
M
it
g

li
e

d
 d

e
r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h
a

ft

Reducing the overhead of direct

application instrumentation using prior

static analysis

3rd May 2011 | Jan Mußler, Daniel Lorenz, Felix Wolf

5. Mai 2011 Folie 2

Overview

• Performance analysis with Scalasca

• Filtering

• Motivation

• Code structure based filters

• Configurable binary instrumenter

• Evaluation

• Future plans

5. Mai 2011 Folie 3

Event-based performance analysis

- Instrument e.g. enter and exit

points of functions

- Instrumentation is mostly done

automatically by tools

- Most tools instrument every

function

- Record performance data on

events

5. Mai 2011 Folie 4

Cube display

5. Mai 2011 Folie 5

Overhead

• Inserting calls to a measurement system inserts overhead

• Runtime overhead grows with density of events

• Traces can grow large

• For many functions, enter/exit events are not needed for

targeted analysis

• E.g., communication analysis requires only call-path to

MPI functions

• Target: Reduce overhead by excluding less relevant

functions from instrumentation

5. Mai 2011 Folie 6

Filtering

• Existing tool provide blacklist/whitelist approaches

• Name-based filters are application dependent

• Require several test runs to create appropriate filters

• Idea: Usage of code structure metrics provides application

independent criteria

• Criteria depend on analysis goal

5. Mai 2011 Folie 7

Filter criteria

• Approaches for communication analysis:

• MPI functions and functions on a call path to MPI

functions

• May not be sufficient to pinpoint the source of

computational imbalance that causes communication

delays

• Tradeoff between overhead reduction and

information loss

• Try to avoid frequently called small functions

• High overhead

• Need access to code structure

5. Mai 2011 Folie 8

Configurable Binary Instrumenter (Cobi)

• Dyninst provides easy access to code structure

• Developed a binary instrumenter

• uses the Dyninst binary rewriting features for

instrumentation

• Uses the information provided by Dyninst to apply filter

rules

• The inserted code can be configured by tool developers

• The filters can be specified by the user based on a set of

code structure criterias and name matching patterns

5. Mai 2011 Folie 9

Cobi – instrumentation configuration

• XML file which specifies the code snippets inserted at

instrumentation points

• Subset of C

• Provided by the tool developer

• Can instrument functions and loops

• Definable points are: Before, enter, exit, after, initialize,

finalize

• Specify additional shared libraries to be linked against the

executable

• Special context variables: E.g., @ROUTINE@

5. Mai 2011 Folie 10

Instrumentation example

<adapter>

<dependencies>

<library name=“mlib.so” />

</dependencies>

<code name=“functions”>

<enter> enterFunc(@ROUTINE@, @FILE@); </enter>

<exit> exitFunc(@ROUTINE@, @LINE@); </exit>

</code>

</adapter>

5. Mai 2011 Folie 11

Cobi - filters

• Are specified in a separate XML file

• Start with all or no function

• Include/exclude functions with filter rules

• Possible rules are:

• Are on call path

• Lines of source code

• Cyclomatic complexity

• Number of instructions

• Number and nesting level of loops

• Number of function calls

• Rules can be combined by logical operators

• Depth in call tree

• Name matching

• Prefix

• Suffix

5. Mai 2011 Folie 12

Filter example

<filter name=“mpicallpath”
instrument=“functions=functions” start=“none”>

<include>

<property name=“path”>

<functionnames match=“prefix”> MPI mpi

</functionnames>

</property>

</include>

</filter>

5. Mai 2011 Folie 13

Costs of binary instrumentation

• Instrumented empty function with enter/exit calls to the

Scalasca measurement system

• 1,000,000 executions in a loop

• Scalasca uses floating point registers

• Need to save floating point registers on every event

instrumentation method runtime / s
no instrumentation 0.02
compiler instrumentation 0.67
Cobi w/o saving floating point register 1.26
Cobi with saving floating point registers 2.61

5. Mai 2011 Folie 14

Evaluation method

• Apply filter to real world applications

• MPI 2007 SPEC benchmarks

• Cactus Carpet

• Gadget

• Filters

• MPI callpath

• Lines of Code 5+

• Cyclomatic complexity 2+

• Cyclomatic complexity 3+

• Measure runtime and fraction of instrumented functions

5. Mai 2011 Folie 15

Technical environment

• Applications were compiled with gcc 4.3.4

• Patched Dyninst 6.1

• Patches are included in Dyninst 7

• Instrumented test applications with Cobi

• Measured with Scalasca 1.3.2

• Runs on Juropa with 32 ranks

• Except RAxML ran on 64 ranks

5. Mai 2011 Folie 16

Instrumented fraction of functions with filters

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

CC2+ %

CC3+ %

LoC5+ %

MPI path %

5. Mai 2011 Folie 17

Runtime overhead in percent
3

3
6

1
2

3
1

9
6

1
4

6
0

1
0

2
3

1
0

4
6

1
1

4
3

3
4

5
3

4
0

-5,00

0,00

5,00

10,00

15,00

20,00

25,00

30,00

Full

CC2+

CC3+

LoC5+

MPI path

6
1

5. Mai 2011 Folie 18

Conclusions

• MPI path is most aggressive and results in least overhead

• In most cases MPI path and CC3+ result in reasonable

overhead

• In case of Gadget, CC3+ instruments much more functions

than LoC5+, but has lower runtime overead

• More accurate selection of overhead prone functions

5. Mai 2011 Folie 19

Future plans with Cobi

• Want to distribute Cobi as a separate package

• Coming soon

• Need reliable detection of all entry/exit points for a

function

• In future versions of the measurement system

• Want to support Cobi as an experimental feature

