

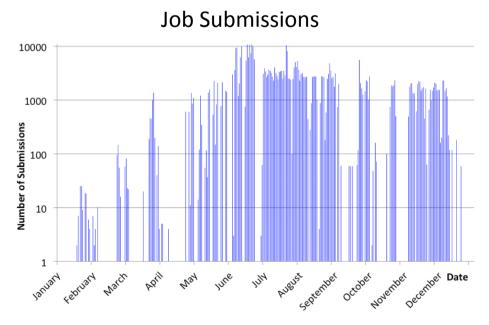
Simulating Condor

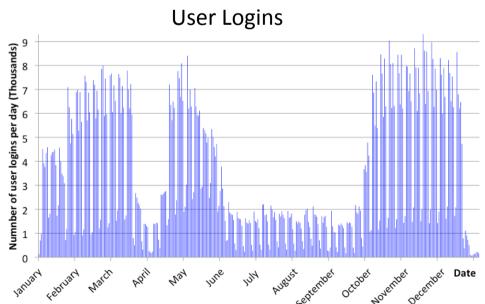
Stephen McGough, Clive Gerrard & Jonathan Noble
Newcastle University
Paul Robinson, Stuart Wheater
Arjuna Technologies Limited

Condor Week 2012

- Motivation and Background
- Condor Simulation
- Power Management Evaluation
- Conclusion

- Motivation and Background
- Condor Simulation
- Power Management Evaluation
- Conclusion


Motivation


- Newcastle University has strong desire to reduce energy consumption
 - Currently powering down computer & buying low power PCs
 - "If a computer is not 'working' it should be powered down"
- Can we go further to reduce wasted time?
 - Reduce computer idle time
 - Identify wasteful work sooner?
- We have a number of policies we'd like to evaluate
 - Difficult on running system, measuring power
- Aims
 - Investigate policy for reducing energy consumption
 - Determine the impact on high-throughput users

Condor At Newcastle

- - Comprises of ~1300 open-access computers based around campus in 35 'clusters'
 - All computers at least dual core, moving to quad / 8 core

Old Library

Basement Cluster room Needs heating all year PUE < 1 (offset heat from computers against room heating) (Average idle time between users < 5 hours)

P

QUEEN VICTORIA

& Walton Library

ter Locations

Robinson Library

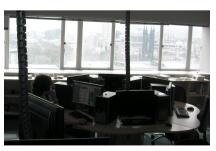
Very high turnover and usage of computers room is hot and sunny (PUE > 1, Average idle time between users < 2 hours)

Norther Stage

School of Chemistry (Chart)

Very low usage of Computers (PUE ~ 1, Average idle time between users ~23 hours)

Royal Victoria Infirmary (RVI)


MSc Computing Cluster

South facing cluster room in High tower.

PUE > 1

(needs air-con all year)

(Average idle time between users < 8 hours)

Power Usage Effectiveness (PUE) – depends on location of computer (and time)
Power Efficiency: efficiency = flops/(PUE * watts)

- Motivation and Background
- Condor Simulation
- Power Management Evaluation
- Conclusion

High End

Legacy

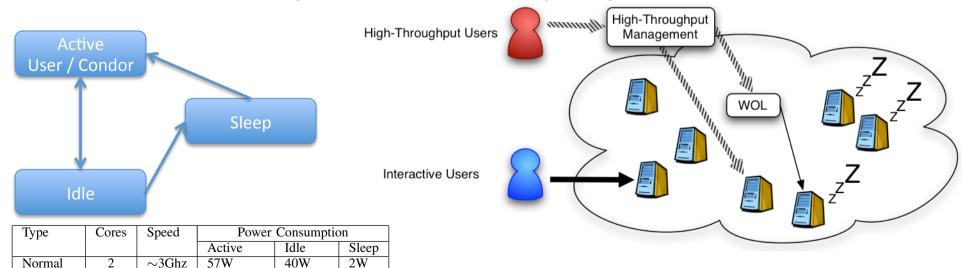
4

 \sim 3Ghz

 \sim 2Ghz

114W

100-180W

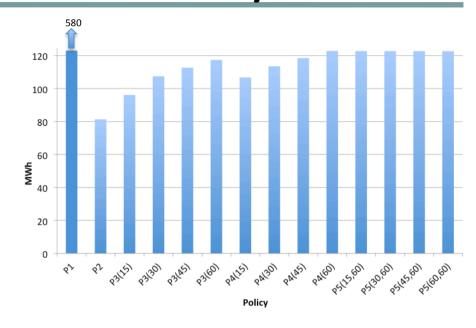

67W

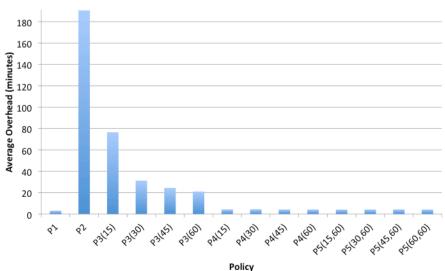
50-80W

3W

Condor Simulation

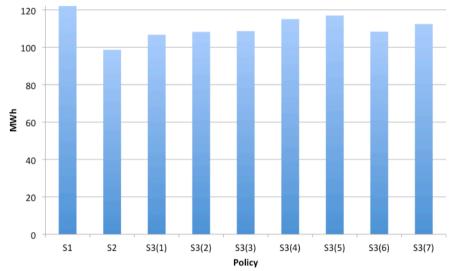
- High Level Simulation of Condor
 - Trace logs from the last year are used as input
 - User Logins / Logouts (computer used)
 - Condor Job Submission times (and duration)
 - Cluster open times and and policy

