
4/12/2010Paradyn Week 2010 1

From Open|SpeedShop to a Component 

Based Tool Framework

Jim Galarowicz

Don Maghrak

The Krell Institute



• Open|SpeedShop Project Update

• Component Based Tool Framework 

Project Introduction

Overall Agenda
Open|SpeedShop 

Performance Tool Status Update

4/12/2010Paradyn Week 2010 2



• Open|SpeedShop Project Overview

• Current Features

• What has changed since last update

• What we are working on now

• Current Release and Status

Open|SpeedShop Agenda
Open|SpeedShop 

Performance Tool Status Update

4/12/2010Paradyn Week 2010 3



 Comprehensive open source performance analysis 

framework

 Combining Profiling and Tracing

 Common workflow for all experiments

 Flexible instrumentation (dynamic and offline)

 Extensibility through plugins

 GUI, CLI, immediate command and Python API user interfaces

 Partners

 DOE/NNSA Tri-Labs (LLNL, LANL, SNLs)

 Krell Institute

 Universities of Wisconsin and Maryland

 ORNL

Open|SpeedShop 

Performance Tool Status Update

Project Overview:

What is Open|SpeedShop?

4/12/2010 4Paradyn Week 2010



What can Open|SpeedShop do for the user?

 Give lightweight overview of where program spends time

 Find hot call paths in user program and libraries

 Give access to hardware counter event information

 Trace calls to POSIX I/O functions, give timing, call paths, and 

optional info like: bytes read, file names...

 Trace calls to MPI functions. give timing, call paths, and optional 

info like: source, destination ranks, .....

 Help pinpoint numerical problem areas by tracking FPEs

Maps the performance information back to the source and 

displays source annotated with the performance information.

Open|SpeedShop 

Performance Tool Status Update

Project Overview:

What is Open|SpeedShop?

4/12/2010 5Paradyn Week 2010



Platforms supported currently:
 Linux Clusters with x86, IA-64, Opteron, and EM64T

 Ports to Linux: PPC, BlueGene, Cray-XT in progress

Gather performance data on unmodified 
application binaries

 Where no shared library support  build statically

Open|SpeedShop provides “osslink” script to help re-link our 
collector code into the application

Open|SpeedShop 

Performance Tool Status Update

Project Overview:

What is Open|SpeedShop?

4/12/2010 6Paradyn Week 2010



Concept of an Experiment

What to measure (metric) and what to analyze (appl.)

 Experiment chosen by user 

Experiment consists of Collectors and Views

 Collectors define specific performance data sources

Hardware counters

Tracing of certain routines

 Views specify data aggregation and presentation

Multiple collectors per experiment possible

Open|SpeedShop 

Performance Tool Status Update Terminology

4/12/2010 7Paradyn Week 2010



 PC Sampling (pcsamp)

 Record PC in user defined time intervals

 Low overhead overview of time distribution

 Good first step to find hot spots in program

 User Time (usertime)

 PC Sampling + Call stacks for each sample

 Provides inclusive & exclusive timing data

 Find hot call paths in application

 Hardware Counters (hwc, hwctime)

 Sample HWC overflow events

 Access to data like cache and TLB misses

Open|SpeedShop 

Performance Tool Status Update Sampling Experiments

4/12/2010 8Paradyn Week 2010



 I/O Tracing  (io, iot)

 Record invocation of all POSIX I/O events

 Provides I/O aggregate and individual timings

 iot – Shows bytes read/written, etc. & event by event list

MPI Tracing (mpi, mpit, mpiotf)

 Record invocation of all MPI routines

 Provides MPI aggregate and individual timings

 mpit – Shows bytes transferred, ranks involved, etc. & event by 

event list

 mpiotf – Writes open trace format files using vampirtrace under 

the hood.

Open|SpeedShop 

Performance Tool Status Update Tracing Experiments

4/12/2010 9Paradyn Week 2010



 Floating Point Exception Tracing (fpe)

 Triggered by any FPE caused by the code

 Helps pinpoint numerical problem areas

 Mapped back to source where FPE occurred

Open|SpeedShop 

Performance Tool Status Update Tracing Experiments (2)

4/12/2010 10Paradyn Week 2010



MPI Application

O|SS

post-

mortem

Offline

MPI Application

O|SS

MRNet

Easy setup

Low overhead

No additional resources

Higher portability

Online analysis

Intermediate updates

Attach to running code

Optional aggregation

Instrumentation Choices
Open|SpeedShop 

Performance Tool Status Update

Paradyn Week 2010 4/12/2010 11



 Moved away from DPCL to MRNet as online transport

 Developed the offline mode of  operation.

 Using libmonitor (Rice) to hook into application, monitor sys calls

 Link our collectors into the application to gather data

 Write raw data files, then create OSS database file

 Transitioned to having offline the default instrumentation mode 

 Low start-up overhead and works well in batch environments

 Continued to update the open source components we use

 sqlite, libdwarf, libunwind, libmonitor, Dyninst, MRNet, PAPI,…

 Improved installation scripts, tools

What is new since last Paradyn 

Week update in 2008?

