A Cost-Benefit Analysis of a Campus Computing Grid

PRESTON SMITH ROSEN CENTER FOR ADVANCED COMPUTING PURDUE UNIVERSITY <u>PSMITH@PURDUE.EDU</u>

Condor Week 2011

Overview Introduction • The Problem • Significance of the Problem Methodology • Costs × Benchmarking • Capacity o Utility • Findings

Conclusions

Background

- Purdue University Campus Grid
 - Large, high throughput, computation resource 42,000 processor cores
- Frequently linked to efforts to reduce IT costs
 - Claims include
 - × Power savings, maximizing investment in IT
 - × HPC resource using existing equipment
 - × No marginal cost increase

The Problem

- What is the Additional Cost of Having a Campus Grid?
 - On top of existing IT investment
 - People say it's basically zero but how close is it in reality?
- An institution needs information for designing an HPC resource
 - Therefore, I define a model for identifying the costs and benefits of building a campus grid

Significance of the Problem

Appropriate Computations

- IU study reports:
 - × 66% of all jobs on TeraGrid in 2004-2006 were single-CPU jobs
 - × 80% of those jobs ran for two hours or less

• Purdue University

- × 35.4 million single-core serial jobs in 2008-10
- × Average runtime of 1.35 hours
 - o This is 21% of all HPC hours consumed at Purdue.

A large amount of work is appropriate for a campus grid

Significance of the Problem

- Size of Grid Resource
 - o 27,000 desktop machines at Purdue
 - × 2 cores per machine 54,000 cores on desktops
 - 30,000 cores of HPC clusters
 - 84,000 cores potentially usable by the grid

- × 40,000 used by the grid today
- Only 17 systems on 2010 Top 500 with more than 40,000 cores!
 200 TF theoretical performance top 20 machine

Significance of the Problem

- Power Cost of Desktop Computers
 - 111W idle
 - o 160W at full load

Purdue's 27,000 desktops 2.99 MW/hour, for a total of 26,253.7 MW per year

Idle to fully loaded

• Estimated additional cost of \$393,805.80 per year

Methodology

- Identify and calculate baseline costs
 - Clusters
 - o Desktop, student lab IT

• Identify and calculate additional costs

• Staff, power, hardware

• Measure capacity of the grid

- Sample the state of the grid over 2-week period
- Benchmark
 - Condor nodes
 - Amazon EC2

