

Condor Project

Computer Sciences Department
University of Wisconsin-Madison

An Introduction to Using
Condor

Condor Week 2012

www.cs.wisc.edu/Condor 2

The Team - 2011

›  established in 1985
›  research and development of distributed

high throughput computing

www.cs.wisc.edu/Condor

Today (May 1) is Miron's
Birthday!

www.cs.wisc.edu/Condor 4

Condor is a High-Throughput
Computing System

›  Allows for many computational tasks to be
completed over a long period of time

›  Is concerned largely with the number of
compute resources that are available to
people who wish to use the system

›  A very useful system for researchers and
other users who are more concerned with
the number of computations they can do
over long spans of time, than they are with
short-burst computations

www.cs.wisc.edu/Condor

Condor’s strengths
›  Cycle scavenging works!
›  High throughput computing
›  Very configurable, adaptable
›  Supports strong security methods
›  Interoperates with many types of computing grids
›  Facilities to manage both dedicated CPUs

(clusters) and non-dedicated resources (desktops)
›  Fault-tolerant: can survive crashes, network

outages, any single point of failure.

www.cs.wisc.edu/Condor 6

Condor will ...
›  Keep an eye on your jobs and will keep you

posted on their progress
›  Implement your policy on the execution

order of the jobs
›  Log your job's activities
›  Add fault tolerance to your jobs
›  Implement your policy as to when the jobs

can run on your workstation

www.cs.wisc.edu/Condor 7

Our esteemed
scientist*, has

plenty of
simulation to

do.
* and Karen's cousin

www.cs.wisc.edu/Condor 8

Einstein's Simulation

Simulate the
evolution of
the cosmos,
assuming
various

properties.

www.cs.wisc.edu/Condor 9

Simulation Overview
Varying values for each of:
h  G (the gravitational constant): 100 values

h  Rµν (the cosmological constant): 100 values
h  c (the speed of light): 100 values

100 × 100 × 100 = 1,000,000 jobs

www.cs.wisc.edu/Condor 10

Each job within the simulation:
h Requires up to 4 GBytes of RAM
h Requires 20 MBytes of input
h Requires 2 – 500 hours of computing time
h Produces up to 10 GBytes of output

Estimated total:
h 15,000,000 CPU hours or 1,700 compute YEARS
h 10 PetaBytes of output

www.cs.wisc.edu/Condor

Albert will be happy, since Condor will
make the completion of this
simulation easy.

www.cs.wisc.edu/Condor 12

Definitions
Job

h the Condor representation of a piece of work
h Condor’s quanta of work
h Like a Unix process
h Can be an element of a workflow

ClassAd
h Condor’s internal data representation

Machine or Resource
h computers that can do the processing

www.cs.wisc.edu/Condor 13

More Definitions
Match Making

h Associating a job with a machine resource
Central Manager

h Central repository for the whole pool
h Does match making

Submit Host
h The computer from which jobs are submitted to

Condor
Execute Host

h The computer that runs a job

www.cs.wisc.edu/Condor 14

Jobs state their needs and preferences:
h Requirements (needs):

•  I require a Linux x86-64 platform
h Rank (preferences):

•  I prefer the machine with the most memory
•  I prefer a machine in the botany department

www.cs.wisc.edu/Condor 15

Machines also specify needs and
preferences:
h Requirements (needs):

•  Require that jobs run only when there is no
keyboard activity

• Never run jobs belonging to Dr. Heisenberg
h Rank (preferences):

•  I prefer to run Albert’s jobs

www.cs.wisc.edu/Condor 16

Condor ClassAds
the language that Condor

uses to represent
information – about
jobs (job ClassAd),
machines (machine
ClassAd), and
programs that
implement Condor's
functionality (called
daemons), etc.

www.cs.wisc.edu/Condor 17

ClassAd Structure

semi-structured
user-extensible
schema-free

AttributeName = Value
or

AttributeName = Expression

www.cs.wisc.edu/Condor 18

MyType = "Job"
TargetType = "Machine"
ClusterId = 1
ProcId = 0
IsPhysics = True
Owner = "einstein"
Cmd = "cosmos"
Requirements = (Arch == "INTEL")
.
.
.

