
Migration to 7.4,

Group Quotas, and More

William Strecker-Kellogg

Brookhaven National Lab

RHIC/ATLAS Computing Facility
Overview

 Physics Dept. at
Brookhaven National
Lab—provides
computing and storage
to active RHIC
experiments

 Serves as a Teir-1 for
ATLAS computing

 Uses Condor to manage
RHIC and ATLAS
compute clusters

 14.4k cores running SL5.3
currently

 With new hyper-
threaded 12-core
Westmere systems, to
grow to over 20k cores

RHIC/ATLAS Computing Facility
Overview
 One instance for ATLAS
 5100 slots

 2 submit nodes manage
all production/analysis
jobs

 Other smaller queues
managed on 3 other
submit nodes

 Instance each for STAR
and PHENIX
experiments
 4300, 4500 slots resp.

 20 submit nodes each

 “General Queue”—
flocking between RHIC
pools

 Smaller experiments
grouped into another
instance

New Since Last Year

 New condor administrator

 Migration to 7.4.2

 Up from 6.8.9—long overdue

 Move ATLAS to Group Quotas

 Easier configuration—from 16 configuration files to 5—
90% of slots use just 1)

 Management via web-interface

 Some problems we’ve had to solve…more later

Upgrade to 7.4.2
 Get rid of suspension

model
 Undesirable to have slots

=!= real cores
 Simplify START

expression

 Better negotiator
performance, results later

 Bugfixes all around From this

To this

Group Quotas

 ATLAS only, for now

 PHENIX to follow suit in a few months

 No plans for STAR

 What groups buy us:

 Manage ATLAS production/analysis jobs separately
from many other smaller queues

 Unify configuration files—one config for vast majority
of ATLAS nodes

ATLAS Group Quotas
Reallocation of resources between
queues managed via web interface

A Day in the Life of ATLAS

Issues Moving to Group Quotas

 Backwards compatibility with our accounting and
monitoring systems
 Solution: Retain previous job-type flag that used to

hard-partition slots

 How does it interact with flocking?

 Fairness / Enforcement of group memberships
 “We rely on societal enforcement”

 Not good enough…solution for ATLAS
 ATLAS uses PANDA, we control local submission

 Other users few enough to monitor individually

Issues Moving to Group Quotas

 PHENIX: two classes—user and special jobs
 Special jobs submitted from few machines, separate

users

 User jobs from 20 submit nodes

 Two solutions
 Submit node based partition: regex-match GlobalJobID

ClassAd against list of valid sources in START expr.

 Coexist with users: three configs, user nodes w/ no
AccountingGroup flag, shared nodes that run anything
but are ranked last by user and special jobs, and special
nodes requiring AG flag

Group Priorities

 ATLAS setup: three main groups

1) Production: highest prio., hard quota, no preemption

2) Short analysis: medium prio., auto-regroup on, preemption
enabled

3) Long analysis: lowest prio., auto-regroup on, preemption
enabled

 Idea—short and long analysis spill over into each other as
needed and not be squeezed out by production

 Problem—sometimes short and long will “eat into”
production even when they are over-quota and
production is under its quota

ATLAS Priority Inversion
 Group-priority affects only order of negotiation

 When an analysis queue starts up after a quiet period, production starts
to lose out. Even though production is below its quota it loses
slots to analysis jobs because they get negotiated for first.

 Negotiation should stop for a queue that is over quota (w/ auto-regroup
on) and there are other queues with waiting jobs below their quotas.

Problem area

ATLAS Priority Inversion

 Solution? Increasing the
spread of priority factors as
more lots get added to
production. Required spread
scales with size of the largest
queue, and if another queue
quiesces for long enough it
will outrank production

 E.g. Production goes from 3k
to 4k slots: usage increases
33% making its priority that
much worse and an inversion
that much more likely to
occur…

Negotiator Performance

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

0

1

2

3

4

5

6

7

8

Cycle No.

N
u

m
.

Jo
b

s

Avg. jobs considered and matched per second each cycle

Neg / s

Match / s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

0

200

400

600

800

1000

1200

1400

Cycle No.

S
e

co
n

d
s

Cycle Length

Performance from one day
of the STAR negotiator

Cycle occasionally blocks
waiting for a schedd (many
successes near the default 30s
timeout)

In case where many submitters
are on many machines each,
much wasted time

Issues with Scheduler/Negotiator

 User frequently polling large queue

 Schedd would fork a child which would use 5-10s of CPU
time to answer query (1.6Gb Size!)

 Auto-clustering sometimes doesn’t skip similar jobs

 Globally-scoped ClassAds would be nice, e.g. for the
usage of a shared scratch NFS filesystem

Puppet-ize Configuration Files
 New Puppet-based centralized

configuration management system
of general-purpose servers

 Will templatize condor
configuration

 Configuration done using a
Ruby-based object-oriented
templating language

 Suitably scary at first…but
worth the effort

http://www.puppetlabs.com

Motivation to use Puppet

 Configuration is similar in structure between experiments
 Memory Limits for regular and flocked jobs

 Preemption/Retirement-time on a per-job-type basis

 Policy expressions (RANK/START/etc…)

 List of currently blocked users

 Recent blocking/unblocking of users took editing 6
different files and a reconfig everywhere

 Using Puppet would separate each logical entity, making it
easy to change things on a per-entity basis, and would
automate pushing of changes and reconfiguration. All
changes versioned in git—accountability and reliability

Questions? Comments?

CRS Job System
 Written in Python, submits to condor

 Asynchronous IO for staging data from tape

 Stages in and out are done outside of condor

 Previously done with extra slots, not good aesthetically
and otherwise

 Can combine stage requests for jobs intelligently

 Abstraction layer for IO, similar to plugins

 Own basic workflow tools—DAGs not suitable

ATLAS Shared Pool
 Allow smaller ATLAS queues and OSG grid jobs to run

in their own queue that can utilize a small shared pool
of resources

 Implemented with Group Quotas

 Jobs “compete” for extra slots made available by ATLAS

 Necessitates adding AG flag by users (small enough it
works)

