
An Introduction to Using 
HTCondor

2013



2

The Team - 2012

Established in 1985,

to do research and development of distributed 
high-throughput computing



3

HTCondor does High-Throughput 
Computing

› Allows for many computational tasks to 
be completed over a long period of time

› Useful for researchers and other users 
who are more concerned with the 
number of computations they can do 
over long spans of time than they are 
with short-burst computations



4

HTCondor’s strengths

› Cycle scavenging works!
› High-throughput computing
› Very configurable, adaptable
› Supports strong security methods
› Interoperates with many types of computing grids
› Has features to manage both dedicated CPUs 

(clusters) and non-dedicated resources (desktops)
› Fault-tolerant: can survive crashes, network outages, 

any single point of failure



5

HTCondor will ...
› Keep an eye on your jobs and keep you 

posted on their progress
› Implement your policy on the execution order 

of your jobs
› Log your job's activities
› Add fault tolerance to your jobs
› Implement your policy as to when the jobs 

can run on your desktop



6

Our 
esteemed 
scientist*, 

has plenty of  
simulations 

to do.
* and Karen's cousin



7

Einstein's Simulation

Simulate the 

evolution of 

the cosmos, 

assuming  

various 

properties.



8

Simulation Overview

Varying values for each of:
 G (the gravitational constant): 100 values

  Rμν (the cosmological constant): 100 values
  c (the speed of light): 100 values

100 × 100 × 100 = 1,000,000 jobs



9

Each job within the simulation:
Requires up to 4 GBytes of RAM
 Requires 20 MBytes of input
 Requires 2 – 500 hours of computing time
 Produces up to 10 GBytes of output

Estimated total:
 15,000,000 CPU hours or 1,700 compute YEARS
 10 Petabytes of output



10

Albert will be happy, since HTCondor will 
make the completion of the entire 
simulation easy.



11

Definitions

Job
 the HTCondor representation of a piece of work
 Like a Unix process
 Can be an element of a workflow

ClassAd
 HTCondor’s internal data representation

Machine or Resource
 computers that can do the processing



12

More Definitions

Match Making
 Associating a job with a machine resource

Central Manager
 Central repository for the whole pool
 Does match making

Submit Host
 The computer from which jobs are submitted to 

HTCondor
Execute Host

 The computer that runs a job



13

Jobs state their needs and preferences:
 Requirements (needs):

• I require a Linux x86-64 platform

 Rank (preferences):
• I prefer the machine with the most memory

• I prefer a machine in the botany department



14

Machines specify needs and preferences:
 Requirements (needs):

• Require that jobs run only when there is no 
keyboard activity

• Never run jobs belonging to Dr. Heisenberg

 Rank (preferences):
• I prefer to run Albert’s jobs



15

ClassAds

the language that Condor 
uses to represent 
information – about 
jobs (job ClassAd), 
machines (machine 
ClassAd), and 
programs that implement 
Condor's functionality 
(called daemons)



16

ClassAd Structure

semi-structured
user-extensible
schema-free

AttributeName = Value
or

AttributeName = Expression



17

MyType       = "Job"
TargetType   = "Machine"
ClusterId    = 1
ProcId       = 0
IsPhysics    = True
Owner        = "einstein"
Cmd          = "cosmos"
Requirements = (Arch == "INTEL")
.
.
.

Part of a Job ClassAd

String

Integer

Boolean

Boolean
Expression



18

The Magic of Matchmaking

The match maker matches job ClassAds with 
machine ClassAds, taking into account:
 Requirements of both the machine and the job
 Rank of both the job and the machine 
 Priorities, such as those of users and groups



