ONDOR
igh throughput computing .

Running Map-Reduce
Under Condor

Condor Project
Computer Sciences Department
University of Wisconsin-Madison

AAAAAA

Cast of thousands

> Mihai Pop
> Michael Schatz

> Dan Sommer

* University of Maryland Center for
Computational Biology

> Faisal Khan, Ken Hahn UW
> David Schwartz, LMCG

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

In 2003..

\é ONDOR
high throughput computing , THE UNIVERSITY

www.cs.wisc.edu/Condor WISCONSIN

MADISON

high throughput co

-:,' http:/static.googleuserco...

L C M 9% htp:/istatic.googleusercontent.com/external_content/untrusted_dicpiabs.google.com, B | A~ &~

[Free Hotmail

[Suggested Sites [) Web Slice Gallery

(7] Other bookmarks

B8 & S 285 0]

The Google File System

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung
Google-

ABSTRACT

We have designed and implemented the Google File Sys-
tem, a scalable distributed file system for large distributed
data-intensive applications. It provides fault tolerance while
running on inexpensive commodity hardware, and it delivers
high aggregate performance to a large number of clients.

While sharing many of the same goals as previous dis-
tributed file systems, our design has been driven by obser-
vations of our application workloads and technological envi-
ronment, both current and anticipated, that reflect a marked
departure from some earlier file system assumptions. This
has led us to reexamine traditional choices and explore rad-
ically different design points.

The file system has successfully met our storage needs.
It is widely deployed within Google as the storage platform
for the generation and processing of data used by our ser-
vice as well as research and development efforts that require
large data sets. The largest cluster to date provides hun-
dreds of terabytes of storage across thousands of disks on
over a thousand machines, and it is concurrently accessed
by hundreds of clients.

In this paper, we present file system interface extensions
designed to support distributed applications, discuss many
aspects of our design, and report measurements from both
micro-benchmarks and real world use.

Categories and Subject Descriptors
D [4]: 3—Distributed file systems

General Terms

Design, reliability, performance, measurement

Keywords
Fault tolerance, scalability, data storage, clustered storage

*The authors can be reached at the following addresses:
{sanjay, hgobioff, shuntak} @google. com.

1. INTRODUCTION

We have designed and implemented the Google File Sys-
tem (GFS) to meet the rapidly growing demands of Google’s
data processing needs. GFS shares many of the same goals
as previous distributed file systems such as performance,
scalability, reliability, and availability. However, its design
has been driven by key observations of our application work-
loads and technological environment, both current and an-
ticipated, that reflect a marked departure from some earlier
file system design assumptions. We have reexamined tradi-
tional choices and explored radically different points in the
design space.

First, component failures are the norm rather than the
exception. The file system consists of hundreds or even
thousands of storage machines built from inexpensive com-
modity parts and is accessed by a comparable number of
client machines. The quantity and quality of the compo-
nents virtually guarantee that some are not functional at
any given time and some will not recover from their cur-
rent failures. We have seen problems caused by application
bugs, operating system bugs, human errors, and the failures
of disks, memory, connectors, networking, and power sup-
plies. Therefore, constant monitoring, error detection, fault
tolerance, and automatic recovery must be integral to the
system.

Second, files are huge by traditional standards. Multi-GB
files are common. Each file typically contains many applica-
tion objects such as web documents. When we are regularly
working with fast growing data sets of many TBs comprising
billions of objects, it is unwieldy to manage billions of ap-
proximately KB-szzed files even when the file system could
support it. As a result, design assumptions and parameters
such as I/O operation and block szzes have to be revisited.

Third, most files are mutated by appending new data
rather than overwriting existing data. Random writes within
a file are practically non-existent. Once written, the files
are only read, and often only sequentially. A variety of
data share these characteristics. Some may constitute large
repositories that data analysis programs scan through. Some

TIN5

1<

==
THE UNIVERSITY

WISCONSIN

MADISON

-:‘ http:/static.googleuserco...

€«

[Free Hotmail

C NN % htp://static.googleusercontent.com/external_content/untrusted_dicpfabs.google.com, B | (B~ &~

[) Suggested Sites [7] Web Slice Gallery

(7] other bookmarks

BB IS ¢l eoma [@~ |

MapReduce: Simplified Data Processing on Large Clusters

Jeffrey Dean and Sanjay Ghemawat
rff@googl.com, sanjay @ google.com

Google, Inc.