• Normalize Costs

• To Amazon EC2

Collect and Report Output of Grid

• Cost per productivity metric

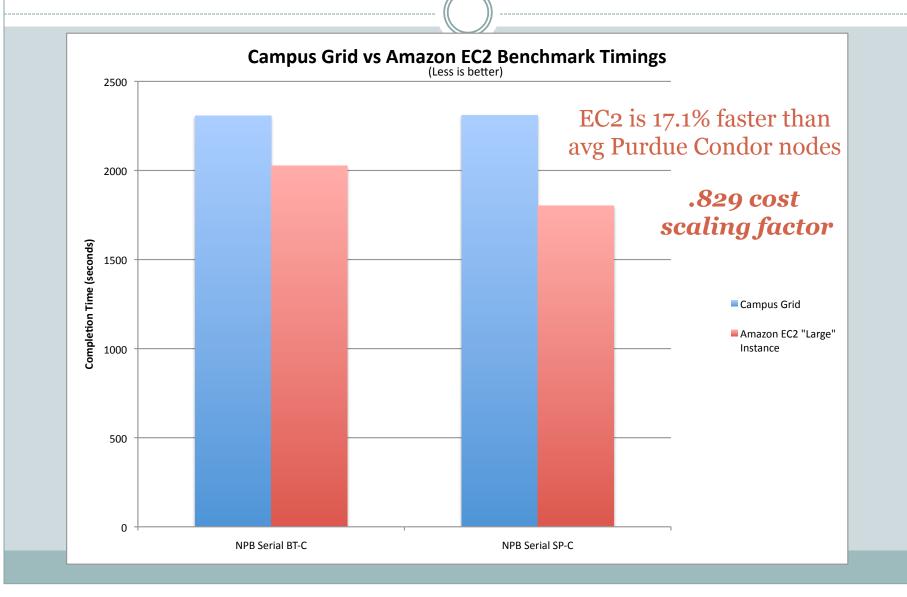
Pre-Normalized Costs

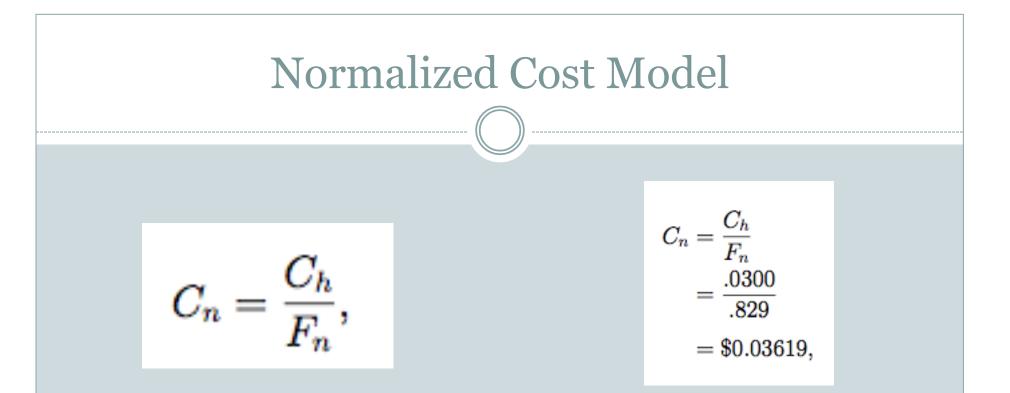
	Per Hour Cost
Labs	\$0.0445
Steele	\$0.0218
Coates	\$0.0237
Condor	\$0.03
EC2	\$0.17

- Labs, Steele, and Coates are all derived from Purdue TCO data
- "Condor" is average of all three
- "EC2" is retail price (per core) of EC2 "Large" instance

Normalization

Internal benchmarks


- Condor runs and presents two predefined benchmarks
 - × Kflops (LINPACK)
 - MIPS (Dhrystone)


• Are these benchmarks meaningful enough to normalize cost?

Application benchmark

- Use a benchmark that relates to real performance of an application
 - × NAS Parallel Benchmarks
 - × Single CPU BT, SP, Class C