19

Getting Started

1. Choose a universe for the job 

2. Make the job batch-ready, which 
includes making the input data available 
and accessible

3. Create a submit description file

4. Run condor_submit to put the job(s) 
in the queue



20

1. Choose the Universe

› controls how 
HTCondor handles 
jobs

› the many universes 
include:
 vanilla
 standard
 grid
 java
 parallel
 vm



21

 Using the vanilla Universe

• Allows running almost 
any “serial” job

• Provides automatic file 
transfer for input and 
output files

• Like vanilla ice cream, 
can be used in just about 
any situation



22

2. Make the job 
batch-ready

› Must be able to run in 
the background

› No interactive input

› No GUI/window clicks



23

Batch-Ready:
Standard Input & Output

› Job can still use stdin, stdout (the 
keyboard and the screen) , and stderr , 
but files are used instead of the actual 
devices

› Similar to Unix shell:
$ ./myprogram <input.txt >output.txt



24

Make the Data Available

› HTCondor will
 Transfer data files to the location where the job 

runs
 Transfer result files back from the location 

where the job runs

› Place the job's data files in a place where 
HTCondor can access them



25

3. Create a 
Submit Description File

› A plain ASCII text file

› File name extensions are irrelevant, 
although many use .sub or .submit as 
suffixes

› Tells HTCondor about the job

› Can describe many jobs at once (a 
cluster), each with different input, output, 
command line arguments, etc.



26

Simple Submit Description File

# file name is cosmos.sub
# (Lines beginning with # are comments)
# NOTE: the commands on the left are not
#   case sensitive, but file names 
#   (on the right) are!

Universe   = vanilla
Executable = cosmos
Input      = cosmos.in   
Output     = cosmos.out
Log        = cosmos.log  
Queue

Put 1 instance of 
the job in the 
queue



27

Input, Output, and Error Files

Input = in_file
Read job’s standard input from in_file

Like shell command:    $ program < in_file

Output = out_file
Write job’s standard output to out_file

Like shell command:    $ program > out_file

Error = error_file
Write job’s standard error to error_file

Like shell command:    $ program 2> error_file



28

Logging the Job's Activities

› In the submit description file:
log = cosmos.log

› Creates a log of job events, which shows all 
events that occur as the job executes

› Good advice: always have a log file



29

Sample Portion of Job Log

000 (0101.000.000) 05/25 19:10:03 Job submitted from host: 
<128.105.146.14:1816>

...

001 (0101.000.000) 05/25 19:12:17 Job executing on host: 
<128.105.146.14:1026>

...

005 (0101.000.000) 05/25 19:13:06 Job terminated.

(1) Normal termination (return value 0)

...

000, 001, and 005 are examples of event 
numbers.



30

4. Submit the Job

Run condor_submit, providing the name of 
the submit description file:
 $ condor_submit cosmos.sub
Submitting job(s).
1 job(s) submitted to cluster 100.

condor_submit then
 parses the submit description file, checking for 

errors
 creates a ClassAd that describes the job(s)
 places the job(s) in the queue, which is an atomic 

operation, with a two-phase commit



31

Observe Jobs in the Queue
$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> : 

submit.chtc.wisc.edu
ID      OWNER         SUBMITTED     RUN_TIME ST PRI SIZE CMD
2.0      heisenberg   1/13 13:59   0+00:00:00 R  0   0.0  env
3.0      hawking      1/15 19:18   0+04:29:33 H  0   0.0  script.sh
4.0      hawking      1/15 19:33   0+00:00:00 H  0   0.0  script.sh
5.0      hawking      1/15 19:33   0+00:00:00 H  0   0.0  script.sh
6.0      hawking      1/15 19:34   0+00:00:00 H  0   0.0  script.sh
...
96.0     bohr         4/5  13:46   0+00:00:00 I  0   0.0  atoms H
97.0     bohr         4/5  13:46   0+00:00:00 I  0   0.0  atoms H
98.0     bohr         4/5  13:52   0+00:00:00 I  0   0.0  atoms H
99.0     bohr         4/5  13:52   0+00:00:00 I  0   0.0  atoms H
100.0    einstein     4/5  13:55   0+00:00:00 I  0   0.0  cosmos

