
HTCondor workflows at Utility

Supercomputing Scale: How?

Ian D. Alderman

Cycle Computing

Thundering Herd Problem

Thundering Herd Problem
 Classical OS problem: multiple processes are

waiting for the same event, but only one can respond
at a time.

 In the cloud, what happens to the (underlying)
infrastructure when you start 10k servers is someone
else's problem.

 What happens at the platform and application level is
your problem

 Experience is helpful.

Ramping up to

50,000 cores

while true bottleneck.next()
 From Miron:

A bottleneck is a (system) property
that once removed creates a new
bottleneck.

 Related to theory of constraints from industrial
engineering.

 Corollary: Every component in a distributed
system can be a bottleneck.

Bottlenecks we have seen
 Scheduler. Forking, transferring data, etc.

 Shared filesystem (NFS).

 Web server/backend/provisioning system – client.

 Provisioning system - server (AWS). Need delta
mechanism for ec2-describe-instances.

 Configuration management system. Designed to
handle updates in large systems, not provision large
systems all at once.

Message in a bottleneck?

Find the right problem: Aim high.

 Predict costs, runtime. Understand I/O and memory

requirements. Users don't always know this.

 Zach says: Understand your job. Users don’t often

have the tools to do this.

 We were surprised to find out that Flexera license

server can handle this scale given enough file

handles.

 The right bottleneck is CPU: that’s what we’re paying

for.

Distributing jobs
 Distribute tasks among several schedds. (Manure

spreaders)

 CycleServer manages tasks across several
environments.

 Multi-region, heterogeneous clusters.

 Goals:
 Keep queues filled (but not too full)

 Keep queues balanced

 Minimize complexity

 Reduce server overhead costs

CycleCloud: Auto-start and auto-stop

at the cluster level
 Automation is the goal: nodes start when jobs

are present, nodes stop when jobs aren't there (5

minutes before the billing hour mark).

 Select instance types to start in rank order to

maximize price-performance.

 Use pre-set spot prices to minimize costs.

Zero-impact job wrapper
Goal: Don’t hit the file server, don’t have HTCondor
transfer anything.

 No file transfer

 No input

 No results

 No output, error or log

 So how does the job do anything?

Use S3 instead of file server
 B3: bottomless bit bucket.

 Eventual consistency is well suited for the type of
access patterns we use:
 Read (big) shared data

 Read job-specific data

 Write job-specific results

 Jobs can be made to except (hold) when inputs aren’t
available (rare)

 Some systems do scale; this is one.

Don’t overwrite results

Actual check to see if

results are there already

Exponential back-off for

data transfer

Actual command

line captures

stdout and stderr

If command succeeds,

save stdout and stderr

Actual submit file
universe = vanilla

Requirements = (Arch =?= “X86_64”) && (OpSys =?= “LINUX”)

executable = /ramdisk/glide_job_wrapper.rb

should_transfer_files = if_needed

when_to_transfer_output = on_exit

environment = ”…”

leave_in_queue = false

arguments = $(process)

queue 325937

DAGMan is your friend

Configuration management system

 OpsCode Chef.

 Chef-solo.

 Chef Server 11 from OpsCode.

 Deploy changes to wrapper scripts, HTCondor
configuration, etc during a run.

 Run OOB task on all hosts (knife ssh). Very cool
but realistically can be a bottleneck.

Design principle: Planning to handle failure is

not planning to fail nor failing to plan
 Wrapper checks to see if its result is present and correct.

 There are a lot of moving parts. Different things break at
different scales.

 Testing is essential but you’ll always find new issues when
running at scale.

 Data is stale.

 Make sure you have enough file handles!

 HTCondor can be overwhelmed by too many short jobs.

 Spots fail: HTCondor is designed to handle this.

Additional advice
 Keep tight with your friends. (Keep your friends close and your enemies

closer.)

 DAGMan is your friend
 Even when there aren't dependencies between jobs

 CycleServer is your friend
 What the heck is going on?

 The race: Jason wins.

 Additional advice: maintain flexibility, balance
 Keep it simple

 Throw stuff out
 Elegant job wrapper with cached data

 Keep it fun

Thank you, Questions?

 Utility
Supercomputing
50 to 50,000 cores

 Visualization,
Reporting

 Data scheduling:
internal  cloud

 Workload portability