Part of a Job ClassAd

String

Integer
Boolean

Boolean
Expression

www.cs.wisc.edu/Condor 19

The Magic of Matchmaking
The Condor match maker matches job

ClassAds with machine ClassAds,
taking into account:
h Requirements of both the machine and

the job
h Rank of both the job and the machine
h Priorities, such as those of users and also

group priorities

www.cs.wisc.edu/Condor 20

Getting Started:

1.  Choose a universe for the job
2.  Make the job batch-ready

h  includes making the input data available
and accessible

3.  Create a submit description file
4.  Run condor_submit to put the job(s)

in the queue

www.cs.wisc.edu/Condor 21

1. Choose the Universe
›  controls how Condor

handles jobs
›  Condor's many

universes include:
h vanilla
h standard
h grid
h java
h parallel
h vm

www.cs.wisc.edu/Condor 22

 Using the Vanilla Universe
•  Allows running almost

any “serial” job
•  Provides automatic

file transfer for input
and output files

•  Like vanilla ice cream,
can be used in just
about any situation

www.cs.wisc.edu/Condor 23

2. Make the job
batch-ready

›  Must be able to run in
the background

›  No interactive input
›  No GUI/window clicks

www.cs.wisc.edu/Condor 24

Batch-Ready:
Standard Input & Output

›  Job can still use STDIN, STDOUT, and
STDERR (the keyboard and the screen),
but files are used for these instead of
the actual devices

› Similar to Unix shell:
$./myprogram <input.txt >output.txt

www.cs.wisc.edu/Condor 25

Make the Data Available
›  Condor will

h Transfer data files to the job
h Transfer results files back from the job

›  Place the job's data files in a place
where Condor can access them

www.cs.wisc.edu/Condor 26

3. Create a
Submit Description File

› A plain ASCII text file
›  File name extensions are irrelevant

h Many use .sub or .submit as suffixes
›  Tells Condor about the job
›  Can describe many jobs at once (a

cluster), each with different input,
output, command line arguments, etc.

www.cs.wisc.edu/Condor 27

Simple Submit Description File
file name is cosmos.sub
(Lines beginning with # are comments)
NOTE: the commands on the left are not
case sensitive, but file names
(on the right) are!

Universe = vanilla
Executable = cosmos
Input = cosmos.in
Output = cosmos.out
Log = cosmos.log
Queue Put 1 instance of

the job in the
queue

www.cs.wisc.edu/Condor

Input, Output, and Error
Files

›  Read job’s standard input from in_file:
Input = in_file
like shell: $ program < in_file

›  Write job’s standard output to out_file:
Output = out_file
like shell: $ program > out_file

›  Write job’s standard error to error_file:
Error = error_file
like shell: $ program 2> error_file

www.cs.wisc.edu/Condor 29

Logging the Job's Activities
›  In the submit description file:

log = cosmos.log

›  Creates a log of job events, which is
The Life Story of a Job
h Shows all events in the life of a job

›  Good advice: always have a log file

www.cs.wisc.edu/Condor 30

Sample Portion of Job Log
000 (0101.000.000) 05/25 19:10:03 Job submitted from host:
<128.105.146.14:1816>

...

001 (0101.000.000) 05/25 19:12:17 Job executing on host:
<128.105.146.14:1026>

...

005 (0101.000.000) 05/25 19:13:06 Job terminated.

 (1) Normal termination (return value 0)

...

000, 001, and 005 are examples of event numbers.

www.cs.wisc.edu/Condor

4. Submit the Job
›  Run condor_submit, providing the name

of the submit description file:
 $ condor_submit cosmos.sub
Submitting job(s).
1 job(s) submitted to cluster 100.