100 jobs; 1 completed, 0 removed, 20 idle, 1 running, 77 held, 
0 suspended



32

File Transfer

Transfer_Input_Files specifies a list of 
files to transfer from the submit machine to 
the execute machine

Transfer_Output_Files specifies a list of 
files to transfer back from the execute 
machine to the submit machine If 
Transfer_Output_Files is not specified, 
HTCondor will transfer back all new files in 
the execute directory



33

More on File Transfer

Files need to get from the submit machine to the execute machine. 2 
possibilities:

1. both machines have access to a shared file system
2. machines have separate file systems

Should_Transfer_Files
= YES: Transfer files to execution machine
= NO: Rely on shared file system
= IF_NEEDED: Automatically transfer the files, if the submit and 

execute machine are not in the same FileSystemDomain 
(translation: use shared file system if available)

When_To_Transfer_Output
= ON_EXIT: Transfer output files only when job completes
= ON_EXIT_OR_EVICT: Transfer output files when job completes 

or is evicted



34

File Transfer Example

# new cosmos.sub file
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Transfer_Input_Files = cosmos.dat
Transfer_Output_Files = results.dat
Should_Transfer_Files = IF_NEEDED
When_To_Transfer_Output = ON_EXIT
Queue



35

Command Line Arguments

# Example with command line arguments

Universe   = vanilla

Executable = cosmos

Arguments  = -c 299792458 –G 6.67300e-112

. . .

Queue

Invokes executable with
cosmos –c 299792458 –G 6.673e-112

Look at the condor_submit man page to 
see syntax for Arguments.  This example 
has argc = 5.



36

More Feedback

• HTCondor sends email 
about job events to the 
submitting user

• Specify one of these in 
the submit description 
file:

Notification = complete
Notification = never
Notification = error
Notification = always

Default in 7.8

Default in 7.9



37

ClusterId.ProcID is Job ID

› If the submit description file describes multiple jobs, the 
set is called a cluster

› Each cluster has a cluster number, where the cluster 
number is unique to the job queue on a machine

› Each individual job within a cluster is called a process, 
and process numbers always start at zero 

› A Job ID is the cluster number, a period, and the process 
number.  Examples:
 Job ID = 20.0  Cluster 20, process 0
 Job IDs: 21.0, 21.1, 21.2        Cluster 21, processes 0, 1, 2



38

1 Cluster

Universe   = vanilla

Executable = cosmos

log        = cosmos_0.log

Input      = cosmos_0.in

Output     = cosmos_0.out

Queue Job 102.0 (cluster 102, 
process 0)

log        = cosmos_1.log

Input      = cosmos_1.in

Output     = cosmos_1.out

Queue Job 102.1 (cluster 102, 
process 1)



39

File Organization

A logistical nightmare places all input, output, 
and log files in one directory
3 files × 1,000,000 jobs = 3,000,000 files
 The submit description file is 4,000,000+ lines

The directory will be difficult (at best) to even 
look at



40

Better Organization

› Create subdirectories for each job, intentionally 
 named
run_0, run_1, … run_999999

› Implement the creation of directories with a 
Python or Perl program

› Create or place input files in each of these
run_0/cosmos.in
run_1/cosmos.in
…
run_999999/cosmos.in

› The output and log files for each job will be 
created by the job, when the job runs



41

Einstein’s simulation directory

cosmos

cosmos.sub

run_999999

run_0

Submitter or script 

creates black-font 

files

HTCondor 

creates 

purple-font 

files

cosmos.in

cosmos.in

cosmos.out

cosmos.log

cosmos.out

cosmos.log



42

Better Submit Description File
# Cluster of 1,000,000 jobs

Universe = vanilla
Executable = cosmos
Log = cosmos.log
Output = cosmos.out
Input  = cosmos.in

...

InitialDir = run_0
Queue Job 103.0 (Cluster 103, Process 0)

InitialDir = run_1
Queue Job 103.1 (Cluster 103, Process 1)

This file contains 999,998 more instances of 
InitialDir and Queue.



