment

t = create_task();

Evaluate differences with reference data A
. 1 1 1 erform ayesian
submit_task(t); Application Logic ﬁ. P "iiﬁa;m\

=

v 2 N
+ " ‘ Objective
\ |

\ function
t = wait_for_task(); Work Queue Library ForceBalance

}

Force Field 1

. Updare
process_result(t); parameters
} Optimization
Initial method Oprimized
parametcrs paramcrers

http://www3.nd.edu/~ccl/community/stories/forcebalance.png

Coming up soon in CCTools...

Makeflow

— Integration with resource management.
— Built-in linker pulls in deps to make a portable package.

Work Queue

— Hierarchy, multi-slot workers, cluster caching.
— Automatic scaling of workers with network capacity.

Parrot

— Integration with CVMFS for CMS and (almost?) ATLAS.
— Continuous improvement of syscall support.

Chirp

— Support for HDFS as a storage backend.

— Neat feature: search() system call.

Acknowledgements

dV/dT Project Pls CCL Staff

B Bill Allcock (ALCF) P Ben Tovar

B Ewa Deelman (USC)

E Miron Livny (UW) CCL Graduate Students:
B Frank Weurthwein (UCSD) & Michael Albrecht

E Patrick Donnelly

B Dinesh Rajan

B Casey Robinson
~y~ E Peter Sempolinski
E LivYu

27

The Cooperative

language very similar to Make. Using

Makeflow, you can write simple scripts that
easily execute on hundreds or thousands of ’
machines.

Com pu tin g Lab e o

University of Notre Dame

Work Queue

Work Queue is a system and library for
creating and managing scalable master-
worker style programs that scale up to
thousands machines on clusters, clouds, and
grids. Work Queue programs are easy to write|
in C, Python or Perl.

Parrot

Parrot is a transparent user-level virtual
filesystem that allows any ordinary program
to be attached to many different remote
storage systems, including HDFS, iRODS,
Chirp, and FTP.

Chirp

Chirp is a personal user-level distributed
filesystem that allows unprivileged users to share
space securely, efficiently. and conveniently.
When combined with Parrot, Chirp allows users
to create custom wide-area distributed

http://www.nd.edu/~ccl |&=