Open|SpeedShop 

Performance Tool Status Update

4/12/2010 13Paradyn Week 2010



 Usability Improvements

 Optional View window to select which metrics to be used to 

create the view

 Ability to quickly switch to function, statement, or library view 

 Improvements (tool bar) for custom comparison view

 Integrated offline mode support into GUI wizards

 Created offline convenience scripts to hide the previous syntax

 osspcsamp, ossusertime, osshwc, osshwctime, ossio, ….

 In general, tool is more robust.   Has been exposed to more 

applications, compilers, job schedulers, MPI versions.

What is new since last Paradyn 

Week update in 2008? (2)

Open|SpeedShop 

Performance Tool Status Update

4/12/2010 14Paradyn Week 2010



 Work on selected modularization of  Open|SpeedShop

 Ability to build a viewer only version

 Ability to build only the runtime libraries and collectors

 Refactor runtime library component to be more modular

 Porting Open|SpeedShop:

 Linux PPC

 BG/L and BG/P

 CNL: Cray-XT4 and Cray-XT5

 Supporting current users and assisting new users

 Release updates

 New features and bug fixes to existing code

What are we working on now?
Open|SpeedShop 

Performance Tool Status Update

4/12/2010 15Paradyn Week 2010



 Scalability Improvements

 Integrate the latest versions of  MRNet and Dyninst into 

Open|SpeedShop (CBTF project)

 Using Dyninst-6.1 and MRNet 2.2 beta for development

 More on this later in the talk

 Component Based Tool Framework project

 Subject of next half of this talk

What are we working on now?
Open|SpeedShop 

Performance Tool Status Update

4/12/2010 16Paradyn Week 2010



Open|SpeedShop 1.9.3.3 available

 Packages and source from sourceforge.net

 Tested on a variety of platforms

Cray-XT, BG, and PPC versions coming soon

Open|SpeedShop website:

http://www.openspeedshop.org/

Download options:

 Package with Install Script (install.sh or install-oss)

 Source for tool and base libraries

Open|SpeedShop 

Performance Tool Status Update
Current Release and Status

4/12/2010 17Paradyn Week 2010

http://www.openspeedshop.org/
http://www.openspeedshop.org/


4/12/2010Paradyn Week 2010 18

Building a Community Infrastructure for Scalable 

On-Line Performance Analysis Tools

Component Based Tool Framework

“CBTF”

Jim Galarowicz

Don Maghrak

The Krell Institute



• Project Origin and Team

• Project Rationale

• Project Goals/Objectives

• Research Challenges/Project Requirements

• Performance Tools Pipeline

• Project Results/Outcomes

• Current Status

CBTF Agenda
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010Paradyn Week 2010 19



• Project Origin

• OASCR Proposal: "Building a Community 

Infrastructure for Scalable On-Line Performance Analysis 

Tools Around Open SpeedShop"  for Software 

Development Tools for Improved Ease-of-Use of  Petascale 

Systems

• Jointly funded by OASCR and NNSA

• Three year project

Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools
Project Origin

4/12/2010 20Paradyn Week 2010



• Project Team

• The Krell Institute

• University of Maryland

• University of Wisconsin

• Oak Ridge National Laboratory

• Lawrence Livermore National Laboratory

• Los Alamos National Laboratory

• Sandia National Laboratories

• Carnegie Mellon University

• Others welcome……

Project Team
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010Paradyn Week 2010 21



4/12/2010Paradyn Week 2010 22

• Why the need for the project?

• Petascale environments need tool sets that are 
flexible

• Need to quickly create new and specialized tools

• Better availability of tools across more platforms

• Need to avoid creating stove pipe tools

Project Rationale



4/12/2010Paradyn Week 2010 23

• Project Goals/Objectives: 

• Create a toolbox of components for building high-level 
end user tools and/or quickly build tool prototypes.

• Tools should be easily configurable/adjustable w/o 
rebuilding.

• Able to mix components from several groups and/or 
vendors.   Everyone should be able to contribute and use 
the new components.

• We would like contributors to define the interfaces with 
us so that we can share components later in both 
directions. 

Project Goals/Objectives



• Project Goals/Objectives:

• Research into efficient and effective online data 
aggregation, reduction, filtering, and data 
transfer

• MRNet

• Research lightweight data acquisition techniques

• Binary rewriting

• Assemble new tool components to create a more 
modular Open|SpeedShop performance tool

• Support BlueGene and Cray-XT platforms

Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools
Project Goals/Objectives

4/12/2010 24Paradyn Week 2010



4/12/2010

25

• Research Challenges/Project Requirements: 
• Components must be designed for scale but also have a 

need for generality.

• Support specialized tool components intended for serial 
or small scale usage.

• Infrastructure must support online data aggregation 
because of potentially high data volume at scale.

• Petascale machines are likely to have limited OS 
capabilities requiring new and light-weight data 
acquisition techniques.

• Must be able to efficiently store the performance data.

• Must be able to map any combination of tool 
components to the target architecture.