43

Submit Description File Macros

› Queue all 1,000,000 processes with the single 
command:
Queue 1000000

› Within the submit description file, HTCondor 
permits named macros
$(Process) will be expanded to the process number for 

each job in the cluster

Values 0 – 999999 for the 1,000,000 jobs



44

Using $(Process)
› The initial directory for each job can be specified 
InitialDir = run_$(Process)
HTCondor expands these to directories
  run_0, run_1, … run_999999

› Similarly, command-line arguments could use a 
macro to pass a unique identifier to each job 
instance
Arguments = -n $(Process)
 HTCondor expands arguments to:

-n 0 
-n 1 
… 
-n 999999



45

(Best) Submit Description File

# Example: a cluster of 1000000 jobs

Universe   = vanilla
Executable = cosmos
Log        = cosmos.log
Input      = cosmos.in
Output     = cosmos.out
InitialDir = run_$(Process)
Queue 1000000



46

Albert submits the cosmos 
simulation. Patience required, it 

will take a while…
$ condor_submit cosmos.sub
Submitting 

job(s) .........................................
................................................
................................................
............................

Logging submit 
event(s) .......................................
................................................
................................................
................................................
........................

1000000 job(s) submitted to cluster 104.



47

the Job Queue

$ condor_q
-- Submitter: submit.chtc.wisc.edu : 

<128.104.55.9:51883> : submit.chtc.wisc.edu
ID       OWNER   SUBMITTED   RUN_TIME  ST PRI SIZE CMD
104.0      einstein 4/20 12:08 0+00:00:05 R 0 9.8 cosmos
104.1      einstein 4/20 12:08 0+00:00:03 I 0 9.8 cosmos
104.2      einstein 4/20 12:08 0+00:00:01 I 0 9.8 cosmos
104.3      einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos
...
104.999998 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos
104.999999 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos

999999 jobs; 999998 idle, 1 running, 0 held



48

Albert Relaxes

› HTCondor watches over 
the jobs, and will restart 
them if required, etc.

› Time for a cold one!



49

More That You Do With HTCondor



50

Remove Jobs with condor_rm

› You can only remove jobs that you own
› Privileged user can remove any jobs

 root on Linux
 administrator on Windows

condor_rm 4 Removes all cluster 4 jobs
condor_rm 4.2    Removes only the job with

                             job ID 4.2
condor_rm –a      Removes all of your jobs.     

                            Careful !



51

Specify Job Requirements

› A boolean expression (syntax similar to C or Java)
› Evaluated with respect to attributes from machine 

ClassAd(s)
› Must evaluate to True for a match to be made
Universe = vanilla
Executable = mathematica

...

Requirements = (  \
HasMathematicaInstalled =?= True )

Queue 20



52

Specify Needed Resources

Items appended to job Requirements
request_memory – the amount of memory (in 

Mbytes) that the job needs to avoid excessive 
swapping 

request_disk – the amount of disk space (in 
Kbytes) that the job needs. Will be sum of space 
for executable, input files, output files and 
temporary files. Default is size of initial sandbox 
(executable plus input files).

request_cpus – the number of CPUs (cores) that 
the job needs. Defaults to 1.



53

Specify Job Rank
› All matches which meet the requirements can be 

sorted by preference with a Rank expression
 Numerical
 Higher rank values match first

› Like Requirements, is evaluated against attributes 
from machine ClassAds

Universe = vanilla
Executable = cosmos

. . .