›  condor_submit then
h parses the submit description file, checking for

errors
h creates a ClassAd that describes the job(s)
h places the job in the queue
h an atomic operation, with two-phase commit

www.cs.wisc.edu/Condor

Observe Jobs in the Queue
$ condor_q
-- Submitter: submit.chtc.wisc.edu : <128.104.55.9:51883> :

submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
2.0 heisenberg 1/13 13:59 0+00:00:00 R 0 0.0 env
3.0 hawking 1/15 19:18 0+04:29:33 H 0 0.0 script.sh
4.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
5.0 hawking 1/15 19:33 0+00:00:00 H 0 0.0 script.sh
6.0 hawking 1/15 19:34 0+00:00:00 H 0 0.0 script.sh
...
96.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 atoms H
97.0 bohr 4/5 13:46 0+00:00:00 I 0 0.0 atoms H
98.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 atoms H
99.0 bohr 4/5 13:52 0+00:00:00 I 0 0.0 atoms H
100.0 einstein 4/5 13:55 0+00:00:00 I 0 0.0 cosmos

100 jobs; 1 completed, 0 removed, 20 idle, 1 running, 77 held,
0 suspended

www.cs.wisc.edu/Condor

File Transfer
Beyond STDIN, STDOUT, and STDERR, Condor

can transfer other files
›  Transfer_Input_Files specifies a list

of files for Condor to transfer from the
submit machine to the execute machine

›  Transfer_Output_Files specifies a list
of files for Condor to transfer back from
the execute machine to the submit machine

›  If Transfer_Output_Files is not
specified, Condor will transfer back all
“new” files in the execute directory

www.cs.wisc.edu/Condor

Transferring Files
Files need to get from the submit machine to the execute

machine. 2 possibilities:
1.  both machines have access to a shared file system
2.  machines are have separate file systems

Should_Transfer_Files
h  YES: Transfer files to execution machine
h  NO: Rely on shared file system
h  IF_NEEDED: Automatically transfer the files, if the submit

and execute machine are not in the same FileSystemDomain
(Translation: Use shared file system if available)

When_To_Transfer_Output
h  ON_EXIT: Transfer output files only when job completes
h  ON_EXIT_OR_EVICT: Transfer output files when job

completes or is evicted

www.cs.wisc.edu/Condor 35

File Transfer Example

new cosmos.sub file
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Transfer_Input_Files = cosmos.dat
Transfer_Output_Files = results.dat
Should_Transfer_Files = IF_NEEDED
When_To_Transfer_Output = ON_EXIT
Queue

www.cs.wisc.edu/Condor 36

Command Line Arguments
Example with command line arguments
Universe = vanilla
Executable = cosmos
Arguments = -c 299792458 –G 6.67300e-112

. . .

Queue

Invokes executable with
cosmos –c 299792458 –G 6.673e-112

Look at the condor_submit man page to see
formatting for Arguments. This example has
argc = 5.

www.cs.wisc.edu/Condor 37

More Feedback
•  Condor sends email

about job events to the
submitting user

•  Specify one of these in
the submit description
file:

Default
Notification = complete
Notification = never
Notification = error
Notification = always

Default

www.cs.wisc.edu/Condor 38

ClusterId.ProcID is Job ID
›  If the submit description file describes multiple jobs,

it is called a cluster
›  Each cluster has a cluster number, where the cluster

number is unique to the job queue on a machine
›  Each individual job within a cluster is called a process,

and process numbers always start at zero
›  A Condor Job ID is the cluster number, a period, and

the process number
h Job ID = 20.0 Cluster 20, process 0
h Job IDs: 21.0, 21.1, 21.2 Cluster 21, process 0, 1, 2

www.cs.wisc.edu/Condor 39

1 Cluster
Universe = vanilla
Executable = cosmos

log = cosmos_0.log
Input = cosmos_0.in
Output = cosmos_0.out

Queue Job 102.0 (cluster 102, process 0)