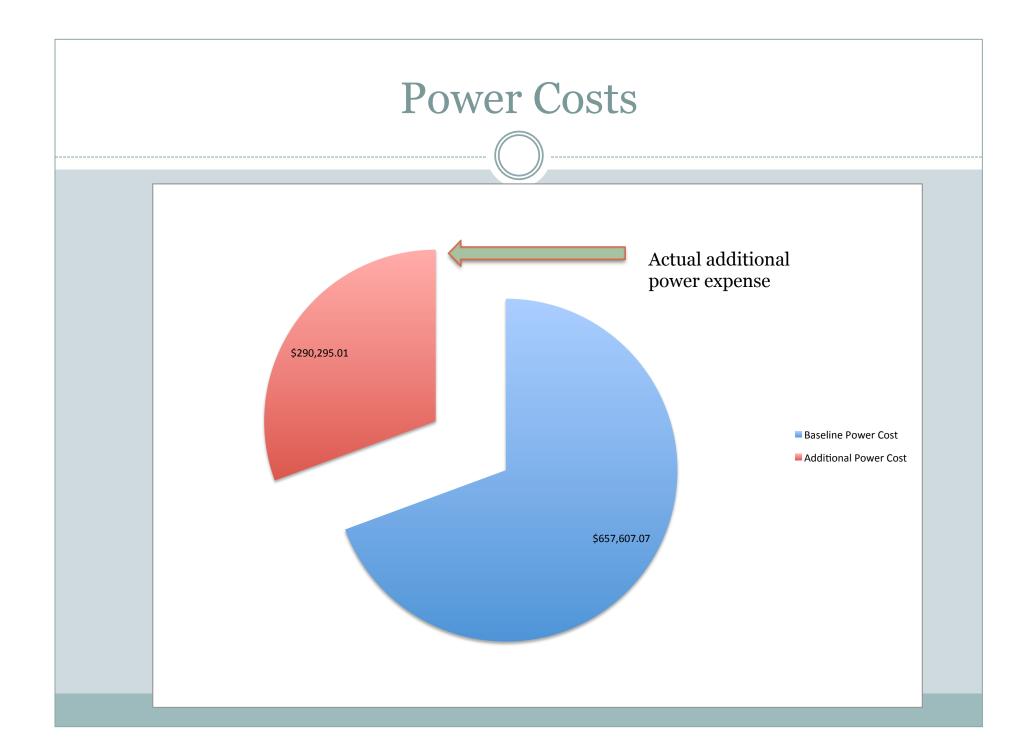
Normalization - Benchmarks

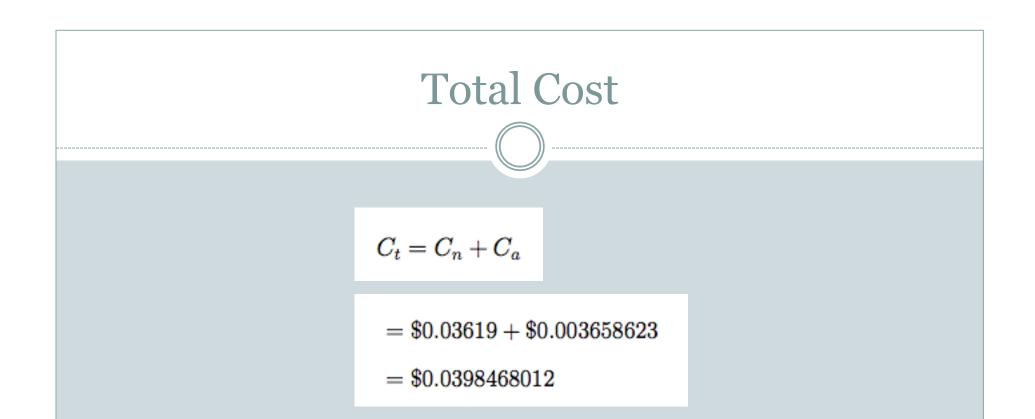
 C_n : normalized per-core-hour cost**\$.300** C_h : pre-normalized per core-hour cost**\$.300** F_n : a constant representing the normalizing factor of one hour
on the grid to 1 hour on EC2.**829**

Normalized core-hour cost: \$.03619

Additional Costs

Item	Total yearly Cost		
Systems Engineering (1 FTE)	\$73,810.00		
User Support (.75 FTE)	\$55,357.50		
Distributed IT Staff (.1 FTE)	\$11,071.50		
Additional Power Load	\$290,295.01		
	Amortized Over 5 Years		
Submit Nodes	\$6,360.00		
Checkpoint Servers ,etc	\$8,480.00		
Total	\$433,502.01		


Additional Costs – Per Core Hour


 $C_a = \frac{E_y * S_a}{H_y},$

$$\begin{split} C_a &= \frac{E_y * S_a}{H_y} \\ &= \frac{\$433, 502.01 * 13, 526}{8760} \\ &= \$0.003658623 \ (3.66 \text{ tenths of a cent}). \end{split}$$

 C_a : additional per-core-hour cost\$433,502.01 E_y : total yearly additional cost of operating the grid\$433,502.01 S_a : total available slots in the grid13,526 H_y : total hours in a year8760

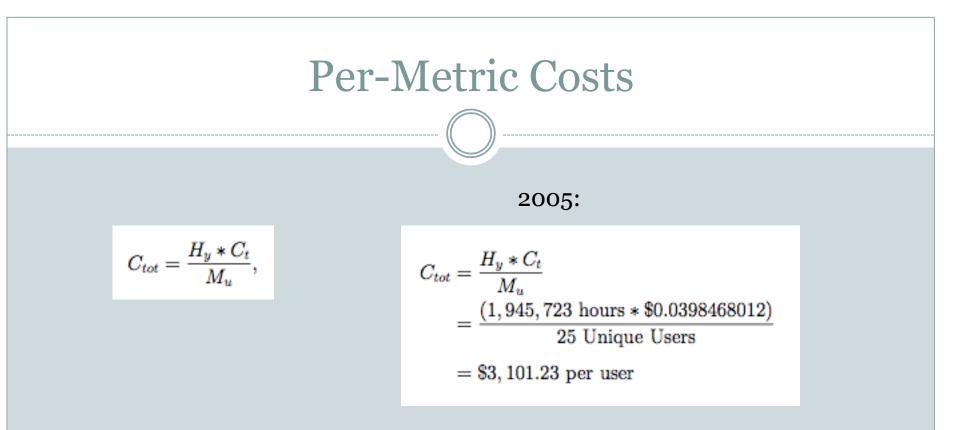
3.66 tenths of one cent!