Rank = (KFLOPS*10000) + Memory
Queue 1000000



54

Job Policy Expressions
› Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

› Place on hold if exits with nonzero status or 
ran for less than an hour:
on_exit_hold =
 ( (ExitBySignal==False) && (ExitSignal != 0) ) ||
 ( (ServerStartTime - JobStartDate) < 3600)

› Place on hold if job has spent more than 
50% of its time suspended:
periodic_hold = 
 ( CumulativeSuspensionTime >
   (RemoteWallClockTime / 2.0) )



55

Lots of
Short-Running Jobs

Know that starting a job is somewhat 
expensive, in terms of time.
3 items that might help:

1. Batch short jobs together
 Write a wrapper script that will run a set of the 

jobs in series
 Submit the wrapper script as the job

1. Explore HTCondor’s parallel universe
2. There are some configuration variables that 

may be able to help
 Contact a staff person for more info



56

Common Problems with 
Jobs



57

Jobs Are Idle

Our scientist runs condor_q and finds all his 
jobs are idle

$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510> 

:x.cs.wisc.edu
ID  OWNER     SUBMITTED    RUN_TIME  ST PRI SIZE CMD
5.0 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
5.1 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos 
5.2 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
5.3 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos 
5.4 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
5.5 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
5.6 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
5.7 einstein  4/20 12:23  0+00:00:00  I 0   9.8  cosmos
8 jobs; 8 idle, 0 running, 0 held



58

Exercise a little patience

› On a busy pool, it can take a while 
to match jobs to machines, and 
then start the jobs

› Wait at least a negotiation cycle or 
two, typically a few minutes



59
59

Look in the Job Log

The log will likely contain clues:

$ cat cosmos.log
000 (031.000.000) 04/20 14:47:31 Job submitted from 

host: <128.105.121.53:48740>
...
007 (031.000.000) 04/20 15:02:00 Shadow exception!
        Error from starter on gig06.stat.wisc.edu: 

Failed to open 
'/scratch.1/einstein/workspace/v78/condor-
test/test3/run_0/cosmos.in' as standard input: No 
such file or directory (errno 2)

        0  -  Run Bytes Sent By Job
        0  -  Run Bytes Received By Job
...



60

$ condor_status
Name               OpSys      Arch   State     Activity LoadAv Mem   ActvtyTime
slot1@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  4599  0+00:10:13
slot2@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  1024  1+19:10:36
slot3@c002.chtc.wi LINUX      X86_64 Claimed   Busy     0.990  1024  1+22:42:20
slot4@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  1024  0+03:22:10
slot5@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  1024  0+03:17:00
slot6@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  1024  0+03:09:14
slot7@c002.chtc.wi LINUX      X86_64 Claimed   Busy     1.000  1024  0+19:13:49
...
slot7@exec-2.chtc. WINDOWS    INTEL  Owner     Idle     0.000   511  0+00:24:17
slot8@exec-2.chtc. WINDOWS    INTEL  Owner     Idle     0.030   511  0+00:45:01

                     Total Owner Claimed Unclaimed Matched Preempting Backfill

       INTEL/WINDOWS   104    78      16        10       0          0        0
        X86_64/LINUX   759   170     587         0       0          1        0

               Total   863   248     603        10       0          1        0

Check Machines' Status



61

Try: condor_q -analyze

> condor_q -analyze 107.5 
-- Submitter: crane.cs.wisc.edu : 

<128.105.136.32:61610> : crane.cs.wisc.edu
User priority for max@crane.cs.wisc.edu is not 
available, attempting to analyze without it. 

--- 
107.005: Run analysis summary. Of 4 machines, 
  0 are rejected by your job's requirements 
  0 reject your job because of their own requirements 
  4 match and are already running your jobs 
  0 match but are serving other users 
  0 are available to run your job 

improved in 7.9

mailto:max@crane.cs.wisc.edu


62

condor_q -analyze 102.1 
-- Submitter: crane.cs.wisc.edu : 

<128.105.136.32:61610> : crane.cs.wisc.edu 
User priority for max@crane.cs.wisc.edu is not 
available, attempting to analyze without it. 