log = cosmos_1.log
Input = cosmos_1.in
Output = cosmos_1.out

Queue Job 102.1 (cluster 102, process 1)

www.cs.wisc.edu/Condor 40

File Organization
A logistical nightmare places all input,

output, error and log files in one
directory
h 3 files × 1,000,000 jobs = 3,000,000 files
h The submit description file is 4,000,000+

lines
The directory will be difficult (at best) to

sort through

www.cs.wisc.edu/Condor 41

Better Organization
›  Create subdirectories for each run,

specifically named
h run_0, run_1, … run_999999

›  Implement creation of directories with a
Python or Perl program

›  Create input files in each of these
h run_0/cosmos.in
h run_1/cosmos.in
h …
h run_999999/cosmos.in

›  The output, error & log files for each job
will be created by Condor when the job runs

www.cs.wisc.edu/Condor 42

Einstein’s simulation directory
cosmos

cosmos.sub

run_999999

run_0

User or
script

creates
these files

Condor
creates

purple-type
files

cosmos.in

cosmos.in

cosmos.out

cosmos.log

cosmos.out

cosmos.log

www.cs.wisc.edu/Condor 43

Submit Description File
Cluster of 1,000,000 jobs with
different directories
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Output = cosmos.out
Input = cosmos.in

...

InitialDir = run_0
Queue Job 103.0 (Cluster 103, Process 0)

InitialDir = run_1
Queue Job 103.1 (Cluster 103, Process 1)

This file contains 999,998 more instances
of InitialDir and Queue.

www.cs.wisc.edu/Condor 44

An Even Better Way

›  Queue all 1,000,000 processes with a single
command:
Queue 1000000

›  Within the submit description file, Condor
provides macros
$(Process) will be expanded to the process number

for each job in the cluster
0 – 999999 for the 1,000,000 jobs

www.cs.wisc.edu/Condor 45

Using $(Process)
›  The initial directory for each job can be specified

using $(Process)
InitialDir = run_$(Process)
h Condor will expand these directories to
 run_0, run_1, … run_999999

›  Similarly, arguments could use a macro to pass a
unique ID to each job instance
Arguments = -n $(Process)
h Condor will expand these to:

-n 0
-n 1
…
-n 999999

www.cs.wisc.edu/Condor

(Best) Submit Description File
Example defining a cluster of
1,000,000 jobs
Universe = vanilla
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
InitialDir = run_$(Process)
Queue 1000000

www.cs.wisc.edu/Condor 47

Finally, Albert submits this.
Be patient, it’ll take a while…
$ condor_submit cosmos.sub
Submitting

job(s) ...
..
..
..
..
......................

Logging submit
event(s)
..
..
..
..
........................

1000000 job(s) submitted to cluster 104.

www.cs.wisc.edu/Condor 48

The Job Queue
$ condor_q
-- Submitter: submit.chtc.wisc.edu :

<128.104.55.9:51883> : submit.chtc.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
104.0 einstein 4/20 12:08 0+00:00:05 R 0 9.8 cosmos
104.1 einstein 4/20 12:08 0+00:00:03 I 0 9.8 cosmos
104.2 einstein 4/20 12:08 0+00:00:01 I 0 9.8 cosmos
104.3 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos
...
104.999998 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos
104.999999 einstein 4/20 12:08 0+00:00:00 I 0 9.8 cosmos

999999 jobs; 999998 idle, 1 running, 0 held

www.cs.wisc.edu/Condor 49

Albert Relaxes

›  Condor watches over
the jobs, and will
restart them if
required, etc.

›  Time for a cold one!

www.cs.wisc.edu/Condor

More That Condor Can Do

www.cs.wisc.edu/Condor 51

Remove Jobs with condor_rm
›  You can only remove jobs that you own
›  Privileged user can remove any jobs

h “root” on Linux
h “administrator” on Windows

condor_rm 4 Removes all cluster 4 jobs
condor_rm 4.2 Removes only the job with

job ID 4.2
condor_rm –a Removes all of your jobs.