Abstract

MapReduce is a programming model and an associ-
ated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many
real world tasks are expressible in this model, as shown
in the paper.

Programs written in this functional style are automati-
cally parallelized and executed on a large cluster of com-
modity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to eas-
ily utilize the resources of a large distributed system.

Our implkementation of MapReduce runs on a large
cluster of commodity machines and is highly scalable:

given day, etc. Most such computations are conceptu-
ally straightforward. However, the input data is usually
large and the computations have to be distributed across
hundreds or thousands of machines in order to finish in
a reasonable amount of time. The issues of how to par-
allelize the computation, distribute the data, and handle
failures conspire to obscure the original simple compu-
tation with large amounts of complex code to deal with
these issues.

As a reaction to this complexity, we designed a new
abstraction that allows us to express the simple computa-
tions we were trying to perform but hides the messy de-
tails of parallelization, fault-tolerance, data distribution
and load balancing in a library. Our abstraction is in-

spired by the map and reduce primitives present in Lisp Lo
and many other functional languages. We realized that ISIN
most of our computations involved applying a map op- N

eration to each logical “record” in our input in order to
compute a set of intermediate key/value pairs, and then
applying a reduce operation to all the values that shared
the same key, in order to combine the derived data ap-

ONDOR
igh throughput computing .

Shortly thereafter...

www.cs.wisc.edu/Condor

lllllllllllll

MMMMMMM

Two main Hadoop parts

ONDOR
igh throughput computing .

www.cs.wisc.edu/Condor

lllllllllllll

MMMMMMM

For more detail

CondorWeek 2009 talk
Dhruba Borthakur

http://www.cs.wisc.edu/condor/
CondorWeek2009/
condor_presentations/borthakur-
hadoop_univ_research.ppt

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

MapRestvobtfomabdaloud

The Definitive Guide

O’REILLY" YAHOO’ PRESS Tom White

Copyrighted Material
-] S

ONDOR

high throughput computing ,

THE UNIVERSITY

www.cs.wisc.edu/Condor WISCONSIN

MADISON

HDFS overview

> Making POSIX distributed file
system go fast is easy...

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

HDFS overview

> ..If you get rid of the POSIX part

> Remove
* Random access
* Support for small files
* authentication
* In-kernel support

—_—]|
i ONDOR @
high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

HDFS Overview

> Add in
* Data replication
* (key for distributed systems)
* Command line utilities

i ONDOR
high throughput computing .

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

HDFS Architecture

HDFS Architecture
Metadata (Name, replicas, ...):

Metada'tg,gpg'{ Namenode /homeffoo/data, 3, ...

Block ops
Read Datanodes Datanodes
= & = Replication g B8 L]
[] Blocks
o~ Y
N %
Rack 1 Rack 2

ONDOR M
high throughput computing THE UNIVERSITY
@

www.cs.wisc.edu/Condor WISCONSIN

1so

HDFS Condor Integration

> HDFS Daemons run under master
* Management/control

> Added HAD support for namenode

> Added host based security

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Condor HDFS: II

File transfer support
transfer_input_files = hfds://...

Spool in hdfs

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Map Reduce

S .
(T)
= 5
2 g
- -
= O

Split Sort Merge

[k1,vl] bykl [k1, [v1, v2, v3...]]

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Shell hackers map reduce

> grep tag input | sort | unig -c | grep

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

MapReduce lingo for the
native Condor speaker

> Task tracker = startd/starter

> Job tracker = condor_schedd

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Map Reduce under Condor

> Zeroth law of software engineering

> Job tracker/task tracker must be
managed!
* Otherwise very bad things happen

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Hadoop on Demand w/Condor
=

Go away or 1
will replace you
with a very small

shell script.

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Map Reduce as overlay

> Parallel Universe job
> Starts job tracker on rank O
> Task trackers everywhere else
> Open Question:
°* Run more small jobs, or fewer bigger
> One job tracker per user (i.e. per job)

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

On to real science...