--- 

107.005: Run analysis summary. Of 3184 machines, 

 3184 are rejected by your job's requirements 

    0 reject your job because of their own requirements

    0 match and are already running your jobs

    0 match but are serving other users

    0 are available to run your job 

WARNING: Be advised: 
No resources matched request's constraints 

mailto:max@crane.cs.wisc.edu


63

The Requirements expression for your job is: 

( TARGET.Arch == "X86_64" ) && 
( TARGET.OpSys == "WINDOWS" ) && 
( TARGET.Disk >= RequestDisk ) && 
( TARGET.Memory >= RequestMemory ) && 
( TARGET.HasFileTransfer ) 

Suggestions: 
Condition          Machines Matched    Suggestion 
---------      ---------------- ---------- 
1 ( TARGET.OpSys == "WINDOWS" ) 0   MODIFY TO "LINUX" 

2 ( TARGET.Arch == "X86_64" )   3137 
3 ( TARGET.Disk >= 1 )          3184 
4 ( TARGET.Memory >= ifthenelse(MemoryUsage isnt 
undefined,MemoryUsage,1) )      3184 
5 ( TARGET.HasFileTransfer )    3184 

(continued)



64

Learn about available resources

$ condor_status –const 'Memory > 8192'
(no output means no matches)

$ condor_status -const 'Memory > 4096'
Name          OpSys  Arch   State     Activ LoadAv Mem   ActvtyTime
slot1@c001.ch LINUX  X86_64 Unclaimed Idle  0.000  5980  1+05:35:05
slot2@c001.ch LINUX  X86_64 Unclaimed Idle  0.000  5980 13+05:37:03
slot3@c001.ch LINUX  X86_64 Unclaimed Idle  0.000  7988  1+06:00:05
slot1@c002.ch LINUX  X86_64 Unclaimed Idle  0.000  7988 13+06:03:47

                Total Owner Claimed Unclaimed Matched Preempting
   X86_64/LINUX     4     0       0         4       0          0
          Total     4     0       0         4       0          0



65

Interact With A Job

› Perhaps a job is running for much longer 
than expected.
Is it stuck accessing a file?
 Is it in an infinite loop?

› Try condor_ssh_to_job
 Interactive debugging in Unix
 Use ps, top, gdb, strace, lsof, …
 Forward ports, X, transfer files, etc.
 Currently not available on Windows



66

Interactive Debug Example
$ condor_q
-- Submitter: cosmos.phy.wisc.edu : <128.105.165.34:1027>

ID    OWNER    SUBMITTED  RUN_TIME  ST PRI SIZE CMD        
       

1.0  einstein 4/15 06:52 1+12:10:05 R 0   10.0 cosmos

1 jobs; 0 idle, 1 running, 0 held

$ condor_ssh_to_job 1.0

Welcome to slot4@c025.chtc.wisc.edu!
Your condor job is running with pid(s) 15603.

$ gdb –p 15603
. . .



67

HTCondor is extremely 
flexible.  Here are 
overviews of some of 
the many features 
that you may want to 
learn more about.



68

After this tutorial, here are some places you 
might find help:

1. HTCondor manual

2. htcondor-users mailing list.  See
https://lists.cs.wisc.edu/mailman/listinfo/htcondor-

users

3.  Wiki
https://htcondor-
wiki.cs.wisc.edu/index.cgi/wiki

4.  Developers



69

The more time a job takes to 
run, the higher the risk of 
• being preempted by a 

higher priority user or job
• getting kicked off a machine 

(vacated), because the 
machine has something else 
it prefers to do

• HTCondor's 
standard universe may 
provide a solution.



70

› Regularly while the job runs, or when the 
job is to be kicked off the machine, 
HTCondor takes a checkpoint -- the 
complete state of the job.

› With a checkpoint, the job can be 
matched to another machine, and 
continue on.

Standard Universe



71

checkpoint: the entire state of a program saved in a 
file, such as CPU registers, memory image, I/O, 
etc.

time



72

 3 Checkpoints

time

1 2 3



73

time

3

3

Killed!



74

Goodput and Badput

time

3

3

goodput badput goodput ?



