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Reducing the overhead of direct 

application instrumentation using prior 
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Overview

• Performance analysis with Scalasca

• Filtering

• Motivation

• Code structure based filters

• Configurable binary instrumenter

• Evaluation

• Future plans
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Event-based performance analysis

- Instrument e.g. enter and exit 

points of functions

- Instrumentation is mostly done 

automatically by tools

- Most tools instrument every 

function

- Record performance data on 

events
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Cube display
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Overhead

• Inserting calls to a measurement system inserts overhead

• Runtime overhead grows with density of events

• Traces can grow large

• For many functions, enter/exit events are not needed for 

targeted analysis

• E.g., communication analysis requires only call-path to 

MPI functions

• Target: Reduce overhead by excluding  less relevant 

functions from instrumentation
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Filtering

• Existing tool provide blacklist/whitelist approaches

• Name-based filters are application dependent

• Require several test runs to create appropriate filters

• Idea: Usage of code structure metrics provides application 

independent criteria

• Criteria depend on analysis goal
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Filter criteria

• Approaches for communication analysis:

• MPI functions and functions on a call path to MPI 

functions

• May not be sufficient to pinpoint the source of 

computational imbalance that causes communication 

delays

• Tradeoff between overhead reduction and 

information loss

• Try to avoid frequently called small functions

• High overhead

• Need access to code structure
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Configurable Binary Instrumenter (Cobi)

• Dyninst provides easy access to code structure

• Developed a binary instrumenter

• uses the Dyninst binary rewriting features for 

instrumentation

• Uses the information provided by Dyninst to apply filter 

rules

• The inserted code can be configured by tool developers

• The filters can be specified by the user based on a set of 

code structure criterias and name matching patterns
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Cobi – instrumentation configuration

• XML file which specifies the code snippets inserted at 

instrumentation points

• Subset of C

• Provided by the tool developer

• Can instrument functions and loops

• Definable points are: Before, enter, exit, after, initialize, 

finalize

• Specify additional shared libraries to be linked against the 

executable

• Special context variables: E.g., @ROUTINE@
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Instrumentation example

<adapter>

<dependencies>

<library name=“mlib.so” />

</dependencies>

<code name=“functions”>

<enter> enterFunc(@ROUTINE@, @FILE@); </enter>

<exit>  exitFunc(@ROUTINE@, @LINE@);  </exit>

</code>

</adapter>
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Cobi - filters

• Are specified in a separate XML file

• Start with all or no function

• Include/exclude functions with filter rules

• Possible rules are:

• Are on call path

• Lines of source code

• Cyclomatic complexity

• Number of instructions

• Number and nesting level of loops

• Number of function calls

• Rules can be combined by logical operators

• Depth in call tree

• Name matching

• Prefix

• Suffix
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Filter example

<filter name=“mpicallpath” 
instrument=“functions=functions” start=“none”>

<include>

<property name=“path”>

<functionnames match=“prefix”> MPI mpi

</functionnames>

</property>

</include>

</filter>
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Costs of binary instrumentation

• Instrumented empty function with enter/exit calls to the 

Scalasca measurement system

• 1,000,000 executions in a loop

• Scalasca uses floating point registers

• Need to save floating point registers on every event

instrumentation method runtime / s
no instrumentation 0.02 
compiler instrumentation 0.67 
Cobi w/o saving floating point register 1.26
Cobi with saving floating point registers 2.61
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Evaluation method

• Apply filter to real world applications

• MPI 2007 SPEC benchmarks

• Cactus Carpet

• Gadget

• Filters

• MPI callpath

• Lines of Code 5+

• Cyclomatic complexity 2+

• Cyclomatic complexity 3+

• Measure runtime and fraction of instrumented functions
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Technical environment

• Applications were compiled with gcc 4.3.4

• Patched Dyninst 6.1 

• Patches are included in Dyninst 7

• Instrumented test applications with Cobi

• Measured with Scalasca 1.3.2

• Runs on Juropa with 32 ranks

• Except RAxML ran on 64 ranks
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Instrumented fraction of functions with filters
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Runtime overhead in percent
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Conclusions

• MPI path is most aggressive and results in least overhead

• In most cases MPI path and CC3+ result in reasonable 

overhead

• In case of Gadget, CC3+ instruments much more functions 

than LoC5+, but has lower runtime overead

• More accurate selection of overhead prone functions
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Future plans with Cobi

• Want to distribute Cobi as a separate package

• Coming soon

• Need reliable detection of all entry/exit points for a 

function

• In future versions of the measurement system

• Want to support Cobi as an experimental feature


