Condor at the RACF

Multicore jobs in our workflow and other places for input-driven scheduling

May 2013 William Strecker-Kellogg Brookhaven National Lab

Talk Outline

- RACF Overview
- Our structure
- Problems with multicore jobs in our setup
- Common Theme—user-input-driven scheduling
- Applications and new use-cases
- Future plans

RHIC/ATLAS Computing Facility

- Who are we?
 - Offline computing for RHIC
 - Tier-1 for ATLAS in US
- Condor pools at the RACF
 - 18.5kCPU RHIC
 - 9.7kCPU (PHENIX)
 - 8.8kCPU (STAR)
 - 11.0kCPU ATLAS
- Characteristics
 - RHIC—federation of individual users, some central control, data on nodes
 - ATLAS—tightly controlled, master batch system (PANDA), central data

RACF Overview

- Old RHIC detectors
 - PHOBOS
 - BRAHMS
- Smaller experiments, neutrino and astro
 - LBNE
 - DAYABAY
 - LSST
 - EIC
 - Theory group

- ATLAS supports various smaller groups
 - Local Tier-3
 - Wisconsin
- Separate cluster for some, others integrated into ATLAS
- Total of smaller groups around 1.5k CPUs

ATLAS Structure

- Flat, uniform farm in both hardware and software
- PANDA Queues map to AccountingGroup(s)
- Hierarchical structure
- Only leaf nodes have jobs submitted to them
- Spillover between arbitrary (related) groups
 - short and long can share but are constrained to 4k by parent (analysis)
 - grid can accept all surplus not used by ATLAS
- Version Makeup
 - Farm: 7.6.6 SL5.3
 - Central Manager: 7.6.9 SL5.3
 - Submit Nodes: 7.6.10 SL6.3

Node Consistency

- Theme: keep nodes the same!
 - Even with tools like puppet, partitioning the farm by config is inefficient
- Balance between queues changes frequently
 - Made 9 adjustments this year so far
- Queues with non-standard config still need restart
 - Can't change slot count or make pslots
- Restart = full drain = inefficient
- Even harder for cloud nodes
 - Maintain balance with nodes coming and going

Multicore Jobs in ATLAS Workflow

- Initially a test queue with a group under production
 - Static 24-core machines with 2x8cpu and 8x1cpu slots
- Discovered problem with groups wanted quota usage to be #CPUs (default slot-weight)—but jobs wouldn't match correctly (see ticket #2958)
 - Fix fails when *any* group has accept_surplus enabled
- We need accept_surplus *and* multicore jobs in groups
 - Kludge fix: set slot-weight to 1

- Q: How to integrate multicore jobs into existing groups?
- Q: How to integrate highmemory jobs into existing groups?
- A: Partitionable Slots (pslots)!

Not Working With Group Quotas

Partitionable Slot Requirements

- Want to be able to slice by RAM, CPU, and possibly Disk
 - In the future slicing by any local-resource (GPU...)
- Want sane (configurable) defaults for existing job-configs
 - Request: 1 core, TotalRam/TotalCPU memory, etc...
- Want no complete starvation of larger jobs that can be accommodated somewhere
 - Implies some form of defragmentation/draining
- Ideally defragmentation would be group-aware
- Every node would become one big pslot

Defragmentation In Detail

- Scheduler-aware defragmentation would help
 - 1 Spread "pain" of defragmentation across users/groups
 - 2 Ensure fair-share respected for users/groups across schedulers
- Implementation ideas
 - 1 Look-ahead at queue to determine defrag targets
 - Looking at demand from idle jobs in queue, or allowing users to provide targets
 - 2 Keep historical data to improve heuristics
 - "This user's jobs in this cluster typically run for X hours", etc...

STAR's NFS Handling

- Hundreds of NFS filesystems from 2Tb to 10Tb each
 - Users can access them freely
 - ...so they can easily break them
- There is no global picture of resourceusage at the filesystem level
- Concurrency limits are nice but users can easily lie (or be ignorant) about what their jobs are doing
 - Would be a large maintenance burden as these change somewhat often