75

Standard Universe Features

› Remote system calls (remote I/O)
The job can read or write files as if they 

were local
› Programming language independent
› No source code changes are typically 

required, but relinking the executable with 
HTCondor's standard universe support 
library is required.



76

How to Relink

Place condor_compile in front of the 
command used to link the job:

$ condor_compile gcc -o myjob myjob.c

- OR -

$ condor_compile f77 -o myjob filea.f fileb.f

- OR -

$ condor_compile make –f MyMakefile



77

Limitations

› HTCondor’s checkpoint mechanism is not at 
the kernel level.  Therefore,  a standard 
universe job may not :
fork()
 Use kernel threads
 Use some forms of IPC, such as pipes and 

shared memory
› Must have access to object code in order to 

relink
› Only available on some Linux platforms



78

Parallel Universe

› When multiple processes of a single job must be When multiple processes of a single job must be 
running at the same time on different machines.running at the same time on different machines.

› Provides a mechanism for controlling parallel 
algorithms
Fault tolerant
 Allows for resources to come and go
 Ideal for Computational Grid environments

› Especially for MPI



79

MPI Job Submit Description File

# MPI job submit description file
universe = parallel 
executable = mp1script 
arguments = my_mpich_linked_exe arg1 arg2 
machine_count = 4 
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = my_mpich_linked_exe
queue



80

MPI jobs

Note: HTCondor will probably not schedule all of 
the jobs on the same machine, so consider 
using whole machine slots

See the HTCondor Wiki:
Under How To Admin Recipes,
"How to allow some jobs to claim the whole 

machine  instead of one slot"
 



81

VM Universe
› A virtual machine instance is the HTCondor job
› The vm universe offers

 Job sandboxing
 Checkpoint and migration
 Safe elevation of privileges
 Cross-platform submission

› HTCondor supports VMware, Xen, and KVM
› Input files can be imported as CD-ROM image
› When the VM shuts down, the modified disk 

image is returned as job output



82

Machine Resources are 
Numerous:  The Grid

Given access (authorization) to grid resources , 
as well as certificates (for authentication) and 
access to Globus or other resources at 
remote institutions, HTCondor's grid universe 
does the trick !



83

Grid Universe

› All specification is in the submit description file
› Supports many “back end” types:
Globus: GT2, GT5
 NorduGrid
 UNICORE
 HTCondor
 PBS
 LSF
 SGE
 EC2
 Deltacloud
 Cream



84

Some sets of jobs 
have dependencies.

HTCondor handles 
them with DAGMan.

› Interested?  Stay for 
Kent's tutorial, later 
this morning.

A

B C

D



85

the Java Universe

More than 
$  java mysimulator

› Knows which machines have a JVM installed
› Knows the location, version, and performance 

of JVM on each machine
› Knows about jar files, etc.
› Provides more information about Java job 

completion than just a JVM exit code
 Program runs in a Java wrapper, allowing 

HTCondor to report Java exceptions, etc.



86

 Java Universe Example

# sample java universe submit
# description file
Universe   = java
Executable = Main.class
jar_files  = MyLibrary.jar
Input      = infile
Output     = outfile
Arguments  = Main 1 2 3
Queue



87

In Review

With HTCondor’s help, both you and 
Albert can:
 Submit jobs
 Manage jobs
 Organize data files
 Identify aspects of universe choice



88

Thank you!

Check us out on the web:

http://www.research.wisc.edu/htcondor

Email:

htcondor-admin@cs.wisc.edu



89

Extra Slides with More 
Information You Might Want to 

Reference



90

InitialDir
› Identifies a directory for file input and output. 
› Also provides a directory (on the submit machine) for the 

user log, when a full path is not specified.
› Note: Executable is not relative to InitialDir

# Example with InitialDir
Universe   = vanilla
InitialDir = /home/einstein/cosmos/run
Executable = cosmos
Log        = cosmos.log
Input      = cosmos.in
Output     = cosmos.out
Error      = cosmos.err

