
Migration to 7.4,

Group Quotas, and More

William Strecker-Kellogg

Brookhaven National Lab

RHIC/ATLAS Computing Facility
Overview

 Physics Dept. at
Brookhaven National
Lab—provides
computing and storage
to active RHIC
experiments

 Serves as a Teir-1 for
ATLAS computing

 Uses Condor to manage
RHIC and ATLAS
compute clusters

 14.4k cores running SL5.3
currently

 With new hyper-
threaded 12-core
Westmere systems, to
grow to over 20k cores

RHIC/ATLAS Computing Facility
Overview
 One instance for ATLAS
 5100 slots

 2 submit nodes manage
all production/analysis
jobs

 Other smaller queues
managed on 3 other
submit nodes

 Instance each for STAR
and PHENIX
experiments
 4300, 4500 slots resp.

 20 submit nodes each

 “General Queue”—
flocking between RHIC
pools

 Smaller experiments
grouped into another
instance

New Since Last Year

 New condor administrator

 Migration to 7.4.2

 Up from 6.8.9—long overdue

 Move ATLAS to Group Quotas

 Easier configuration—from 16 configuration files to 5—
90% of slots use just 1)

 Management via web-interface

 Some problems we’ve had to solve…more later

Upgrade to 7.4.2
 Get rid of suspension

model
 Undesirable to have slots

=!= real cores
 Simplify START

expression

 Better negotiator
performance, results later

 Bugfixes all around From this

To this

Group Quotas

 ATLAS only, for now

 PHENIX to follow suit in a few months

 No plans for STAR

 What groups buy us:

 Manage ATLAS production/analysis jobs separately
from many other smaller queues

 Unify configuration files—one config for vast majority
of ATLAS nodes

ATLAS Group Quotas
Reallocation of resources between
queues managed via web interface

A Day in the Life of ATLAS

Issues Moving to Group Quotas

 Backwards compatibility with our accounting and
monitoring systems
 Solution: Retain previous job-type flag that used to

hard-partition slots

 How does it interact with flocking?

 Fairness / Enforcement of group memberships
 “We rely on societal enforcement”

 Not good enough…solution for ATLAS
 ATLAS uses PANDA, we control local submission

 Other users few enough to monitor individually

Issues Moving to Group Quotas

 PHENIX: two classes—user and special jobs
 Special jobs submitted from few machines, separate

users

 User jobs from 20 submit nodes

 Two solutions
 Submit node based partition: regex-match GlobalJobID

ClassAd against list of valid sources in START expr.

 Coexist with users: three configs, user nodes w/ no
AccountingGroup flag, shared nodes that run anything
but are ranked last by user and special jobs, and special
nodes requiring AG flag

Group Priorities

 ATLAS setup: three main groups

1) Production: highest prio., hard quota, no preemption

2) Short analysis: medium prio., auto-regroup on, preemption
enabled

3) Long analysis: lowest prio., auto-regroup on, preemption
enabled

 Idea—short and long analysis spill over into each other as
needed and not be squeezed out by production

 Problem—sometimes short and long will “eat into”
production even when they are over-quota and
production is under its quota

ATLAS Priority Inversion
 Group-priority affects only order of negotiation

 When an analysis queue starts up after a quiet period, production starts
to lose out. Even though production is below its quota it loses
slots to analysis jobs because they get negotiated for first.

 Negotiation should stop for a queue that is over quota (w/ auto-regroup
on) and there are other queues with waiting jobs below their quotas.

Problem area

ATLAS Priority Inversion

 Solution? Increasing the
spread of priority factors as
more lots get added to
production. Required spread
scales with size of the largest
queue, and if another queue
quiesces for long enough it
will outrank production

 E.g. Production goes from 3k
to 4k slots: usage increases
33% making its priority that
much worse and an inversion
that much more likely to
occur…

Negotiator Performance

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

0

1

2

3

4

5

6

7

8

Cycle No.

N
u

m
.

Jo
b

s

Avg. jobs considered and matched per second each cycle

Neg / s

Match / s

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55

0

200

400

600

800

1000

1200

1400

Cycle No.

S
e

co
n

d
s

Cycle Length

Performance from one day
of the STAR negotiator

Cycle occasionally blocks
waiting for a schedd (many
successes near the default 30s
timeout)

In case where many submitters
are on many machines each,
much wasted time

Issues with Scheduler/Negotiator

 User frequently polling large queue

 Schedd would fork a child which would use 5-10s of CPU
time to answer query (1.6Gb Size!)

 Auto-clustering sometimes doesn’t skip similar jobs

 Globally-scoped ClassAds would be nice, e.g. for the
usage of a shared scratch NFS filesystem

Puppet-ize Configuration Files
 New Puppet-based centralized

configuration management system
of general-purpose servers

 Will templatize condor
configuration

 Configuration done using a
Ruby-based object-oriented
templating language

 Suitably scary at first…but
worth the effort

http://www.puppetlabs.com

Motivation to use Puppet

 Configuration is similar in structure between experiments
 Memory Limits for regular and flocked jobs

 Preemption/Retirement-time on a per-job-type basis

 Policy expressions (RANK/START/etc…)

 List of currently blocked users

 Recent blocking/unblocking of users took editing 6
different files and a reconfig everywhere

 Using Puppet would separate each logical entity, making it
easy to change things on a per-entity basis, and would
automate pushing of changes and reconfiguration. All
changes versioned in git—accountability and reliability

Questions? Comments?

CRS Job System
 Written in Python, submits to condor

 Asynchronous IO for staging data from tape

 Stages in and out are done outside of condor

 Previously done with extra slots, not good aesthetically
and otherwise

 Can combine stage requests for jobs intelligently

 Abstraction layer for IO, similar to plugins

 Own basic workflow tools—DAGs not suitable

ATLAS Shared Pool
 Allow smaller ATLAS queues and OSG grid jobs to run

in their own queue that can utilize a small shared pool
of resources

 Implemented with Group Quotas

 Jobs “compete” for extra slots made available by ATLAS

 Necessitates adding AG flag by users (small enough it
works)

