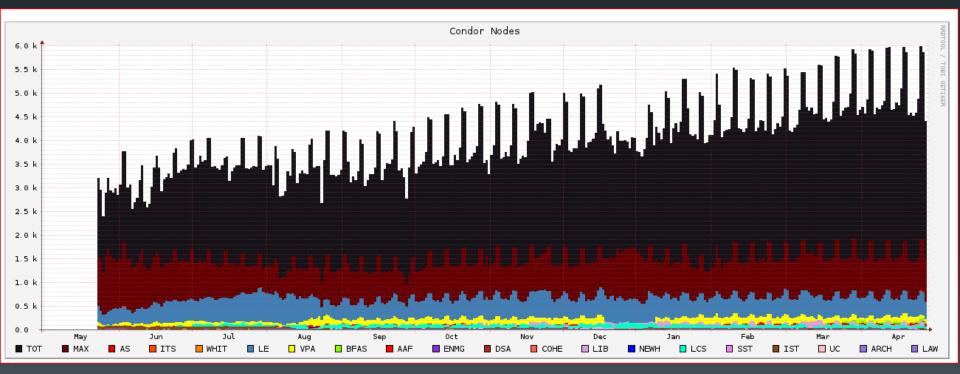
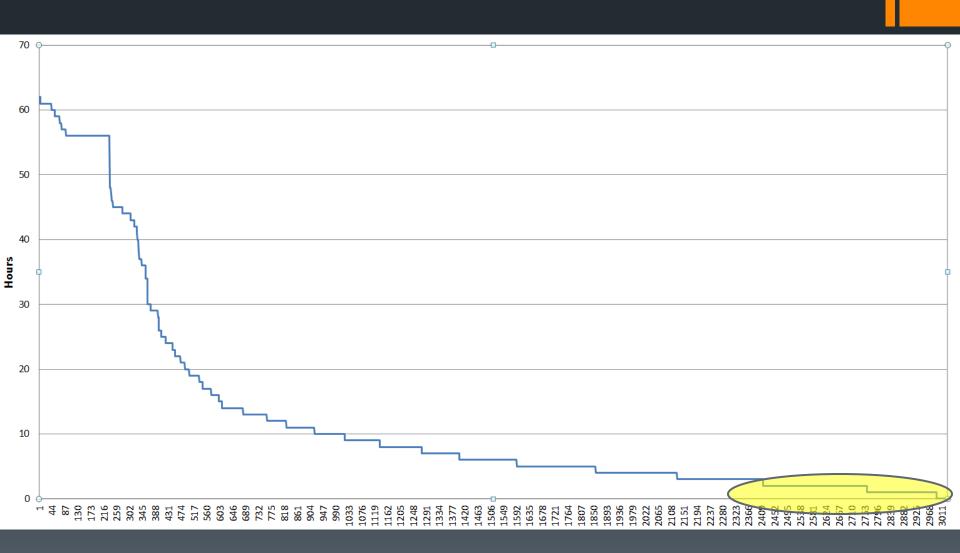
Managing a growing campus pool


Eric Sedore essedore@syr.edu

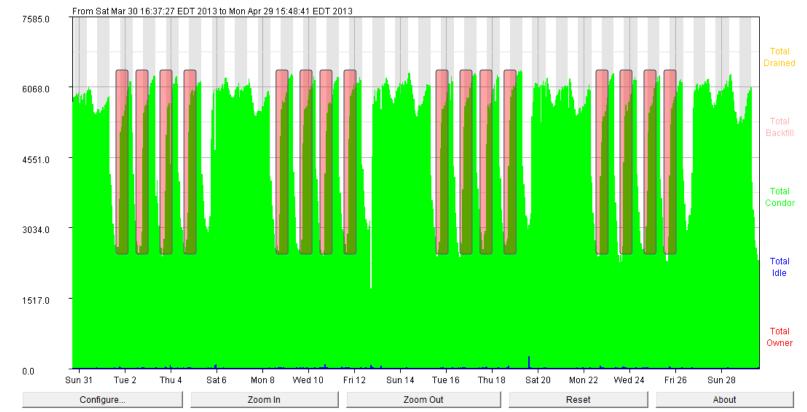
Quick context

- Scavenging CPU time from 2000 desktops on campus
- Growth from 3000 to 6000+ cores over the last year
- Varied types of research (in all dimensions, run time, data needed per job, data access type (HTCondor transfer/NFS))
- Challenge feeding data to the compute nodes
 - VPN tunnel bandwidth
 - SAN Storage / Virtual server environment
 - Campus network