Transfer_Input_Files=cosmos.dat
Arguments  = -f cosmos.dat
Queue

Is Relative to InitialDir

NOT Relative to InitialDir



91

Substitution Macro
$$(<attribute>) will be replaced by the value of the 

specified attribute from the Machine ClassAd

Example:
  Machine ClassAd has:
 CosmosData = "/local/cosmos/data"
Submit description file has
  Executable   = cosmos
  Requirements = (CosmosData =!= UNDEFINED)
  Arguments    = -d $$(CosmosData)
Results in the job invocation:
  cosmos –d /local/cosmos/data



92

Getting HTCondor
› Available as a free download from

http://research.cs.wisc.edu/htcondor
› Download HTCondor for your operating 

system
 Available for many modern Unix platforms 

(including Linux and Apple’s OS/X)
 Also for Windows, many versions

› Repositories
 YUM: RHEL 4, 5, and 6

• $ yum install condor
 APT: Debian 5 and 6

• $ apt-get install condor



93

HTCondor Releases
› Stable and Developer Releases

 Version numbering scheme similar to that of the 
(pre 2.6) Linux kernels …

› Major.minor.release
 If minor is even (a.b.c): Stable series

• Very stable, mostly bug fixes
• Current: 7.8

 If minor is odd (a.b.c): Developer series
• New features, may have some bugs
• Current: 7.9



94
94

General User Commands

condor_status          View Pool Status
condor_q                   View Job Queue
condor_submit Submit new Jobs
condor_rm Remove Jobs
condor_prio Change a User Priority
condor_history Completed Job Info
condor_submit_dag Submit new DAG
condor_checkpoint Force a checkpoint
condor_compile Link Condor library with job


	An Introduction to Using HTCondor 2013
	The Team - 2012
	HTCondor does High-Throughput Computing
	HTCondor’s strengths
	HTCondor will ...
	Slide 6
	Einstein's Simulation
	Simulation Overview
	Slide 9
	Slide 10
	Definitions
	More Definitions
	Slide 13
	Slide 14
	ClassAds
	ClassAd Structure
	Part of a Job ClassAd
	The Magic of Matchmaking
	Getting Started
	1. Choose the Universe
	 Using the vanilla Universe
	2. Make the job  batch-ready
	Batch-Ready: Standard Input & Output
	Make the Data Available
	3. Create a  Submit Description File
	Simple Submit Description File
	Input, Output, and Error Files
	Logging the Job's Activities
	Sample Portion of Job Log
	4. Submit the Job
	Observe Jobs in the Queue
	File Transfer
	More on File Transfer
	File Transfer Example
	Command Line Arguments
	More Feedback
	ClusterId.ProcID is Job ID
	1 Cluster
	File Organization
	Better Organization
	Slide 41
	Better Submit Description File
	Submit Description File Macros
	Using $(Process)
	(Best) Submit Description File
	Albert submits the cosmos simulation. Patience required, it will take a while…
	the Job Queue
	Albert Relaxes
	More That You Do With HTCondor
	Remove Jobs with condor_rm
	Specify Job Requirements
	Specify Needed Resources
	Specify Job Rank
	Job Policy Expressions
	Lots of Short-Running Jobs
	Common Problems with Jobs
	Jobs Are Idle
	Exercise a little patience
	Look in the Job Log
	Check Machines' Status
	Try: condor_q -analyze
	Slide 62
	Slide 63
	Learn about available resources
	Interact With A Job
	Interactive Debug Example
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	 3 Checkpoints
	Slide 73
	Goodput and Badput
	Standard Universe Features
	How to Relink
	Limitations
	Parallel Universe
	MPI Job Submit Description File
	MPI jobs
	VM Universe
	Machine Resources are Numerous:  The Grid
	Grid Universe
	Slide 84
	the Java Universe
	 Java Universe Example
	In Review
	Thank you!
	Extra Slides with More Information You Might Want to Reference
	InitialDir
	Substitution Macro
	Getting HTCondor
	HTCondor Releases
	General User Commands

