
HTCondor Python
Tutorial
Brian Bockelman

Tuesday, April 30, 13

Welcome, Python!
• HTCondor has long provided two APIs into its ecosystem:

• Traditional POSIX API: Input via stdin / argv, Output via stdout,
error via exit codes.

• SOAP: RPC-oriented API. Language-agnostic.

• Both have drawbacks. Fork overhead, parsing overhead, no reuse of
security sessions.

• Python is a special case - widely utilized by projects in which build on
top of HTCondor.

• ... and Boost.Python makes it straightforward to write/maintain
bindings...

• HTCondor includes python bindings for most client-side activities
since 7.9.4.

Tuesday, April 30, 13

Audience!
• The audience for the python bindings are integrators/developers

- we consciously expose lower-level interfaces than the CLI.

• If you want a more straightforward way to interact with
HTCondor via python, this tutorial is for you!

• Some are decently refined; some are pretty raw wrappers
around C++.

• These are one of the most powerful ways of programmatically
interacting with the system.

• Not the simplest. (Yet?)

• I assume basic python and intermediate/advanced HTCondor
knowledge.

Tuesday, April 30, 13

Tutorial Time

• In this tutorial, I plan on covering the basics of using the
python bindings.

• You’ll need your Linux-based laptop out with a fresh
install of HTCondor >= 7.9.5.

• Startup a personal HTCondor instance. Verify you can
run basic commands (condor_submit, _status, _q).

• For the most part, this will be “follow along Brian’s
terminal”, but slides are here for later students.

• (And in case the network connection explodes.)

Tuesday, April 30, 13

Login yourself

• Hostname:
ec2-54-224-238-91.compute-1.amazonaws.
com

• User: demo

• Pass: theHTissilent

Tuesday, April 30, 13

Hello, (HTCondor)
World

Tuesday, April 30, 13

Python Basics

• import htcondor; import classad

• Use dir() to list object names in a module;
use help() to get the per-method or class
help.

• print classad.version(), htcondor.version()

• htcondor.param[‘COLLECTOR_HOST’] to
access parameter value of
COLLECTOR_HOST.

Tuesday, April 30, 13

In the beginning, there
were ClassAds.

• ClassAds are the lingua franca of HTCondor-land.

• Condor CLI often converts ClassAds into human
readable form or XML.

• The python bindings use the internal ClassAd objects
throughout.

• ClassAds may look like bastardized JSON, but there are
important evaluation semantics we can take care of.

• We try to make it pleasant to convert between
ClassAds and native Python objects.

Tuesday, April 30, 13

ClassAds

Sub-ClassAds are supported too!
>>> classad.ClassAd({"foo": {"bar": True}})
[foo = [bar = 1]]
>>>

Tuesday, April 30, 13

HTCondor Module

• The “htcondor” Python module allows you to
interact with most HTCondor daemons.

• There are two very important objects:

• Collector: read and write

• Schedd: submit and manipulate

• And a few other helpers - enums, security
manager, interaction with the config system,
and sending daemons direct commands.

Tuesday, April 30, 13

Collector Basics

• The Collector object allows one to locate
daemons, query slot status, and advertise
new ClassAds.

• The object takes the network location of
the collector daemon for the constructor:

• coll = htcondor.Collector(“red-
condor.unl.edu”)

Tuesday, April 30, 13

Collector Basics

Tuesday, April 30, 13

Collector Advanced

• For many queries, pulling all attributes from
the collector is expensive.

• You can specify a projection list of attributes.
HTCondor will return the minimum
number of attributes containing the ones
you specify.

• It will always pad in a few extra.

Tuesday, April 30, 13

Collector - Advanced

Tuesday, April 30, 13

Schedd Basics

Tuesday, April 30, 13

Submit ClassAds
• We normally submit using the submit file format, not using ClassAds.

• Switching to ClassAds for submission requires a rewiring a few neurons.

• Realizing the differences between the macro and ClassAd language costs a few more neurons.

• A few submit file / ClassAds translations:

• error / Err

• output / Out

• executable / Cmd

• should_transfer_files / ShouldTransferFiles

• transfer_input_files / TransferIn

• transfer_output_files / TransferOut

• The second argument to Schedd.submit determines how many processes to submit.

• From macros to ClassAds:

• Instead of: error = “test.err.$(Process)”

• Write: Err = strcat(“test.err”, ProcID)

Tuesday, April 30, 13

Schedd Advanced

• A few useful methods:

• act: Perform some action on one or
more jobs (hold, release, remove,
removeX, suspend, continue).

• edit: Edit one or more job ClassAds

• reschedule: Have Schedd request a
new negotiation cycle.

Tuesday, April 30, 13

Schedd Advanced

Tuesday, April 30, 13

Schedd Advanced - File
Transfer

Tuesday, April 30, 13

Daemon Commands

• An administrator can send commands to arbitrary HTCondor daemons via
python.

• Uses the same internal protocol as CLI such as condor_off and condor_on.

• A blessing and a curse: HTCondor doesn’t document what the protocol
commands do. They are a bit similar to Unix signals in that you receive no
indication the command did anything.

• Do you know the difference between DaemonOff, DaemonOffFast,
DaemonOffPeaceful, DaemonsOff, DaemonsOffFast, DaemonsOffPeaceful,
OffFast, OffForce, OffGraceful, and OffPeaceful?

• A new developer best keep to Reconfig, Restart, and DaemonsOff. Send the
command to the master.

• Some commands will take an extra argument - such as the subsystem to
restart for “DaemonOff”.

Tuesday, April 30, 13

Daemon Commands

Tuesday, April 30, 13

Daemon Commands

• I hope this will really improve the
“scriptability” of a HTCondor pool.

• For example, one could implement a
rolling restart cron job that ensures no
more than 10% of nodes are draining at
once.

Tuesday, April 30, 13

Etc

• To invalidate an existing in-process security session:

• htcondor.SecMan().invalidateAllSessions()

• To access the param subsystem:

• htcondor.param

• Treat like a python dictionary.

• To reload the client configuration from disk:

• htcondor.reload_config()

Tuesday, April 30, 13

Python Bindings
Futures

• Python bindings will continue to receive periodic updates to keep parity with client-side tools. Current
plans for 8.0:

• Improve Schedd.edit method.

• Release bindings for Mac OS X.

• Better implement keyword parameters throughout.

• Config errors should not exit the interpreter.

• Wishlist:

• Add bindings for condor_tail.

• Add bindings for condor_ping.

• Expose more advanced ClassAd functionality (matching).

• Cleanup the send_command function.

• DaemonCore?

• I’m looking to broaden the set of maintainers. If you want seriously better bindings, plan to contribute!

• In particular, I have no knowledge of Windows development! I believe we are a few small patches
away from enabling Python bindings for Windows.

Tuesday, April 30, 13

Q?
http://research.cs.wisc.edu/htcondor/manual/

v7.9/8_6Python_Bindings.html

Tuesday, April 30, 13

http://research.cs.wisc.edu/htcondor/manual/v7.9/8_6Python_Bindings.html
http://research.cs.wisc.edu/htcondor/manual/v7.9/8_6Python_Bindings.html
http://research.cs.wisc.edu/htcondor/manual/v7.9/8_6Python_Bindings.html
http://research.cs.wisc.edu/htcondor/manual/v7.9/8_6Python_Bindings.html

