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A configurable binary instrumenter

making use of heuristics to select relevant 
instrumentation points
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Introduction

Student at the RWTH Aachen, Germany

Helmholtz-University Young Investigators Group

“Performance Analysis of Parallel Programs”

Lead by Professor F. Wolf

Located at the “Jülich Supercomputing Center”
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Integrated measurement & analysis toolset
■ Runtime summarization (aka profiling)

■ Automatic event trace analysis

Objective
■ Development of a scalable performance 

analysis toolset

■ Specifically targeting large-scale
applications

Supports various languages & parallel 
programming paradigms

■ Fortran, C, C++

■ MPI, OpenMP & hybrid MPI/OpenMP

More information at:

www.scalasca.org
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Instrumentation

Two ways to gather information

 By direct instrumentation

 By sampling, periodic measurement

Link between program and measurement system

 Trace events during program execution

 Profile to evaluate where time is spent
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Possibilities of instrumentation

Source code transformation

 Manually added by user

 Automatically, e.g. TAU, OPARI

Compiler supported

 Wrapper functions

 Adding function calls

Library interposition

 MPI <-> PMPI

Binary instrumentation

 Static, e.g. TAU

 Dynamic, e.g. Paradyn



12. April 2010 Folie 8

Advantages

 Language independent

 Instrumentation of optimized code

 Possible if no source available, e.g. libraries

 Templates are instantiated

 No need to recompile

Disadvantages

 Limited information available

 Not all platforms are supported

Static binary instrumentation
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Information provided by Dyninst

Method identification

 E.g. Namespace::Class::Method in C++

List of called subroutines in given function

Control flow graph and loop tree

Possibility to access basic blocks

What information is available?

 Depends in part on available symbol table

 Improves when debug information are present

 Sourcefile and sourceline become available
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Configurable binary instrumenter

Configurable by both the tool provider and user

Tool provider focuses on adapter specification

 Define code for initialization

 Define code for instrumentation

 Includes filter for the measurement system

User starts with provided filter

 Refines the filter to his or her needs
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Possible instrumentation points

Functions

 Function enter and exit

Loops

 Before and after the loop

 Loop body enter and exit

Callsites

 Before the function call

 After the return
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Filter requirements

Selective binary instrumentation

 Provide a usable default filter

 Allow the user to refine which parts to instrument

Configurable set of instrumentation points

 Filter by function, class and module names

 Filter by properties

 Ability to combine filters
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Filter

Start with set of functions

 All

 None

Filter set further using

 String patterns for

 Filename (module)

 Namespace, classname

 Properties

 E.g. callgraph, depth
What to instrument?

Properties

Modules

Patterns
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Filter specifcation

A single XML document

 Patternlists as plain text for elements taking lists

Filter

 Include or exclude elements containing

 „and“, „or“, „not“ and „true“ or „false“

 Functions, classes, namespaces, modules

 Property

 Callsite filter for restricting instrumentation
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Filter specification example

<filter name="pathtest" instrument="functions=handletest" start="all">

<exclude>

<or>

<not>

<property name="path">

<functionnames match="simple">

MPI*

</functionnames>

</property>

</not>

<functionnames>main</functionnames>

</or>

</exclude>

</filter>
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Inserted code

The instrumenter has to support

Additional dependencies (measurement system)

Variable declarations (e.g. region handles )

Code for initialization (run once at startup )

Code to be executed at points

 Enter / exit

 Before / after

Provide access to context information

 @linenumber@, @functionname@,…
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Instrumentation specification

Independent XML document

 Include adapter filter

Dependencies

 Add dynamic libraries

Variable element

 Type information

 Memory to allocate

Code in plain text

 C-like syntax

Code

Variables

Var

Var

Init

Before

Enter

Exit

After
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Example specification

<code name="handletest">

<variables>

<var name="handle" type="void*" size="4" />

</variables>

<init>

initNotify(@functionname@,@linenumber@,@filename@);

handle = createHandle(@functionname@);

</init>

<enter>enterHandle(handle);</enter>

<exit>exitHandle(handle); </exit>

</code>
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Goal
Automatic selection of relevant instrumentation points
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What makes a point relevant?

 Granularity of trace to locate possible problems

 Ability to profile where time is spent

 Communication

 I/O

Is decision possible with available information?

How to select instrumentation points
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Heuristics using binary code

Aim here: do not instrument short functions

 Instrumentation costs exceed function costs

Complexity of function

 Contains „if“ and „loop“ statements

 Amount of instructions

 Subroutine calls

Cyclomatic Complexity

 Complexity M = E(dges) – N(odes) + 1
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Heuristics using debug information

Lines of code

 May be obscured by comments and code style

Method name hints

 Exclude e.g., helper functions „get*“, „set*“

 Include „do*“ ,“process*“, „calculate*“, or „solve*“

Classname and namespace
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Heuristics using callpath

Callpath of functions

 Leads to I/O functions?

 Leads to MPI functions?

 Leads to functions using OpenMP?

Depth of function in call graph

 Instrument only to specified depth

Problem for static callpath construction

 Virtual functions, function pointers
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Unevaluated results

CP2K Fortran code with Intel 10 compiler

 12652 functions ( 50MB binary )

 Using MPI path reduced to 5194

 Using adapter filter and mpi path 767 remain

GENE Fortran code

 7095 functions ( 13MB binary )

 Using  adapter filter and MPI path reduced to 3144

 Remove nodes on direct path, leaves 2510 function

BT (NAS Parallel Benchmark)

 Reduced to 27 functions with MPI callpath filter

 More in the example later
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Architecture

Mutatee

 Layer between Dyninst and
filter component

Filter

 Responsible for reading filter

 Evaluate filter

CodeGenerator

 Parses code specification

 Generates Dyninst snippets

Instrumenter

 Instruments the filtered set
with generated code
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Dependencies

Dyninst

Boost

 Spirit – Parser for adapter code

 Regex – Regular expressions in filter

 Tokenizer

Apache Xerces

 XML DOM parser for the adapter and filter files
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Open issues

Binaries contain a lot of functions

Compiler-specific functions added

Scalasca does not provide dynamic library

 Need to preinstrument with “skin –comp=none –user”
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Future work

Adding more properties

 sourceLines, hasControlStructure, calledInLoop

Evaluate reduction in instrumented functions

 Instrument benchmarks

 Instrument sample application

Evaluate advantage over filtering at runtime

Evaluate advantage of instrumenting optimized code
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Example

Instrumenting NAS Parallel Benchmark BT

preinstrument
binary 

instrumenter
analyze

skin = scalasca –instrument –comp=none –user

scan = scalasca –analyze mpirun –n 4 ./mutated


