
Building a Virtualized
Desktop Grid
Eric Sedore
essedore@syr.edu

Why create a desktop grid?
§ One prong of an three pronged strategy to enhance research

infrastructure on campus (physical hosting, HTC grid, private
research cloud)

§ Create a common, no cost (to them), resource pool for
research community - especially beneficial for researchers
with limited access to compute resources

§ Attract faculty/researchers
§ Leverage an existing resource
§ Use as a seed to work toward critical mass in the research

community

Goals
§ Create Condor pool sizeable enough for “significant”

computational work (initial success = 2000 concurrent cores)
§ Create and deploy grid infrastructure rapidly (6 months)
§ Secure and low impact enough to run on any machine on

campus
§ Create a adaptive research environment (virtualization)
§ Simple for distributed desktop administrators to add

computers to grid
§  Automated methods for detecting/enabling Intel-VT (for

hypervisor)
§  Automated hypervisor deployment

Integration of Existing Components
§ Condor
§ VirtualBox
§ Windows 7 (64 bit)
§ TCL / FreeWrap – Condor VM Catapult (glue)
§ AD – Group Policy Preference

Typical Challenges introducing the
Grid (FUD)
§ Security

§  You want to use “my” computer?
§ Where does my research data go?

§ Technical
§ Hypervisor / VM Management
§  Scalability
§  After you put “the grid” on my computer…

§ Governance
§ Who gets access to “my” resources?
§ How does the scheduling work?

Security

Security on the client
§ Grid processes run as a non-privileged user
§ Virtualization to abstract research environment / interaction
§ VM’s on the local drive are encrypted at all times – (using

certificate of non-privileged user)
§  Local cached repository and when running in a slot
§ Utilize Windows 7 encrypted file system
§  Allows grid work on machines with end users as local

administrators
§ To-do – create a signature to ensure researcher (and

admins) that the VM started is “approved” and has not been
modified (i.e. not modified to be a botnet)

Securing/Protecting the
Infrastructure
§ Create an isolated private 10.x.x.x. network via VPN tunnels

(pfSense and OpenVPN)
§ Limit bandwidth for each research VM to protect against a

network DOS
§ Research VM’s NAT’d on desktops
§ Other standard protections – Firewalls, ACL’s

OpenVPN End-Point
(pfSense) / FW / Router

Condor
Infrastructure

Roles

Research VM’s

ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT ITS-SL6-
LSCSOFT ITS-SL6-

LSCSOFT

Condor Submit
Server

10.x.x.x network

Public
Network

Bottleneck for higher
bandwidth jobs

Technical

Condor VM Coordinator (CMVC)
§ Condor’s VM “agent” on the desktop
§ Manage distribution of local virtual machine repository
§ Manage encryption of virtual machines
§ Runs as non-privileged user – reduces adoption barriers
§ Pseudo Scheduler

§ Rudimentary logic for when to allow grid activity
§ Windows specific – is there a user logged in?

Why did you write CVMC?
§ Runs as non-privileged user (and needs windows profile)
§ Mistrust in a 3rd party agent (condor client) on all campus

desktops – especially when turned over to the research
community – even with the strong sandbox controls in condor

§ Utilizes built-in MS Task Scheduler for idle detection – no
processes running in user’s context for activity detection

§ VM repository management
§ Encryption
§  It seemed so simple when I started…

Job Configuration
§ Requirements = (TARGET.vm_name == "its-u11-

boinc-20120415") && (TARGET.Arch == "X86_64") &&
(TARGET.OpSys == "LINUX") && (TARGET.Disk >=
DiskUsage) && ((TARGET.Memory * 1024) >= ImageSize)
&& ((RequestMemory * 1024) >= ImageSize) &&
(TARGET.HasFileTransfer)

§ ClassAd addition
§ vm_name = "its-u11-boinc-20120415”

§ CVMC Uses vm_name ClassAd to determine which VM to
launch

§  Jobs without vm_name can use running VM’s (assuming the
requirements match) – but they won’t startup new VM’s

