
Condor at the RACF

Multicore jobs in our workflow and other places for
input-driven scheduling

May 2013
William Strecker-Kellogg

Brookhaven National Lab

2

Talk Outline

● RACF Overview

● Our structure

● Problems with multicore jobs in our setup

● Common Theme—user-input-driven scheduling

● Applications and new use-cases

● Future plans

3

RHIC/ATLAS Computing Facility

● Who are we?

– Offline computing for RHIC

– Tier-1 for ATLAS in US

● Condor pools at the RACF

– 18.5kCPU RHIC
● 9.7kCPU (PHENIX)
● 8.8kCPU (STAR)

– 11.0kCPU ATLAS

● Characteristics

– RHIC—federation of individual users,
some central control, data on nodes

– ATLAS—tightly controlled, master
batch system (PANDA), central data

4

RACF Overview

● Old RHIC detectors

– PHOBOS

– BRAHMS
● Smaller experiments, neutrino

and astro

– LBNE

– DAYABAY

– LSST

– EIC

– Theory group

● ATLAS supports various
smaller groups

– Local Tier-3

– Wisconsin

● Separate cluster for some,
others integrated into ATLAS

● Total of smaller groups
around 1.5k CPUs

5

ATLAS Structure

● Flat, uniform farm in both hardware and
software

● PANDA Queues map to AccountingGroup(s)

● Hierarchical structure

● Only leaf nodes have jobs submitted to them

● Spillover between arbitrary (related) groups

– short and long can share but are constrained to
4k by parent (analysis)

– grid can accept all surplus not used by ATLAS

● Version Makeup

– Farm: 7.6.6 SL5.3

– Central Manager: 7.6.9 SL5.3

– Submit Nodes: 7.6.10 SL6.3

<root>

analysis
(4000)

test
160

cvmfs
6400

long
2000

short
2000

grid
40

prod
(6560)

atlas
(10560)

Key

Turquoise
leaf group with jobs

Blue
middle group, quota is sum of children, no jobs

Red arrow
group has accept_surplus on

6

Node Consistency

● Theme: keep nodes the same!

– Even with tools like puppet, partitioning the farm by config is
inefficient

● Balance between queues changes frequently

– Made 9 adjustments this year so far

● Queues with non-standard config still need restart

– Can't change slot count or make pslots

● Restart = full drain == inefficient

● Even harder for cloud nodes

– Maintain balance with nodes coming and going

7

Multicore Jobs in ATLAS Workflow

● Initially a test queue with a group
under production

– Static 24-core machines with
2x8CPU and 8x1CPU slots

● Discovered problem with groups—
wanted quota usage to be #CPUs
(default slot-weight)—but jobs
wouldn't match correctly (see ticket
#2958)

– Fix fails when any group has
accept_surplus enabled

● We need accept_surplus and
multicore jobs in groups

– Kludge fix: set slot-weight to 1

Q: How to integrate multicore
jobs into existing groups?

Q: How to integrate high-
memory jobs into existing
groups?

A: Partitionable Slots (pslots)!

Not Working With Group
Quotas

8

Partitionable Slot Requirements

● Want to be able to slice by RAM, CPU, and possibly Disk

– In the future slicing by any local-resource (GPU...)
● Want sane (configurable) defaults for existing job-configs

– Request: 1 core, TotalRam/TotalCPU memory, etc...
● Want no complete starvation of larger jobs that can be

accommodated somewhere

– Implies some form of defragmentation/draining
● Ideally defragmentation would be group-aware

● Every node would become one big pslot

9

Defragmentation In Detail

● Scheduler-aware defragmentation would help

1 Spread “pain” of defragmentation across users/groups

2 Ensure fair-share respected for users/groups across
schedulers

● Implementation ideas

1 Look-ahead at queue to determine defrag targets
● Looking at demand from idle jobs in queue, or allowing users to provide targets