 C_t : total per-core-hour cost C_n : total normalized base cost of the campus grid C_a : total additional cost per core hour

Total per core-hour cost: \$.03985

Scientific Output – Raw Metrics

	Unique users	Unique Pis	Unique PI Depts	Fields of Science	Jobs	Hours
2005	25	8	5	4	295265	1.9 M
2006	70	27	11	11	4.44 M	4.61 M
2007	115	50	16	19	9.93 M	8.17 M
2008	115	60	13	18	14.9 M	16.6 M
2009	163	85	18	16	15.4 M	17.9 M
2010	145	79	20	16	15.2 M	18.6 M


From Rosen Center Usage Metrics

Solutions or Publications as Metrics

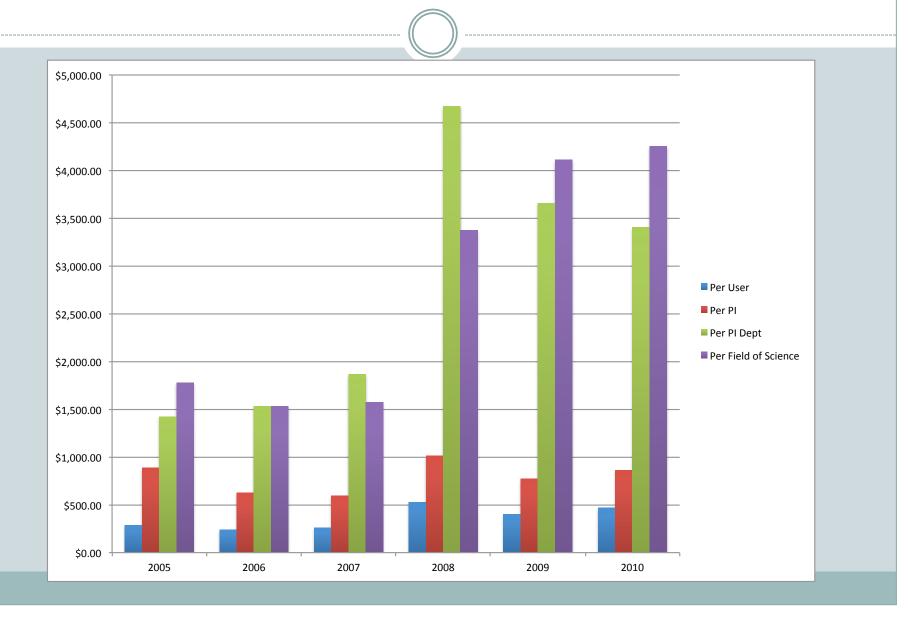
- Solutions per unit of time is one metric recommended in the literature
 - How much *good* computation was done in those millions of hours?
 - But, from the perspective of the institution, this is hard to obtain
 - Only the user knows how many of these jobs were scientifically useful!

• Publications are the end goal of research, so they are an excellent measure of output

• Unfortunately no data exists on publications directly attributable to the campus grid

C_{tot}: the total per-core-hour cost per unit of M_u 1,945,723 H_v: total hours provided in a year C_t : total cost of an hour of use in the campus grid M_u: metric of use (such as users or PIs) users

\$0.0398468012


Additional Costs, Per Metric

	Per User	Per PI		Per Field of Science
2005	\$284.75	\$889.83	\$1,423.73	\$1,779.67
2006	\$241.13	\$625.14	\$1,534.45	\$1,534.45
2007	\$259.87	\$597.69	\$1,867.78	\$1,572.87
2 08		7 7 12.3	\$4,6 2.24	\$3,374.40
2009	\$403.96			\$4,115.39
2010	\$469.54	\$861.81	\$3,404.15	\$4,255.18
]				Per Field of Science
Average	\$364.57		-	\$2,771.99