Terminal	root@rcas6221:/	∧ _ + ×
[root@rcas6221 /]# /bin/ls -l /s	tar/	• Hund [^]
Lrwxrwxrwx 1 root root 19 Mar	5 2012 data01 -> /direct/star+da	ta01
Lrwxrwxrwx 1 root root 19 Mar	5 2012 data02 -> /direct/star+da	ta02
Lrwxrwxrwx 1 root root 19 Mar	5 2012 data03 -> /direct/star+da	ta03 —
lrwxrwxrwx 1 root root 19 Mar	-5 2012 data04 -> /direct/star+da	ta04
lrwxrwxrwx 1 root root 19 Mar	5 2012 data05 -> /direct/star+da	ta05
lrwxrwxrwx 1 root root 19 Mar	5 2012 data06 -> /direct/star+da	ta06 🔹 🔹
lrwxrwxrwx 1 root root 19 Mar	5 2012 data07 -> /direct/star+da	ta07
lrwxrwxrwx 1 root root 19 Mar	5 2012 data08 -> /direct/star+da	ta08
lrwxrwxrwx 1 root root 19 Mar	5 2012 data09 -> /direct/star+da	ta09 —
lrwxrwxrwx 1 root root 19 Mar	'5 2012 data10 -> /direct/star+da	ta10
lrwxrwxrwx 1 root root 19 Mar	5 2012 data11 -> /direct/star+da	tall
lrwxrwxrwx 1 root root 19 Mar	5 2012 data12 -> /direct/star+da	ta12
lrwxrwxrwx 1 root root 19 Mar	5 2012 data13 -> /direct/star+da	ta13
lrwxrwxrwx 1 root root 19 Mar	5 2012 data14 -> /direct/star+da	ta14
lrwxrwxrwx 1 root root 19 Mar	5 2012 data15 -> /direct/star+da	ta15
lrwxrwxrwx 1 root root 19 Mar	5 2012 data16 -> /direct/star+da	ta16
lrwxrwxrwx 1 root root 19 Mar	5 2012 data17 -> /direct/star+da	ta17
lrwxrwxrwx 1 root root 19 Mar	5 2012 data18 -> /direct/star+da	ta18 🚽
lrwxrwxrwx 1 root root 19 Mar	5 2012 data19 -> /direct/star+da	ta19 📃
lrwxrwxrwx 1 root root 19 Mar	5 2012 data20 -> /direct/star+da	ta20
lrwxrwxrwx 1 root root 19 Mar	5 2012 data21 -> /direct/star+da	ta21 🚽

- Solution was to harvest NFS usage with *lsof* and adjust users' prio-factor accordingly
- Overall lack of visibility in condor into what a job is doing
- Another opportunity for user-provided data to drive scheduling
 - Adjusting prio-factor is inelegant
 - So is passing data in tons of custom classads

Data Driven Scheduling

- Common theme user data can improve scheduling
 - Collected data more accurate then what the user will claim if asked
 - Users cannot mislead in stating job requirements
 - Concurrency limits require jobs to ask for resources
- Condor often running under other batch systems with better insight into upcoming work
 - PANDA in ATLAS
 - STAR scheduler
 - VM Provisioning
- A flexible method for condor to harvest/accept more data?

Data Driven Scheduling (cont...)

- More cases where statistics can help
 - Given a queue of idle work, no a priori knowledge of the throughput requirement
 - Context: VM provisioning for a given work queue
 - Historical data collection can help—up to a point
 - Most users are not malicious and can be trusted to honestly represent what their jobs do
 - Combination of heuristics and trusting users could be more effective than either

Virtualization Testbed

- Described last year—see my CHEP2012 paper
 - Thin wrapper around condor to allow *trusted* VM execution inside our firewall
 - No restrictions on access to NFS/other UID-based services
 - Usual problems and limitations from NAT
- STAR is using on 480 cores to re-run some 2004 production code in Scientific Linux 4
- SL6—could replace with a container-based approach
 - CGroups and libvirt leveraged to make it easy with a minimum of extra coding

Checkpointing

- Testing DMTCP checkpointing, mainly for RHIC users
 - ATLAS case is too complex and there is no storage easily available for images
 - Cloud context even trickier, no local storage, bandwidth usage charges
- Images on the submit node would require user-aware diskspace monitoring and fairness (feature in 7.9.x?)
- Images in NFS would be easier—developing a DMTCP wrapper that places images in a user-designated NFS directory
 - NFS Quotas provide fairness/limits outside condor

Virtualization Testbed

- Described last year—see my CHEP2012 paper
 - Thin wrapper around condor to allow *trusted* VM execution inside our firewall
 - No restrictions on access to NFS/other UID-based services
 - Usual problems and limitations from NAT
- STAR is using on 480 cores to re-run some 2004 production code in Scientific Linux 4
- SL6—could replace with a container-based approach
 - CGroups and libvirt leveraged to make it easy with a minimum of extra coding

High CM Availability

- Port channel blew on line card connecting our central managers
- Current Status: condor_had
 - Not possible since we use flocking extensively
 - all RHIC → all RHIC
 - ATLAS → RHIC (PHENIX)
- Condor View and Tiered Collectors
 - Replicate collector data across nodes
 - Bring up a negotiator on one
 - Don't want to partition pool by config

Data Collection Troubles

- Attempted to collect all ClassAd data into MongoDB instance
- Parse each schedd's history file and dump to DB
- Encountered scalability problems
 - Data growth—MongoDB stores keys for every field
 - Many Gb every day—lots of short-running jobs
 - No Collection-level locking—very poor write performance without multiple databases
 - Default partitioning was collection-per-experiment
 - Not worth the hardware to throw more hardware at it
- Will investigate plumage—does it store <u>everything</u>?

Upcoming Plans

- ATLAS moving to SL6 by end of May
 - Target next Condor release?
- RHIC plans for SL6 upgrade this summer/fall
 - Next release should long be ready by then
- PHENIX Mapping jobs to data with job-RANK and network-topology-aware scheduling
 - Plans are for this summer/fall.

Thank You!

Questions? Comments?