Exploring steering jobs via average availability of each node

Steering jobs

- More Traditional CPU/Memory/Application requirements
- Jobs that are not easily checkpointed and have longer run times
- Dynamic average giving the job a view into the amount of scavenging time (in hours) of a node – publish via classad
 - sessionlength = "44"
 - sessionlength = "9"
 - sessionlength = "10"
 - sessionlength = "41"
- Add to job requirements or ranking: TARGET.sessionlength >= "4"
- Data gathered through parsing logs from the last seven days (from Condor VM Coordinator)



Dealing with growth

- Data delivery infrastructure horizontal and vertical scaling
- Network infrastructure upgrades upgrading 1 Gb links to 10 Gb links
- Scaling out VPN end points working toward a model, 1000-1500 per endpoint
- Throttling vs. bottleneck (protecting network links where there are high compute node populations)

Syracuse University Condor Pool Machine Statistics for Month

[Graph Hints: The Y-axis is number of machines, the X-axis is time. When graph finishes updating, press "Configure.." to view different Architecture or State data. Also, you can use the mouse to draw a rectangle on the graph and then press "Zoom In". Press "Reset" to center/resize the data after Configure or when done zooming. Nighttime shows up on graph background as grey.]

Arch	Owner Average	Condor Average	Idle Average	Backfill Average	Drained Average	Owner Peak	Condor Peak
<u>Total</u>	0.0	5053.1	12.5	0.0	0.0	0	6464
	(0.0%)	(99.7%)	(0.3%)	(0.0%)	(0.0%)	(0%)	(99%)
X86_64/LINUX	0.0	5053.1	12.5	0.0	0.0	0	6464
	(0.0%)	(99.7%)	(0.3%)	(0.0%)	(0.0%)	(0%)	(99%)

Pushing NFS

- ~6300 nodes supported on a single NFS server (65000+ open files)
- Can run out of CPU at peak times (current server has 16 cores) context switching / I/O wait
- Virtual Machine running in ESX 5.x SAN storage (15K spindles on an IBM 5300)
- 3.0.0-21-virtual #35-Ubuntu SMP Fri May 25 18:35:12 UTC 2012 x86_64 x86_64 GNU/Linux

Pool up and running – supporting the load

usr	sys	idl	wai	hiq	siq	read	writ	recv	send	in	out	int	CSW
0	22	41	28	0	9	9624k	99M	60M	28M	0	0	82k	190k
0	13	54	26	0	7	7588k	142M	4 3M	32M	0	0	67k	85k
0	25	45	18	0	11	9792k	82M	54M	27 M	0	0	105k	160k
0	32	59	0	0	9	2172k	4580k	74M	29M	0	0	121k	203k
0	25	66	0	0	9	2164k	772k	59M	27 M	0	0	116k	212k
0	32	57	0	0	11	4928k	1216k	59M	25M	0	0	123k	202k
0	24	66	1	0	9	3736k	29M	57M	23M	0	0	105k	165k
0	28	59	1	0	12	9444k	1424k	65M	26 M	0	0	118k	201k
0	36	51	0	0	13	4840k	2152k	72M	29 M	0	0	121k	189k
0	39	48	1	0	13	6756k	1192k	59M	30M	0	0	123k	189k
0	31	57	0	0	12	8332k	608k	64M	28M	0	0	122k	197k
0	26	64	1	0	9	4068k	29M	53 M	31M	0	0	114k	186k
0	30	60	0	0	10	1748k	3096k	55 M	33M	0	0	124k	207k
0	26	65	0	0	9	1516k	2228k	62M	34M	0	0	115k	202k
0	36	54	0	0	10	1412k	1224k	60M	30M	0	0	123k	195k
0	30	58	0	0	11	5792k	2764k	58M	32M	0	0	123k	202k
0	22	68	1	0	8	8720k	31M	56 M	32M	0	0	109k	181k
0	29	59	3	0	10	1248k	33M	59M	29M	0	0	121k	201k
0	21	41	29	0	9	464k	143M	57 M	28M	0	0	106k	173k
0		52	14	0	8	3344k	134M	64M	26M	0	0	103k	154k
0	25	67	0	0	7	6144k	3424k	57 M	19M	0	0	119k	201k
0	19	74	1	0	6	112 k	31M	53 M	18M	0	0	84k	162k
0	22	71	0	0	7	28k	2592k	62M	16 M	0	0	107k	215k