
12. April 2010 | Jan Mussler | j.mussler@fz-juelich.de

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

A configurable binary instrumenter

making use of heuristics to select relevant
instrumentation points

12. April 2010 Folie 2

Presentation outline

Introduction

Instrumentation

Configurable instrumenter

Heuristics to select relevant points

Architecture

Example

12. April 2010 Folie 3

Introduction

Student at the RWTH Aachen, Germany

Helmholtz-University Young Investigators Group

“Performance Analysis of Parallel Programs”

Lead by Professor F. Wolf

Located at the “Jülich Supercomputing Center”

12. April 2010 Folie 4

Integrated measurement & analysis toolset
■ Runtime summarization (aka profiling)

■ Automatic event trace analysis

Objective
■ Development of a scalable performance

analysis toolset

■ Specifically targeting large-scale
applications

Supports various languages & parallel
programming paradigms

■ Fortran, C, C++

■ MPI, OpenMP & hybrid MPI/OpenMP

More information at:

www.scalasca.org

12. April 2010 Folie 5

Presentation outline

Introduction

Instrumentation

Configurable instrumenter

Heuristics to select relevant points

Architecture

Example

12. April 2010 Folie 6

Instrumentation

Two ways to gather information

 By direct instrumentation

 By sampling, periodic measurement

Link between program and measurement system

 Trace events during program execution

 Profile to evaluate where time is spent

12. April 2010 Folie 7

Possibilities of instrumentation

Source code transformation

 Manually added by user

 Automatically, e.g. TAU, OPARI

Compiler supported

 Wrapper functions

 Adding function calls

Library interposition

 MPI <-> PMPI

Binary instrumentation

 Static, e.g. TAU

 Dynamic, e.g. Paradyn

12. April 2010 Folie 8

Advantages

 Language independent

 Instrumentation of optimized code

 Possible if no source available, e.g. libraries

 Templates are instantiated

 No need to recompile

Disadvantages

 Limited information available

 Not all platforms are supported

Static binary instrumentation

12. April 2010 Folie 9

Information provided by Dyninst

Method identification

 E.g. Namespace::Class::Method in C++

List of called subroutines in given function

Control flow graph and loop tree

Possibility to access basic blocks

What information is available?

 Depends in part on available symbol table

 Improves when debug information are present

 Sourcefile and sourceline become available

12. April 2010 Folie 10

Presentation outline

Introduction

Instrumentation

Configurable instrumenter

Heuristics to select relevant points

Architecture

Example

12. April 2010 Folie 11

Configurable binary instrumenter

Configurable by both the tool provider and user

Tool provider focuses on adapter specification

 Define code for initialization

 Define code for instrumentation

 Includes filter for the measurement system

User starts with provided filter

 Refines the filter to his or her needs

12. April 2010 Folie 12

Possible instrumentation points

Functions

 Function enter and exit

Loops

 Before and after the loop

 Loop body enter and exit

Callsites

 Before the function call

 After the return

12. April 2010 Folie 13

Filter requirements

Selective binary instrumentation

 Provide a usable default filter

 Allow the user to refine which parts to instrument

Configurable set of instrumentation points

 Filter by function, class and module names

 Filter by properties

 Ability to combine filters

12. April 2010 Folie 14

Filter

Start with set of functions

 All

 None

Filter set further using

 String patterns for

 Filename (module)

 Namespace, classname

 Properties

 E.g. callgraph, depth
What to instrument?

Properties

Modules

Patterns

12. April 2010 Folie 15

Filter specifcation

A single XML document

 Patternlists as plain text for elements taking lists

Filter

 Include or exclude elements containing

 „and“, „or“, „not“ and „true“ or „false“

 Functions, classes, namespaces, modules

 Property

 Callsite filter for restricting instrumentation

12. April 2010 Folie 16

Filter specification example

<filter name="pathtest" instrument="functions=handletest" start="all">

<exclude>

<or>

<not>

<property name="path">

<functionnames match="simple">

MPI*

</functionnames>

</property>

</not>

<functionnames>main</functionnames>

</or>

</exclude>

</filter>

12. April 2010 Folie 17

Inserted code

The instrumenter has to support

Additional dependencies (measurement system)