 Careful !

www.cs.wisc.edu/Condor 52

Specify Job Requirements
›  A boolean expression (syntax similar to C or Java)
›  Evaluated with attributes from machine ClassAd(s)
›  Must evaluate to True for a match to be made

Universe = vanilla
Executable = mathematica

...

Requirements = (\
 HasMathematicaInstalled =?= True)

Queue 20

www.cs.wisc.edu/Condor 53

Specify Needed Resources
New in 7.7.6
Items appended to job Requirements
›  request_memory – the amount of memory (in

Mbytes) that the job needs to avoid excessive
swapping

›  request_disk – the amount of disk space (in
Kbytes) that the job needs. Will be sum of space
for executable, input files, output files and
temporary files. Default is size of initial sandbox
(executable plus input files).

›  request_cpus – the number of CPUs (cores) that
the job needs. Defaults to 1.

www.cs.wisc.edu/Condor 54

Specify Job Rank
›  All matches which meet the requirements can be

sorted by preference with a Rank expression
h Numerical
h Higher rank values match first

›  Like Requirements, is evaluated against
attributes from machine ClassAds

Universe = vanilla
Executable = cosmos

. . .

Rank = (KFLOPS*10000) + Memory
Queue 1000000

www.cs.wisc.edu/Condor 55

Job Policy Expressions
› Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

›  Place on hold if exits with nonzero status
or ran for less than an hour:
on_exit_hold =
 ((ExitBySignal==False) && (ExitSignal != 0)) ||
 ((ServerStartTime - JobStartDate) < 3600)

›  Place on hold if job has spent more than
50% of its time suspended:
periodic_hold =
 (CumulativeSuspensionTime >
 (RemoteWallClockTime / 2.0))

www.cs.wisc.edu/Condor 56

Running lots of
Short-Running Jobs

›  Know that starting a job in Condor is
somewhat expensive, in terms of time

›  3 items that might help:
1.  Batch your short jobs together

h  Write a wrapper script that will run a set of
the jobs in series

h  Submit the wrapper script as your job
2.  Explore Condor’s parallel universe
3.  There are some configuration parameters

that may be able to help
h  Contact a Condor staff person for more info

www.cs.wisc.edu/Condor 57

Common Problems with
Jobs

www.cs.wisc.edu/Condor 58

Jobs Are Idle
Our scientist runs condor_q and finds all

his jobs are idle

$ condor_q
-- Submitter: x.cs.wisc.edu : <128.105.121.53:510>

:x.cs.wisc.edu
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
5.0 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.1 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.2 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.3 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.4 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.5 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.6 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
5.7 einstein 4/20 12:23 0+00:00:00 I 0 9.8 cosmos
8 jobs; 8 idle, 0 running, 0 held

www.cs.wisc.edu/Condor 59

Exercise a little patience

› On a busy pool, it can take a while
to match jobs to machines, and
then start the jobs

› Wait at least a negotiation cycle
or two, typically a few minutes

www.cs.wisc.edu/Condor 60

Look in the Job Log
It will likely contain clues:
$ cat cosmos.log
000 (031.000.000) 04/20 14:47:31 Job submitted from

host: <128.105.121.53:48740>
...
007 (031.000.000) 04/20 15:02:00 Shadow exception!
 Error from starter on gig06.stat.wisc.edu:

Failed to open '/scratch.1/einstein/workspace/v76/
condor-test/test3/run_0/cosmos.in' as standard
input: No such file or directory (errno 2)

 0 - Run Bytes Sent By Job
 0 - Run Bytes Received By Job
...