Average 105 users

Average 11.3 Million Hours Average 107,300 hours per user

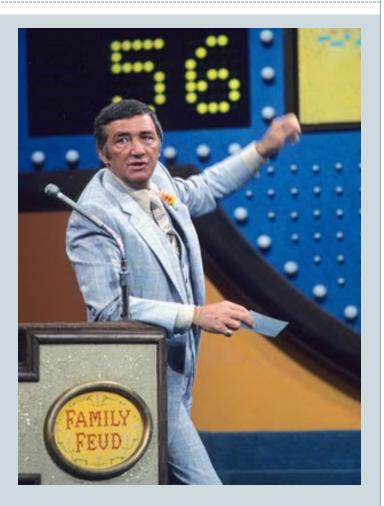
Additional Costs, Per Metric

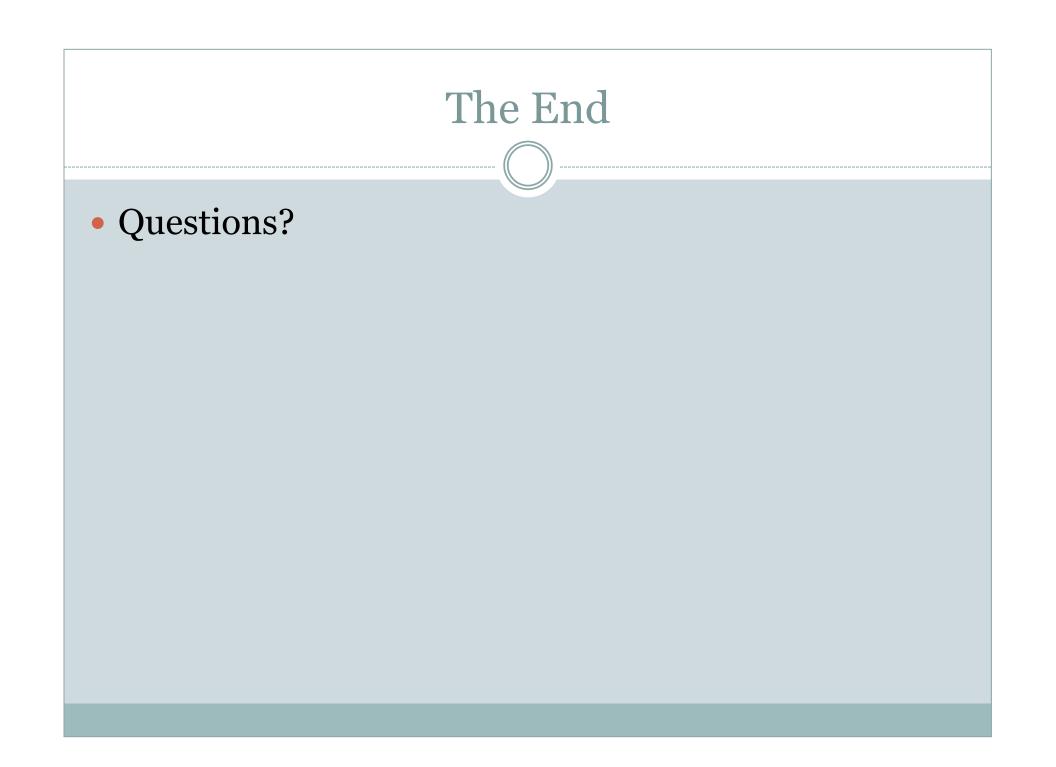
Summary

Measured Relative Performance of Grid Nodes
 .829 relative to Amazon EC2

• Developed Models and Calculated Per-Core Hour Costs:

- Normalized: \$.03619
- Additional: \$0.003658623
- Total: \$0.039847


• Calculated Costs per unit of Several Metrics


- For example: For each user of the grid in 2010
 - × Additional cost to Purdue is \$469.54

• On average, each user costs Purdue an extra \$364.57

Recommendation

- A campus grid is indeed a costeffective way to create a useful HPC resource
 - Any institution with a substantial investment in an IT infrastructure should consider a campus grid to support HPC
- Questions?

