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Talk Outline

● RACF Overview

● Our structure

● Problems with multicore jobs in our setup

● Common Theme—user-input-driven scheduling

● Applications and new use-cases

● Future plans
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RHIC/ATLAS Computing Facility

● Who are we?

– Offline computing for RHIC

– Tier-1 for ATLAS in US

● Condor pools at the RACF

– 18.5kCPU RHIC
● 9.7kCPU (PHENIX)
● 8.8kCPU (STAR)

– 11.0kCPU ATLAS

● Characteristics

– RHIC—federation of individual users, 
some central control, data on nodes

– ATLAS—tightly controlled, master 
batch system (PANDA), central data
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RACF Overview

● Old RHIC detectors

– PHOBOS

– BRAHMS
● Smaller experiments, neutrino 

and astro

– LBNE

– DAYABAY

– LSST

– EIC

– Theory group

● ATLAS supports various 
smaller groups

– Local Tier-3

– Wisconsin

● Separate cluster for some, 
others integrated into ATLAS

● Total of smaller groups 
around 1.5k CPUs
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ATLAS Structure

● Flat, uniform farm in both hardware and 
software

● PANDA Queues map to AccountingGroup(s)

● Hierarchical structure

● Only leaf nodes have jobs submitted to them

● Spillover between arbitrary (related) groups

– short and long can share but are constrained to 
4k by parent (analysis)

– grid can accept all surplus not used by ATLAS

● Version Makeup

– Farm: 7.6.6 SL5.3

– Central Manager: 7.6.9 SL5.3

– Submit Nodes: 7.6.10 SL6.3
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Red arrow
group has accept_surplus on
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Node Consistency

● Theme: keep nodes the same!

– Even with tools like puppet, partitioning the farm by config is 
inefficient

● Balance between queues changes frequently

– Made 9 adjustments this year so far

● Queues with non-standard config still need restart

– Can't change slot count or make pslots

● Restart  =  full drain  ==  inefficient

● Even harder for cloud nodes

– Maintain balance with nodes coming and going
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Multicore Jobs in ATLAS Workflow

● Initially a test queue with a group 
under production

– Static 24-core machines with 
2x8CPU and 8x1CPU slots

● Discovered problem with groups—
wanted quota usage to be #CPUs 
(default slot-weight)—but jobs 
wouldn't match correctly (see ticket 
#2958)

– Fix fails when any group has 
accept_surplus enabled

● We need accept_surplus and 
multicore jobs in groups

– Kludge fix: set slot-weight to 1

Q: How to integrate multicore 
jobs into existing groups?

Q: How to integrate high-
memory jobs into existing 
groups?

A: Partitionable Slots (pslots)!

Not Working With Group 
Quotas
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Partitionable Slot Requirements

● Want to be able to slice by RAM, CPU, and possibly Disk

– In the future slicing by any local-resource (GPU...)
● Want sane (configurable) defaults for existing job-configs

– Request: 1 core, TotalRam/TotalCPU memory, etc...
● Want no complete starvation of larger jobs that can be 

accommodated somewhere

– Implies some form of defragmentation/draining
● Ideally defragmentation would be group-aware

● Every node would become one big pslot
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Defragmentation In Detail

● Scheduler-aware defragmentation would help

1 Spread “pain” of defragmentation across users/groups 

2 Ensure fair-share respected for users/groups across 
schedulers

● Implementation ideas

1 Look-ahead at queue to determine defrag targets
● Looking at demand from idle jobs in queue, or allowing users to provide targets

2 Keep historical data to improve heuristics
● “This user's jobs in this cluster typically run for X hours”, etc...
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STAR's NFS Handling

● Hundreds of NFS filesystems from 
2Tb to 10Tb each

– Users can access them freely

● ...so they can easily break them

● There is no global picture of resource-
usage at the filesystem level

● Concurrency limits are nice but users 
can easily lie (or be ignorant) about 
what their jobs are doing

– Would be a large maintenance burden 
as these change somewhat often

● Solution was to harvest NFS usage with lsof 
and adjust users' prio-factor accordingly

● Overall lack of visibility in condor into what a 
job is doing

● Another opportunity for user-provided data to 
drive scheduling

– Adjusting prio-factor is inelegant

– So is passing data in tons of custom 
classads
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Data Driven Scheduling

● Common theme      user data can improve scheduling

– Collected data more accurate then what the user will claim if asked

– Users cannot mislead in stating job requirements
● Concurrency limits require jobs to ask for resources

● Condor often running under other batch systems with better 
insight into upcoming work

– PANDA in ATLAS

– STAR scheduler

– VM Provisioning

● A flexible method for condor to harvest/accept more data?
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Data Driven Scheduling (cont...)

● More cases where statistics can help

– Given a queue of idle work, no a priori knowledge of 
the throughput requirement

● Context: VM provisioning for a given work queue

– Historical data collection can help—up to a point
● Most users are not malicious and can be trusted to 

honestly represent what their jobs do
● Combination of heuristics and trusting users could be 

more effective than either
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Virtualization Testbed

● Described last year—see my CHEP2012 paper

– Thin wrapper around condor to allow trusted VM execution 
inside our firewall

– No restrictions on access to NFS/other UID-based services

– Usual problems and limitations from NAT

● STAR is using on 480 cores to re-run some 2004 
production code in Scientific Linux 4

● SL6—could replace with a container-based approach 

– CGroups and libvirt leveraged to make it easy with a 
minimum of extra coding
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Checkpointing

● Testing DMTCP checkpointing, mainly for RHIC users

– ATLAS case is too complex and there is no storage easily 
available for images

– Cloud context even trickier, no local storage, bandwidth usage 
charges

● Images on the submit node would require user-aware disk-
space monitoring and fairness (feature in 7.9.x?)

● Images in NFS would be easier—developing a DMTCP 
wrapper that places images in a user-designated NFS 
directory

– NFS Quotas provide fairness/limits outside condor
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Virtualization Testbed
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High CM Availability

● Port channel blew on line card connecting our central managers

● Current Status: condor_had

– Not possible since we use flocking extensively
● all RHIC → all RHIC
● ATLAS → RHIC (PHENIX)

● Condor View and Tiered Collectors

– Replicate collector data across nodes

– Bring up a negotiator on one

– Don't want to partition pool by config
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Data Collection Troubles

● Attempted to collect all ClassAd data into MongoDB instance

● Parse each schedd's history file and dump to DB

● Encountered scalability problems

– Data growth—MongoDB stores keys for every field
● Many Gb every day—lots of short-running jobs

– No Collection-level locking—very poor write performance 
without multiple databases

● Default partitioning was collection-per-experiment
● Not worth the hardware to throw more hardware at it

● Will investigate plumage—does it store everything?
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Upcoming Plans

● ATLAS moving to SL6 by end of May

– Target next Condor release?
● RHIC plans for SL6 upgrade this summer/fall

– Next release should long be ready by then
● PHENIX Mapping jobs to data with job-RANK and 

network-topology-aware scheduling

– Plans are for this summer/fall.
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Thank You!

Questions? Comments?
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