www.cs.wisc.edu/Condor 61

Check Machine's Status
$ condor_status
Name OpSys Arch State Activity LoadAv Mem ActvtyTime
slot1@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 4599 0+00:10:13
slot2@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 1+19:10:36
slot3@c002.chtc.wi LINUX X86_64 Claimed Busy 0.990 1024 1+22:42:20
slot4@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:22:10
slot5@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:17:00
slot6@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+03:09:14
slot7@c002.chtc.wi LINUX X86_64 Claimed Busy 1.000 1024 0+19:13:49
...
vm1@INFOLABS-SML65 WINDOWS INTEL Owner Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML65 WINDOWS INTEL Owner Idle 0.030 511 [Unknown]
vm1@INFOLABS-SML66 WINDOWS INTEL Unclaimed Idle 0.000 511 [Unknown]
vm2@INFOLABS-SML66 WINDOWS INTEL Unclaimed Idle 0.010 511 [Unknown]
vm1@infolabs-smlde WINDOWS INTEL Claimed Busy 1.130 511 [Unknown]
vm2@infolabs-smlde WINDOWS INTEL Claimed Busy 1.090 511 [Unknown]
 Total Owner Claimed Unclaimed Matched Preempting Backfill

 INTEL/WINDOWS 104 78 16 10 0 0 0
 X86_64/LINUX 759 170 587 0 0 1 0

 Total 863 248 603 10 0 1 0

www.cs.wisc.edu/Condor 62

Never matched?
condor_q –analyze

$ condor_q -ana 29
The Requirements expression for your job is:

((target.Memory > 8192)) && (target.Arch == "INTEL") &&
(target.OpSys == "LINUX") && (target.Disk >= DiskUsage) &&
(TARGET.FileSystemDomain == MY.FileSystemDomain)
Condition Machines Matched Suggestion
--------- ----------- -------- -----------
1 ((target.Memory > 8192)) 0 MODIFY TO 4000
2 (TARGET.FileSystemDomain == "cs.wisc.edu")584
3 (target.Arch == "INTEL") 1078
4 (target.OpSys == "LINUX") 1100
5 (target.Disk >= 13) 1243

www.cs.wisc.edu/Condor 63

Learn about available
resources:

$ condor_status –const 'Memory > 8192'
(no output means no matches)

$ condor_status -const 'Memory > 4096'
Name OpSys Arch State Activ LoadAv Mem ActvtyTime
vm1@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 1+05:35:05
vm2@s0-03.cs. LINUX X86_64 Unclaimed Idle 0.000 5980 13+05:37:03
vm1@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 1+06:00:05
vm2@s0-04.cs. LINUX X86_64 Unclaimed Idle 0.000 7988 13+06:03:47

 Total Owner Claimed Unclaimed Matched Preempting
 X86_64/LINUX 4 0 0 4 0 0
 Total 4 0 0 4 0 0

www.cs.wisc.edu/Condor 64

Interact With A Job
›  Perhaps a job is running for much

longer than expected.
h Is it stuck accessing a file?
h Is it in an infinite loop?

›  Try condor_ssh_to_job
h Interactive debugging in Unix
h Use ps, top, gdb, strace, lsof, …
h Forward ports, X, transfer files, etc.
h Currently not available on Windows

www.cs.wisc.edu/Condor

Interactive Debug Example

$ condor_q
-- Submitter: cosmos.phy.wisc.edu : <128.105.165.34:1027>

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 einstein 4/15 06:52 1+12:10:05 R 0 10.0 cosmos

1 jobs; 0 idle, 1 running, 0 held

$ condor_ssh_to_job 1.0

Welcome to slot4@c025.chtc.wisc.edu!
Your condor job is running with pid(s) 15603.

$ gdb –p 15603
. . .

www.cs.wisc.edu/Condor 66

Condor is extremely
flexible. Here are
overviews of some
of the many
features that you
may want to learn
more about.

www.cs.wisc.edu/Condor

After this tutorial, here are some places you
might find help:

1.  Condor manual
2.  condor-users mailing list. See
https://lists.cs.wisc.edu/mailman/listinfo/condor-users

3. Wiki
See https://condor-wiki.cswisc.edu/
index.cgi/wiki

4. Developers

www.cs.wisc.edu/Condor 68

•  The more time a job
takes to run, the higher
the risk of
•  being preempted by a

higher priority user or job
•  getting kicked off a

machine (vacated), because
the machine has something
else it prefers to do

•  Condor's
standard universe may
provide a solution.

www.cs.wisc.edu/Condor 69

›  Regularly while the job runs, or
when the job is to be kicked off the
machine, Condor takes a checkpoint
-- a complete state of the job.