Research Challenges

Project Requirements

Paradyn Week 2010



26

Performance Analysis Pipeline

Data

Acquisition

Result

Presentation

Data

Collection

Experiment

Management

Command

Processing

Performance Analysis Pipeline

PAPI
Dyninst

MRNet
libMonitor

SQLite

QT 4
Python

Lean

Environment

Collectors

Tree-based

Aggregation

GUI

Python

Module

Batch

Processing

Panel Plugin

Aggr. Plugin

Distributed Storage

Experiment

Management

Analysis

Plugin

CLI Parser

View Plugin

Profilers

Tracers

Collector Plugin

Collector Plugin

Babel
Python

Compute Nodes  I/O Nodes  Support Nodes  Front-end Nodes  Desktop

U
s
e

r A
c
c
e

s
s

P
a

ra
lle

l T
a

rg
e

t A
p

p
lic

a
tio

n

4/12/2010Paradyn Week 2010



4/12/2010Paradyn Week 2010 27

• Creating a first Performance Tools Pipeline prototype
• Start with Open|SpeedShop components as one set of 

examples for such an infrastructure.

• Decompose core components into general building 
blocks.

• Arrange building blocks into a logical performance 
analysis pipeline.

• Allows users and tool builders to select individual 
components for each pipeline stage.

• Supports a flexible mapping onto the target 
architecture which provides efficient execution and 
visualization (incl. remote operation) environments.

Performance Tools Pipeline



• Project Results/Deliverables:
• Set of reusable components for creating performance 

tools

• Modified version of gprof using reusable components

• Components for online data aggregation, reduction, 

filtering, and transfer at high scale

• Tool or Open|SpeedShop experiment based on Active 

Harmony

• A new, more modular Open|SpeedShop performance tool

• Support for BlueGene and Cray-XT platforms

• Special purpose tool, based on need at ORNL

Project Results/Deliverables
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010 28Paradyn Week 2010



Dyninst/MRNet Features/Requirements/Desires 
• Plan to use symtabAPI

• Plan to be using the MRNet lightweight library

• Plan to use the detach on the fly feature

• Plan to use the binary rewriter feature

• Would like a floating point register fix up feature

• Plan to use the “1st party” stackwalker API

• Plan to create an “new” OSS feature based on Active 

Harmony

• Plan to use MRNet transport mechanism

Project Results/Outcomes
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010 29Paradyn Week 2010



• Current Status

• Open|SpeedShop team design meetings

• Holding extended CBTF team meetings to discuss 

ideas for component interfaces

• Created a CBTF wiki

• Started prototyping the component interface design

• Doing a number of improvements and 

decompositions in Open|SpeedShop in preparation 

to move to CBTF

• Plan to focus on transport components first

Current Status
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010Paradyn Week 2010 30



Questions?

jeg@krellinst.org

dpm@krellinst.org

Questions?
Building a Community Infrastructure 

for Scalable On-Line Performance 

Analysis Tools

4/12/2010Paradyn Week 2010 31

mailto:jeg@krellinst.org
mailto:dpm@krellinst.org


Open|SpeedShop Appendix

www.openspeedshop.org

Open|SpeedShop 

Performance Tool Status Update
Open|SpeedShop Appendix

4/12/2010 32Paradyn Week 2010



 osspcsamp “<executable> <arguments>”

 One line command to gather PC Sampling results

 Note: “” around executable line

 Run command without extra arguments for help or view man page

 Separate command for each experiment

 osspcsamp, ossusertime, osshwc, osshwctime

 ossio, ossiot, ossmpi, ossmpit, ossfpe

 Example Sequential run:  (example run in following slides)

 osspcsamp “./smg2000 –n 80 80 80” 

 Example multi-process run:

 ossmpi “mpirun -np 64 sweep3d.mpi”

Open|SpeedShop 

Performance Tool Status Update

Running in Offline mode

pcsamp example

4/12/2010 33Paradyn Week 2010



osspcsamp “./smg2000 –n 80 80 80”

Open|SpeedShop 

Performance Tool Status Update

Example Offline Run

With Output

Application output

followed by OSS output

4/12/2010 34Paradyn Week 2010



osspcsamp “./smg2000 –n 80 80 80”

Open|SpeedShop 

Performance Tool Status Update

Example Offline Run

With Output (2)

Performance Data

Default view: by Function

4/12/2010 35Paradyn Week 2010



Outputs from: osspcsamp “executable”

 Normal program output while executable is running

 The sorted list of performance information

 A list of the functions taking the most time

 The corresponding sample derived time for each function

 A performance information database file (.openss file)

 The database file contains all the information needed to view the data at 

anytime in the future without the executable(s).

Symbol table information from executable(s) and system libraries

Performance data openss gathered

Time stamps for when dynamic shared libraries were loaded and 

unloaded

Open|SpeedShop 

Performance Tool Status Update
Offline Experiment Outputs

4/12/2010 36Paradyn Week 2010



Toolbar to switch Views

Graphical Representation

Performance Data

Default view: by Function

Open|SpeedShop 

Performance Tool Status Update Default GUI View

4/12/2010 37Paradyn Week 2010



Double click to open

source window

Use window controls

to split/arrange windows

Selected performance 

data point

Associate Source and 

Performance Data

Open|SpeedShop 

Performance Tool Status Update

4/12/2010 38Paradyn Week 2010