Variable declarations (e.g. region handles)

Code for initialization (run once at startup)

Code to be executed at points

 Enter / exit

 Before / after

Provide access to context information

 @linenumber@, @functionname@,…

12. April 2010 Folie 18

Instrumentation specification

Independent XML document

 Include adapter filter

Dependencies

 Add dynamic libraries

Variable element

 Type information

 Memory to allocate

Code in plain text

 C-like syntax

Code

Variables

Var

Var

Init

Before

Enter

Exit

After

12. April 2010 Folie 19

Example specification

<code name="handletest">

<variables>

<var name="handle" type="void*" size="4" />

</variables>

<init>

initNotify(@functionname@,@linenumber@,@filename@);

handle = createHandle(@functionname@);

</init>

<enter>enterHandle(handle);</enter>

<exit>exitHandle(handle); </exit>

</code>

12. April 2010 Folie 20

Presentation outline

Introduction

Instrumentation

Configurable instrumenter

Heuristics to select relevant points

Architecture

Example

12. April 2010 Folie 21

Goal
Automatic selection of relevant instrumentation points

12. April 2010 Folie 22

What makes a point relevant?

 Granularity of trace to locate possible problems

 Ability to profile where time is spent

 Communication

 I/O

Is decision possible with available information?

How to select instrumentation points

12. April 2010 Folie 23

Heuristics using binary code

Aim here: do not instrument short functions

 Instrumentation costs exceed function costs

Complexity of function

 Contains „if“ and „loop“ statements

 Amount of instructions

 Subroutine calls

Cyclomatic Complexity

 Complexity M = E(dges) – N(odes) + 1

12. April 2010 Folie 24

Heuristics using debug information

Lines of code

 May be obscured by comments and code style

Method name hints

 Exclude e.g., helper functions „get*“, „set*“

 Include „do*“ ,“process*“, „calculate*“, or „solve*“

Classname and namespace

12. April 2010 Folie 25

Heuristics using callpath

Callpath of functions

 Leads to I/O functions?

 Leads to MPI functions?

 Leads to functions using OpenMP?

Depth of function in call graph

 Instrument only to specified depth

Problem for static callpath construction

 Virtual functions, function pointers

12. April 2010 Folie 26

Unevaluated results

CP2K Fortran code with Intel 10 compiler

 12652 functions (50MB binary)

 Using MPI path reduced to 5194

 Using adapter filter and mpi path 767 remain

GENE Fortran code

 7095 functions (13MB binary)

 Using adapter filter and MPI path reduced to 3144

 Remove nodes on direct path, leaves 2510 function

BT (NAS Parallel Benchmark)

 Reduced to 27 functions with MPI callpath filter

 More in the example later

12. April 2010 Folie 27

Presentation outline

Introduction

Instrumentation

Configurable instrumenter

Heuristics to select relevant points

Architecture

Example

12. April 2010 Folie 28

Architecture

Mutatee

 Layer between Dyninst and
filter component

Filter

 Responsible for reading filter

 Evaluate filter

CodeGenerator

 Parses code specification

 Generates Dyninst snippets

Instrumenter

 Instruments the filtered set
with generated code

12. April 2010 Folie 29

Dependencies

Dyninst

Boost

 Spirit – Parser for adapter code

 Regex – Regular expressions in filter

 Tokenizer

Apache Xerces

 XML DOM parser for the adapter and filter files

12. April 2010 Folie 30

Open issues

Binaries contain a lot of functions

Compiler-specific functions added

Scalasca does not provide dynamic library

 Need to preinstrument with “skin –comp=none –user”

12. April 2010 Folie 31

Future work

Adding more properties

 sourceLines, hasControlStructure, calledInLoop

Evaluate reduction in instrumented functions

 Instrument benchmarks

 Instrument sample application

Evaluate advantage over filtering at runtime

Evaluate advantage of instrumenting optimized code

12. April 2010 Folie 32

Example

Instrumenting NAS Parallel Benchmark BT

preinstrument
binary

instrumenter
analyze

skin = scalasca –instrument –comp=none –user

scan = scalasca –analyze mpirun –n 4 ./mutated