› With a checkpoint, the job can be
matched to another machine, and
continue on.

Standard Universe

www.cs.wisc.edu/Condor 70

checkpoint: the entire state of a program,
saved in a file, such as CPU registers,
memory image, I/O, etc.

time

www.cs.wisc.edu/Condor 71

 3 Checkpoints

time

1 2 3

www.cs.wisc.edu/Condor 72

time

3

3

Killed!

www.cs.wisc.edu/Condor 73

Goodput and Badput

time

3

3

goodput badput goodput ?

www.cs.wisc.edu/Condor 74

›  Remote system calls (remote I/O)
h The job can read / write files as if

they were local
› No source code changes typically

required, but relinking the executable
with Condor's standard universe
support library is required.

›  Programming language independent

Standard Universe Features

www.cs.wisc.edu/Condor 75

How to Relink

Place condor_compile in front of the
command used to link the job:

$ condor_compile gcc -o myjob myjob.c

- OR -
$ condor_compile f77 -o myjob filea.f fileb.f

- OR -
$ condor_compile make –f MyMakefile

www.cs.wisc.edu/Condor 76

Limitations

›  Condor’s checkpoint mechanism is not at
the kernel level. Therefore, a standard
universe job may not :
h fork()
h Use kernel threads
h Use some forms of IPC, such as pipes

and shared memory
›  Must have access to object code in order

to relink
›  Only available on some Linux platforms

www.cs.wisc.edu/Condor 77

Parallel Universe
›  When multiple processes must be running

at the same time on different machines.
›  Provides a mechanism for controlling

parallel algorithms
h Fault tolerant
h Allows for resources to come and go
h Ideal for Computational Grid settings

›  Especially for MPI

www.cs.wisc.edu/Condor 78

MPI Job Submit Description File
MPI job submit description file
universe = parallel
executable = mp1script
arguments = my_mpich_linked_exe arg1 arg2
machine_count = 4
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
transfer_input_files = my_mpich_linked_exe
queue

www.cs.wisc.edu/Condor 79

MPI jobs
Note: Condor will probably not schedule all of

the jobs on the same machine, so consider
using whole machine slots

See the Condor Wiki:
Under How To Admin Recipes,
"How to allow some jobs to claim the whole

machine instead of one slot"

www.cs.wisc.edu/Condor 80

VM Universe
›  A virtual machine instance is the Condor job
›  The vm universe offers

h Job sandboxing
h Checkpoint and migration
h Safe elevation of privileges
h Cross-platform submission

›  Condor supports VMware, Xen, and KVM
›  Input files can be imported as CD-ROM

image
›  When the VM shuts down, the modified disk

image is returned as job output

www.cs.wisc.edu/Condor 81

Machine Resources are
Numerous: The Grid

Given access (authorization) to grid
resources , as well as certificates (for
authentication) and access to Globus or
other resources at remote institutions,
Condor's grid universe does the trick !

www.cs.wisc.edu/Condor 82

Grid Universe
›  All specification is in the submit description file
›  Supports many “back end” types:

h Globus: GT2, GT5
h NorduGrid
h UNICORE
h Condor
h PBS
h LSF
h SGE
h EC2
h Deltacloud
h Cream

www.cs.wisc.edu/Condor 83

›  Some sets of jobs
have dependencies.

›  Condor handles
them with
DAGMan.

›  See Nathan's
tutorial. Today at
11:30am.