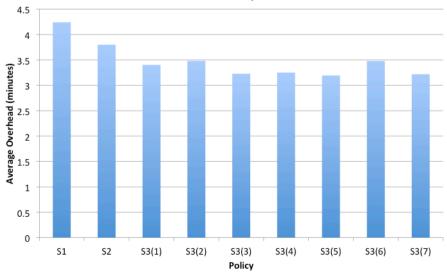



- Motivation and Background
- Condor Simulation
- Power Management Evaluation
- Conclusion

Power State Policy

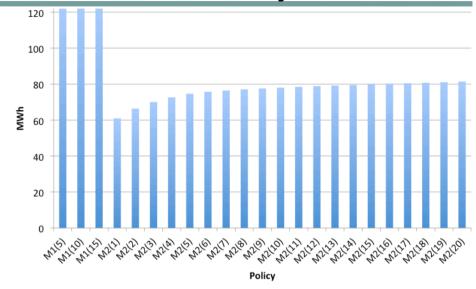
- P1: Computers are always on
- P2: On during cluster open hours and off otherwise, no mechanism to wake up
- P3: Computers sleep after n minutes of inactivity with no remote wake up
- P4: Sleep after n minutes of inactivity but can be remotely woken up
- P5: Sleep after n mins of inactivity but Condor is only informed every m mins

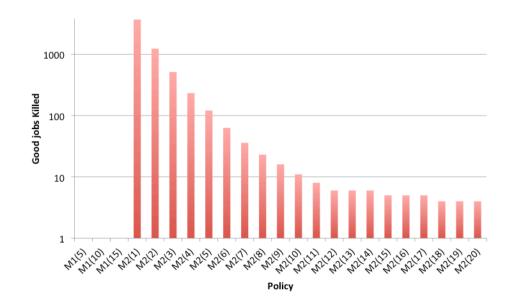


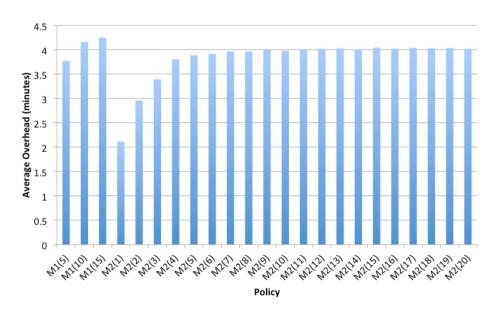


Computer Selection Policy

- S1: No preference (random)
- S2: Target most energy efficient computers
- S3: Target least used computers
 - Least number of interactive logins
 - Largest intervals between logouts and logins

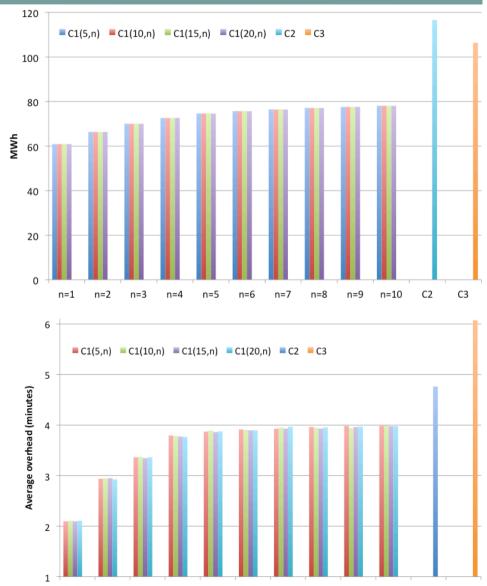






Management Policy

- M1: Computer is idle for at least n minutes before a Condor job can run on it
- M2: If a job is started more than n times mark it as 'miscreant' and don't re-start



Cluster Change Policy

- C1: Dedicated computers for 'miscreant' jobs
 - Run these jobs on computers where they can't be evicted
- C2: High-throughput jobs defer nightly reboots
- C3: High-throughput jobs use computers at the same time as interactive users

- Motivation and Background
- Simulating Condor
- Power Management Evaluation
- Conclusion

Conclusion

- We can save energy (with minimal user impact)
 - P4 is the most optimal policy
 - S3 greater impact on overhead
 - S2 greater impact on power consumption
 - These could be merged
 - M2 can kill off lots of good jobs
 - Fix this by using C1
 - Benefits of C2 and C3 lost due to number of miscreant jobs
 - Need a better way to identify these
 - Policies are not mutually exclusive
 - could save ~70MWh (~60% of current usage) without significant impact on high-throughput user
 - Powering down cluster saves the most energy
- Looking for other uses
 - Already simulated running jobs on Cloud
 - Do others have data we could use?

Questions?

stephen.mcgough@ncl.ac.uk