2 Keep historical data to improve heuristics
● “This user's jobs in this cluster typically run for X hours”, etc...

10

STAR's NFS Handling

● Hundreds of NFS filesystems from
2Tb to 10Tb each

– Users can access them freely

● ...so they can easily break them

● There is no global picture of resource-
usage at the filesystem level

● Concurrency limits are nice but users
can easily lie (or be ignorant) about
what their jobs are doing

– Would be a large maintenance burden
as these change somewhat often

● Solution was to harvest NFS usage with lsof
and adjust users' prio-factor accordingly

● Overall lack of visibility in condor into what a
job is doing

● Another opportunity for user-provided data to
drive scheduling

– Adjusting prio-factor is inelegant

– So is passing data in tons of custom
classads

11

Data Driven Scheduling

● Common theme user data can improve scheduling

– Collected data more accurate then what the user will claim if asked

– Users cannot mislead in stating job requirements
● Concurrency limits require jobs to ask for resources

● Condor often running under other batch systems with better
insight into upcoming work

– PANDA in ATLAS

– STAR scheduler

– VM Provisioning

● A flexible method for condor to harvest/accept more data?

12

Data Driven Scheduling (cont...)

● More cases where statistics can help

– Given a queue of idle work, no a priori knowledge of
the throughput requirement

● Context: VM provisioning for a given work queue

– Historical data collection can help—up to a point
● Most users are not malicious and can be trusted to

honestly represent what their jobs do
● Combination of heuristics and trusting users could be

more effective than either

13

Virtualization Testbed

● Described last year—see my CHEP2012 paper

– Thin wrapper around condor to allow trusted VM execution
inside our firewall

– No restrictions on access to NFS/other UID-based services

– Usual problems and limitations from NAT

● STAR is using on 480 cores to re-run some 2004
production code in Scientific Linux 4

● SL6—could replace with a container-based approach

– CGroups and libvirt leveraged to make it easy with a
minimum of extra coding

14

Checkpointing

● Testing DMTCP checkpointing, mainly for RHIC users

– ATLAS case is too complex and there is no storage easily
available for images

– Cloud context even trickier, no local storage, bandwidth usage
charges

● Images on the submit node would require user-aware disk-
space monitoring and fairness (feature in 7.9.x?)

● Images in NFS would be easier—developing a DMTCP
wrapper that places images in a user-designated NFS
directory

– NFS Quotas provide fairness/limits outside condor

15

Virtualization Testbed

● Described last year—see my CHEP2012 paper

– Thin wrapper around condor to allow trusted VM execution
inside our firewall

– No restrictions on access to NFS/other UID-based services

– Usual problems and limitations from NAT

● STAR is using on 480 cores to re-run some 2004
production code in Scientific Linux 4

● SL6—could replace with a container-based approach

– CGroups and libvirt leveraged to make it easy with a
minimum of extra coding

16

High CM Availability

● Port channel blew on line card connecting our central managers

● Current Status: condor_had

– Not possible since we use flocking extensively
● all RHIC → all RHIC
● ATLAS → RHIC (PHENIX)

● Condor View and Tiered Collectors

– Replicate collector data across nodes

– Bring up a negotiator on one

– Don't want to partition pool by config

17

Data Collection Troubles

● Attempted to collect all ClassAd data into MongoDB instance

● Parse each schedd's history file and dump to DB

● Encountered scalability problems

– Data growth—MongoDB stores keys for every field
● Many Gb every day—lots of short-running jobs

– No Collection-level locking—very poor write performance
without multiple databases

● Default partitioning was collection-per-experiment
● Not worth the hardware to throw more hardware at it

● Will investigate plumage—does it store everything?

18

Upcoming Plans

● ATLAS moving to SL6 by end of May

– Target next Condor release?
● RHIC plans for SL6 upgrade this summer/fall

– Next release should long be ready by then
● PHENIX Mapping jobs to data with job-RANK and

network-topology-aware scheduling

– Plans are for this summer/fall.

19

Thank You!

Questions? Comments?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

