
Ian D. Alderman
CycleComputing

http://twitter.com/cyclecomputing

Case Studies
� This is a presentation of some work we’ve

recently completed with customers.
� Focus on two particular customer workflows:

�  Part 1: 10,000 core cluster “Tanuki.”
�  Part 2: Easily running the same workflow “locally” and

in the cloud including data synchronization.
� We will discuss the technical challenges.

Case 1: 10,000 Cores “Tanuki”
� Run time = 8 hours
�  1.14 compute-years of computing executed every

hour
� Cluster Time = 80,000 hours = 9.1 compute years.
� Total run time cost = ~$8,500

�  1250 c1.xlarge ec2 instances (8 cores / 7-GB RAM)
�  10,000 cores, 8.75 TB RAM, 2 PB of disk space
� Weighs in at number 75 of Top 500 SuperComputing

list
� Cost to run = ~ $1,060 / hour

Customer Goals
� Genentech: “Examine how proteins bind to each

other in research that may lead to medical
treatments.”
- www.networkworld.com

� Customer wants to test the scalability of
CycleCloud: “Can we run 10,000 jobs at once?”

� Same workflow would take weeks or months on
existing internal infrastructure.

Customer Goals (cont)
� They can’t get answers to their scientific

questions quickly enough on their internal cluster.
�  Need to know “What do we do next?”

� Genentech wanted to find out what Cycle can do:
�  How much compute time can we get simultaneously?
�  How much will it cost?

Run Timeline
� 12:35 – 10,000 Jobs submitted and requests for

batches cores are initiated
� 12:45 – 2,000 cores acquired
� 1:18 – 10,000 cores acquired
� 9:15 – Cluster shut down

System Components

� Condor (& Workflow)
� Chef
� CycleCloud custom CentOS AMIs
� CycleCloud.com
� AWS

Technical Challenges: AWS
� Rare problems:

�  If a particular problem occurs .4% of the time, if you
run 1254 instances it will happen 5 times on average.

�  Rare problem examples:
�  DOA instances (unreachable).
�  Disk problems: can’t mount “ephemeral” disk.

� Need chunking: “Thundering Herd” both for us
and AWS.

� Almost certainly will fill up availability zones.

Technical Challenges: Chef
� Chef works by periodic client pulls.

�  If all the pulls occur at the same time, run out of
resources.

�  That’s exactly what happens in our infrastructure when
you start 1250 machines at once.

�  Machines do ‘fast converge’ initially.
�  So we need to use beefy servers, configure

appropriately, and then stagger launches at a rate the
server can handle.

� This was the bottleneck in the system
�  Future work: pre-stage/cache chef results locally to

reduce initial impact on the server.

Technical Challenges: CycleCloud
�  Implemented monitoring and detection of classes of rare

problems.
�  Batching of requests with delays between successive

requests.
�  Testing: better to request 256 every 5 minutes or 128

every 2.5 minutes? What’s the best rate to make
requests?

� Set chunk size to 256 ec2 instances at a time
�  Did not overwhelm AWS/CycleCloud/Chef infrastructure
�  2048 cores got job work stream running immediately
�  1250 ec2 requests launched in 25 minutes (12:35am –

12:56 am Eastern Time)

Technical Challenges: Images + FS
�  Images not affected by scale of this run.
� Filesystem: large NFS server.
� We didn’t have problems with this run (we were

worried!)
� Future work: parallel filesystem in the cloud.

Technical Challenges: Condor
� …

Technical Challenges: Condor
� Basic configuration changes.

�  See condor-wiki.cs.wisc.edu
� Make sure user job log isn’t on NFS

�  Really a workflow problem…
�  Used 3 scheduler instances (could have used one)

�  1 main scheduler
�  2 auxilary schedulers
�  Worked very well and handled the queue of 10,000 jobs just fine

�  Scheduler instance 1: 3333 jobs
�  Scheduler instance 2: 3333 jobs
�  Scheduler instance 3: 3334 jobs

�  Very nice, steady and even stream of condor job distribution (see
graph)

So how did it go?
� Set up cluster using CycleCloud.com web

interface.
� All the customer had to do was submit jobs, go to

bed, and check results in the morning.

Cores used in Condor

Cores used Cluster Life-time

Condor Queue

Case 2: Synchronized Cloud
Overflow
�  Insurance companies often have periodic

(quarterly) compute demand spikes. Want results
ASAP but also don’t want to pay for hardware to
sit idle the other 11+ weeks of the quarter.

� Replicate internal filesystem to cloud.
� Run jobs (on Windows).
� Replicate results.

/Users/ianalderman/Old_Desktop/
oldDesktop/top/Condor Week/Condor
Week 2010-2.ppt

Customer Goals
� Step outside the fixed cluster size/speed trade

off.
� Replicate internal Condor/Windows pipeline

using shared filesystem.
� Make it look the same to the user – minor UI

change to run jobs in Cloud vs. local.
� Security policy constraints – only outgoing

connections to cloud.
� Continue to monitor job progress using

CycleServer.

System components

� Condor (& Workflow)
� CycleServer
� Chef
� CycleCloud custom Windows AMIs / Filesystem

Technical Challenges: Images
and File System

� Customized Windows images (Condor).
�  Init scripts a particular problem.
� Machines reboot to get their hostname.
� Configure SAMBA on Linux Condor scheduler.

Technical Challenges: Chef

�  Implemented support for a number of features for

Chef on Windows that were missing.
� Lots of special case recipes because of the

differences.
� First restart caused problems.

Technical Challenges: Condor
� DAGMan submission has three stages.

�  Ensure input gets transferred.
�  Submit actual work (1000-5000 compute-hours)
�  Transfer results

� Cross platform submission.

Technical Challenges: CycleServer

� CycleServer is used:

�  As a job submission point for cloud jobs.
�  To monitor the progress of jobs.
�  To monitor other components (Collect-L/Ganglia).
�  To coordinate file synchronization on both ends.

�  Custom plugins.
�  DAG jobs initiating file synchronization – wait until it completes.
�  Plugins do push/pull from local to remote due to firewall.

Cloud vs. On-demand Clusters
Cloud Cluster Physical Cluster

Actions taken to provision:
Button pushed on website

Duration to start: 45 minutes
Copying software – minutes
Copying Data – minutes to

hours
Ready for Jobs

Actions Taken to provision
�  Budgeting
�  Eval Vendors
�  Picking hardware options
�  Procurement process (4-5 mo)
�  Waiting for Servers to ship
�  Getting Datacenter space
�  Upgrading Power/Cooling
�  Unpacking, Stacking, Racking the

servers
�  Plugging networking equipment and

storage
�  Installing images/software
�  Testing Burn-in and networking addrs
�  Ready for jobs

