
HTCondor workflows at Utility

Supercomputing Scale: How?

Ian D. Alderman

Cycle Computing

Thundering Herd Problem

Thundering Herd Problem
 Classical OS problem: multiple processes are

waiting for the same event, but only one can respond
at a time.

 In the cloud, what happens to the (underlying)
infrastructure when you start 10k servers is someone
else's problem.

 What happens at the platform and application level is
your problem

 Experience is helpful.

Ramping up to

50,000 cores

while true bottleneck.next()
 From Miron:

A bottleneck is a (system) property
that once removed creates a new
bottleneck.

 Related to theory of constraints from industrial
engineering.

 Corollary: Every component in a distributed
system can be a bottleneck.

Bottlenecks we have seen
 Scheduler. Forking, transferring data, etc.

 Shared filesystem (NFS).

 Web server/backend/provisioning system – client.

 Provisioning system - server (AWS). Need delta
mechanism for ec2-describe-instances.

 Configuration management system. Designed to
handle updates in large systems, not provision large
systems all at once.

Message in a bottleneck?

Find the right problem: Aim high.

 Predict costs, runtime. Understand I/O and memory

requirements. Users don't always know this.

 Zach says: Understand your job. Users don’t often

have the tools to do this.

 We were surprised to find out that Flexera license

server can handle this scale given enough file

handles.

 The right bottleneck is CPU: that’s what we’re paying

for.

Distributing jobs
 Distribute tasks among several schedds. (Manure

spreaders)

 CycleServer manages tasks across several
environments.

 Multi-region, heterogeneous clusters.

 Goals:
 Keep queues filled (but not too full)

 Keep queues balanced

 Minimize complexity

 Reduce server overhead costs

CycleCloud: Auto-start and auto-stop

at the cluster level
 Automation is the goal: nodes start when jobs

are present, nodes stop when jobs aren't there (5

minutes before the billing hour mark).

 Select instance types to start in rank order to

maximize price-performance.

 Use pre-set spot prices to minimize costs.

Zero-impact job wrapper
Goal: Don’t hit the file server, don’t have HTCondor
transfer anything.

 No file transfer

 No input

 No results

 No output, error or log

 So how does the job do anything?

Use S3 instead of file server
 B3: bottomless bit bucket.

 Eventual consistency is well suited for the type of
access patterns we use:
 Read (big) shared data

 Read job-specific data

 Write job-specific results

 Jobs can be made to except (hold) when inputs aren’t
available (rare)

 Some systems do scale; this is one.

Don’t overwrite results

Actual check to see if

results are there already

Exponential back-off for

data transfer

Actual command

line captures

stdout and stderr

If command succeeds,

save stdout and stderr

Actual submit file
universe = vanilla

Requirements = (Arch =?= “X86_64”) && (OpSys =?= “LINUX”)

executable = /ramdisk/glide_job_wrapper.rb

should_transfer_files = if_needed

when_to_transfer_output = on_exit

environment = ”…”

leave_in_queue = false

arguments = $(process)

queue 325937

DAGMan is your friend

Configuration management system

 OpsCode Chef.

 Chef-solo.

 Chef Server 11 from OpsCode.

 Deploy changes to wrapper scripts, HTCondor
configuration, etc during a run.

 Run OOB task on all hosts (knife ssh). Very cool
but realistically can be a bottleneck.

Design principle: Planning to handle failure is

not planning to fail nor failing to plan
 Wrapper checks to see if its result is present and correct.

 There are a lot of moving parts. Different things break at
different scales.

 Testing is essential but you’ll always find new issues when
running at scale.

 Data is stale.

 Make sure you have enough file handles!

 HTCondor can be overwhelmed by too many short jobs.

 Spots fail: HTCondor is designed to handle this.

Additional advice
 Keep tight with your friends. (Keep your friends close and your enemies

closer.)

 DAGMan is your friend
 Even when there aren't dependencies between jobs

 CycleServer is your friend
 What the heck is going on?

 The race: Jason wins.

 Additional advice: maintain flexibility, balance
 Keep it simple

 Throw stuff out
 Elegant job wrapper with cached data

 Keep it fun

Thank you, Questions?

 Utility
Supercomputing
50 to 50,000 cores

 Visualization,
Reporting

 Data scheduling:
internal cloud

 Workload portability