Task
Scheduler

CVMC

VirtualBox

Web Server

Condor
Queue

Slot 1

Slot 2

Idle State

VM
Repo

Slot …

Win 7 Client

Condor Back -end

Technical Challenges
§ Host resource starvation

§  Leave memory for the host OS
§ Memory controls on jobs (within Condor)

§ Unique combination of approaches implementing Condor
§ CVMC / Web service
§  VM distribution
§  Build custom VM’s based on job needs vs. scavenging existing

operating system configurations
§ Hypervisor expects to have an interactive session

environment (windows profile)
§ Reinventing the wheel on occasion

How do you “ensure” low impact?
§ When no one is logged in CVMC will allow grid load

regardless of the time
§ When a user is logged in CVMC will kill grid load at 7 AM and

not allow it to run again until 5 PM (regardless if the machine
is idle)

§ Leave the OS memory (512MB-1GB) so it does not page out
key OS components (using a simple memory allocation
method)

§ Do not cache VM disks – will keep OS from filling its memory
cache with VM I/O traffic

Keep OS from
Caching VM I/O

Next Steps
§ Grow the research community – depth and diversity
§  Increase pool size – ~12,000 cores which are eligible
§  Infrastructure Scalability

§ Condor (tuning/sizing)
§ Network / Storage (NFS – Parrot / Chirp)

Solving	 the	 Data	 Transfer	 Problem	

¨  Born	 from	 an	 unfinished	 side-‐project	 7+	 years	 ago.	
¨  Goal:	 maximize	 the	 compute	 resources	 available	 to	 LIGO’s	

search	 for	 gravitational	 waves	
¤  More	 cycles	 ==	 a	 better	 search.	

¨  Problem:	 huge	 input	 data,	 impractical	 to	 move	 w/job.	
¨  How	 to...	

¤  Run	 on	 other	 LIGO	 Data	 Grid	 sites	 without	 a	 shared	 filesystem?	
¤  Run	 on	 clusters	 outside	 the	 LIGO	 Data	 Grid	 lacking	 LIGO	 data?	

	
Tools	 to	 get	 the	 job	 done:	 ihope,	 GLUE,	 Pegasus,	 Condor	
Checkpointing,	 	 and	 Condor-‐C.	
People:	 Kayleigh	 Bohémier,	 Duncan	 Brown,	 Peter	 Couvares.	 	 Help	
from	 SU	 ITS,	 Pegasus	 Team,	 Condor	 Team	

Idea:	 Cross-‐Pool	 Checkpoint	 Migration	

¨  Condor_compiled	 (checkpointable)	 jobs.	
¨  Jobs	 start	 on	 a	 LIGO	 pool	 with	 local	 data.	
¨  Jobs	 read	 in	 data	 and	 pre-‐process.	
¨  Jobs	 call	 checkpoint_and_exit().	
¨  Pegasus	 workflow	 treats	 checkpoint	 image	 as	
output,	 and	 provides	 it	 as	 “input”	 to	 a	 second	
Condor-‐C	 job.	

¨  Condor-‐C	 job	 transfers	 and	 executes	 standalone	
checkpoint	 on	 remote	 pool,	 and	 transfers	 results	
back.	

Devil	 in	 the	 Details	

¨  Condor	 	 checkpoint_and_exit()	 caused	 the	 job	 to	
exit	 with	 SIGUSR2,	 so	 we	 needed	 to	 catch	 that	 and	
treat	 it	 as	 success.	

¨  Standalone	 checkpoint	 images	 didn’t	 like	 to	 restart	
in	 a	 different	 cwd,	 even	 if	 they	 shouldn’t	 care,	 so	
we	 had	 to	 binary	 edit	 each	 checkpoint	 image	 to	
replace	 the	 hard-‐coded	 /path/to/cwd	
with	 .////////////!
¤ Will	 be	 fixed	 in	 Condor	 7.8?	

¨  Pegasus	 needed	 minor	 mods	 to	 support	 Condor-‐C	
“grid”	 jobs	 w/Condor	 file	 transfer	
¤  Fixed	 for	 next	 Pegasus	 release.	

Working	 Solution	

Move	 jobs	
that	 do	 not	
require	 input	
files	 on	 the	
SUGAR	

cluster	 to	 the	
remote	
campus	
cluster.	

	