A

B C

D

www.cs.wisc.edu/Condor 84

the Java Universe

›  Java Universe provides more than just
inserting “java” at the start of the execute
line of a vanilla job:
h Knows which machines have a JVM installed
h Knows the location, version, and performance of

JVM on each machine
h Knows about jar files, etc.
h Provides more information about Java job

completion than just JVM exit code
•  Program runs in a Java wrapper, allowing Condor to

report Java exceptions, etc.

www.cs.wisc.edu/Condor 85

 Java Universe Example

Example Java Universe Submit file
Universe = java
Executable = Main.class
jar_files = MyLibrary.jar
Input = infile
Output = outfile
Arguments = Main 1 2 3
Queue

www.cs.wisc.edu/Condor 86

In Review
With Condor’s help, both you and

Albert can:
h Submit jobs
h Manage jobs
h Organize data files
h Identify aspects of universe choice

www.cs.wisc.edu/Condor 87

Thank you!
Check us out on the web:

http://www.condorproject.org

Email:
condor-admin@cs.wisc.edu

www.cs.wisc.edu/Condor

Extra Slides with More
Information You Might Want

to Reference

www.cs.wisc.edu/Condor 89

InitialDir
›  Identifies a directory for file input and output.
›  Also provides a directory (on the submit machine) for

the user log, when a full path is not specified.
›  Note: Executable is not relative to InitialDir
Example with InitialDir
Universe = vanilla
InitialDir = /home/einstein/cosmos/run
Executable = cosmos
Log = cosmos.log
Input = cosmos.in
Output = cosmos.out
Error = cosmos.err

Transfer_Input_Files=cosmos.dat
Arguments = -f cosmos.dat
Queue

Is Relative to InitialDir

NOT Relative to InitialDir

www.cs.wisc.edu/Condor

Substitution Macro
$$(<attribute>) will be replaced by the value of the

specified attribute from the Machine ClassAd

Example:
Machine ClassAd has:
CosmosData = "/local/cosmos/data"
Submit description file has
 Executable = cosmos
 Requirements = (CosmosData =!= UNDEFINED)
 Arguments = -d $$(CosmosData)
Results in the job invocation:
 cosmos –d /local/cosmos/data

www.cs.wisc.edu/Condor 91

Getting Condor
›  Available as a free download from

 http://www.cs.wisc.edu/condor
›  Download Condor for your operating system

h Available for most modern UNIX platforms
(including Linux and Apple’s OS/X)

h Also for Windows XP / Vista / Windows 7
›  Repositories

h YUM: RHEL 4 & 5
• $ yum install condor

h APT: Debian 4 & 5
• $ apt-get install condor

www.cs.wisc.edu/Condor 92

Condor Releases
›  Stable / Developer Releases

h Version numbering scheme similar to that of the (pre 2.6)
Linux kernels …

›  Major.minor.release
h If minor is even (a.b.c): Stable series

•  Very stable, mostly bug fixes
•  Current: 7.6
•  Examples: 7.4.5, 7.6.0

–  7.6.0 just released
h If minor is odd (a.b.c): Developer series

•  New features, may have some bugs
•  Current: 7.7
•  Examples: 7.5.2, 7.7.0

–  7.7.0 in the works

www.cs.wisc.edu/Condor 93

General User Commands
condor_status View Pool Status
condor_q View Job Queue
condor_submit Submit new Jobs
condor_rm Remove Jobs
condor_prio Intra-User Prios
condor_history Completed Job Info
condor_submit_dag Submit new DAG
condor_checkpoint Force a checkpoint
condor_compile Link Condor library

www.cs.wisc.edu/Condor 94

DMTCP & Parrot
›  DMTCP (Checkpointing)

h “Distributed MultiThreaded Checkpointing”
h Developed at Northeastern University
h http://dmtcp.sourceforge.net/
h See Gene Cooperman's (Northeastern University) talk

tomorrow (Wednesday) @ 4:05
›  Parrot (Remote I/O)

h Parrot is a tool for attaching existing programs to remote
I/O system

h Developed by Doug Thain (now at Notre Dame)
h http://www.cse.nd.edu/~ccl/software/parrot/
h dthain@nd.edu

