

Machine Design Optimization Based on Finite Element Analysis using High-Throughput Computing

Wenying Jiang T.M. Jahns T.A. Lipo UW-Madison, ECE Dept.

Y. Suzuki W. Taylor JSOL Corp. UW-Madison, CS Dept.

Project Objectives

To develop software that efficiently optimizes the design of various types of machines using finite element (FE) analysis in a high throughput computing (HTC) environment to achieve the best possible performance results in the least amount of computing time

5/2/2012 Condor Week 2012 WJ - 2

Hybrid and Battery Electric Vehicles

Toyota Prius

 Wide variety of vehicles available with innovative drivetrains to achieve high fuel economy

EV Electric Machine Requirements

- High Volumetric Power Density
- High Mass Specific Power
- High Efficiency
- High Peak Torque
- High Maximum Speed
- Wide Constant Power Speed Ratio
- High Maximum Temperature
- High Reliability
- Low Ripple Torque

Fractional-Slot Concentrated-Winding Surface PM Machine

 Challenging to develop optimal design for this type of machine

Machine Design Optimization using Genetic Algorithm Technique

Genetic Evolution

Electromagnetic Finite Element Analysis

- Differential evolution provides an effective means of optimizing design of FSCW-SPM machine
 - Typically requires analysis of thousands of candidate designs
- Challenge is aggravated by the need for time-consuming electromagnetic finite element analysis to evaluate each design

Performance Requirements for 55kW (Peak) / 30kW (Cont.) PM Machine

PM Machine Performance Requirements

Parameter/Metric	Value
Peak Power @ 2800 r/min	55 kW
Maximum Speed	14,000 r/min
Continuous Power	30 kW
Mass Power Density for Total Machine	>1.6 kW/kg
Vol. Power Density for Total Machine	>5.67 kW/l
Constant Power Speed Ratio	5:1
Maximum Phase Current	400 Arms
Peak Line-Line Back-EMF @ 2800 r/min	600 V
Efficiency at 20% Rated Torque up to the Max. Speed	>95%

- Requirements provided by U.S. DRIVE partnership between gov't & automakers
- 6 machine dimensional ratios chosen as most important for finding optimal design
- Attention focused on a particular geometry with 12 stator teeth and 10 magnet poles

SPM Machine Design Variables

Tooth width to slot pitch ratio	[0.1, 0.8]
Stator yoke thickness to tooth	
width ratio	[0.1, 0.8]
Magnet span to rotor pole	
pitch ratio	[0.5, 0.95]
Rotor yoke thickness to rotor	
pole pitch ratio	[0.1, 0.6]
Magnet thickness to air-gap	
thickness ratio	[1, 7]
Air-gap radius to stator outer	
radius ratio	[0.3, 0.75]

Machine Design Optimization Flowchart

Implementation of FE Analysis-Based Machine Design Optimization

- Differential evolution algorithm launches up to 100 candidate designs in each generation
 - Algorithm is designed to search out and focus on most promising regions of parameter space
 - Opportunity for parallel analysis of all designs within generation
- A user-defined objective function is used to evaluate performance metrics of all candidate designs
- Algorithm uses objective function results to formulate choices for next generation of designs

Implementation of Design Optimization in HTC Environment

- Project Condor adopted as means of implementing parallel processing of all candidate design analysis within generation
- Made possible by JSOL Corporation donation of 100 JMAG licenses.

5/2/2012 Condor Week 2012 WJ - 9

Comparison between Condor and Single Computer Optimization

Rated Operating Condition Design Point

Torque Density Objective Function

 $OF_1 = \frac{Calculated\ Active\ Mass\ to\ Produce\ Required\ Torque}{Calculated\ Active\ Mass\ to\ Produce\ Required\ Torque}$ Base Machine Active Mass

Rotor speed:

n = 2800 r/min

Differential Evolution Control Parameters

Output mechanical power:

 $P = 30 \, \text{kW}$

Torque:

T = 102.3 Nm

Convergence tolerance (**Tol**): 1E-6 -> *Threshold for terminating optimization*

No. of population members (NP): 85 -> No. of parallel design per generation

Crossover probability (Cr): 0.8

-> Determine mutation aggressiveness

Scale factor (F): 0.8

-> Controls the rate of evolution

Baseline Machine: Existing prototype 12/10 FSCW-SPM machine designed for FreedomCar specifications with an active mass of 27.8 kg including the stator and rotor electromagnetics

- Same software has been applied to optimize the PM machine torque density using both the Condor HTC resources and a single computer
- Single computer was chosen from the Condor pool in order to provide a fair comparison.

Design Results of Condor and Single Computer Optimization

Optimal Design for Maximum Torque Density

Both optimizations converged at the 50th generation, with a total number of 4250 evaluated designs

Performance Metrics

Volume (m^3)	0.0025
Copper mass (kg)	10.108
Iron mass (kg)	8.4722
Magnet mass (kg)	2.0658
Total mass (kg)	20.646
Cost (\$)	172.6318
Torque ripple	0.0524
Power factor	0.9107
Magnet loss (W)	59.4385
Core loss (W)	282.3898
Copper loss (W)	609.6436
Efficiency	0.9693

The machine optimized for maximum torque density exhibits a mass reduction of 25.7% compared to the baseline machine

Comparison of Computation Times for Single Generation

Condor (HTC)

Single Computer

Min: 9 min 35 sec Max: 20 min 0 sec

Total: 20 min 0 sec

Min: 8 min 19 sec Max: 10 min 46 sec

Total: 13 hr 16 min 52 sec

- Condor exhibits acceleration factor of 39.8 for Generation #25
- Several designs have much longer computation times in Condor, preventing acceleration factor from being significantly higher

Comparison of Total Computation Times for Design Optimization

Condor (HTC)

Single Computer

Min: 19 min 32 s Max: 1 hr 4 min 34 s Min: 13 h 17 m 10 s Max: 17 h 29 m 18 s

Total: 25 hr 0 min 26 sec Total: 29 days 22 hr 17 min 8 sec

 Total computation time has been accelerated by approx. 30:1 using HTC environment compared to single computer

Computation Time Breakdown and Acceleration Factor Improvements

Condor Time Breakdown for One Design Analysis

The achievable acceleration factor for a dedicated industrial HTC network (Window OS) is estimated to be 80 for 85 computers

3/2/20

COMMON WEEK ZOTZ

Conclusions and Future Work

- HTC environment enables major acceleration of machine design optimization using differential evolution algorithm
- Efforts are currently under way to significantly reduce the current overhead time in Condor environment
 - Current goal is to improve the acceleration factor to >50 with 85 designs in each generation
- Project is being expanded to integrate FE-based thermal analysis into the optimization program
 - Major step towards the ultimate objective of multi-physics based machine design optimization that eventually includes structural analysis as well.

5/2/2012 Condor Week 2012 WJ - 15