> David Schwartz, matchmaker

Mihai P@p

www.cs.wisc.edu/Condor WlSCN"ONSlN

MMMMMMM

Contrail - MR genome
assembly

http://sourceforge.net/apps/
mediawiki/contrail-bio/index.php

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

Genome assembly

SourceForge.net: contrail-bio =~

< C M | &% htp:fisourceforge.net/apps/mediawikif/contrail-bio/index.phprtide=Contrail#Graph_Con » | O~ M~

[Free Hotmail [) Suggested Sites [] Web Slice Gallery [Other bookmarks

sourcem welcome, Guest! LoglIn | Create Account "I'iB 2

Yisit project contrail-bio

page } discussion] [view source [[history
Contrail
Contrail: Assembly of Large Genomes using Cloud Computing) [|
Michael Schatz &2, Dan Sommer, and Mihai Pop & Contents [hide]
Center for Bioinformatics and Computational Biology &, University of 1 Announcements
Maryland & 2 Algorithim Overview

navigation

= Main Page

2.1 Graph Construction
2.2 Graph Simplifications

= Community portal The first step towards analyzing a previously unsequenced organism is to 3 Related Links

= Current events assemble the reads by merging similar reads into progressively longer 4 Funding

= Recent changes sequences. New assemblers such as “elvet & and Euler & attempt to solve

= Random page the assembly problem by constructing, simplifying, and traversing the de

= Help Bruijn graph of the read sequences. Nodes in the graph represent substrings of the reads, and directed
search edges connect consecutive substrings. Genome assembly is then modeled as finding an Eulerian tour

through the graph, although repeats may lead to multiple possible tours. As such, assemblers primarily
l | focus on correcting errors, reconstructing unambiguous regions, and resolving short repeats. These

[Go] [search | assemblers have successfully assembled small genomes from short reads, but have had limited success
scaling to larger mammalian-sized genomes, in part, because they require constructing and manipulating

toolbox .
. graphs far larger than can fit into memory.
= What links here
= Related changes
= Special pages Addressing this limitation, we have developed a new assembly program Contrail, that uses Hadoop & for de
= Printable version novo assembly of large genomes from short sequencing reads. Similar to other leading short read
= Permanent link assembler, Contrail relies on the graph-theoretic framework of de Bruijn graphs. However, unlike these

programs, which require large RAM resources, Contrail relies on Hadoop to iteratively transform an on-disk
representation of the assembly graph, allowing an in depth analysis even for large genomes. Preliminary
results show Contrail's contigs are of similar size and quality to those generated by “elvet when applied to
small (bacterial) genomes, but provides vastly superior scaling capabilities when applied to large genomes.
YWe are also developing extensions to Contrail to efficiently compute a traditional overlap-graph based
assembly of large genomes within Hadoop, strategy that will be especially valuable as read lengths increase
beyond 100bp.

2|

\A
v
[€

DNA

3 Billion base pairs

Sequencing machines only
read small reads at a time

www.cs.wisc.edu/Condor

Already done this?

Francia Collion

fhe nside stolyDigiow,
iesepitter nyEFTappe)
gur YiLh 1) Jzut

Lirud sz wzdlvius Jursyss

THE UNIVERSITY

www.cs.wisc.edu/Condor WISCONSIN

MADISON

High throughput sequencers

AAAAAA

Contrail

Scalable Genome Assembly with MapReduce

> Genome: African male NA18507 (Bentley et al., 2008)
> Input: 3.5B 36bp reads, 210bp insert (SRA000271)

> Preprocessor: Quality-Aware Error Correction

Initial Compressed Error Correction Resolve Repeats Cloud Surfing

X 3 o}o}v;.» '>°>'k @ > o — o 2 ;
" c () N - = (

Yy e ee’ “ P /—\'

Max 27 303 bp 14,007 20,594 Progress
N50 27 <100 bp 650 bp 923 bp

]
ONDOR M
high throughput computing S THE UNIVERSITY
L]

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Running it under Condor

> Used CHTC B-240 cluster

> ~100 machines

* 8 way nehalem cpu
* 12 Gb total

* 1 disk partition dedicated to HDFS
* HDFS running under condor master

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

Running it on Condor

> Used the MapReduce PU overlay
> Started with Fruit Flies

> ...

> And it crashed

> Zeroth law of software engineering
* Version mismatch

> Debugging...

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Debugging
> After a couple of debugging rounds
> Fruit Fly sequenced!

°* On to humans!

i ONDOR
high throughput computing .

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

Cardinality

> How many slots per task tracker?
°* Task tracker, like schedd multi-slots

> One machine
° 8 cores
°1disk
° 1 memory system

> How many mappers per slot

i ONDOR
high throughput computing .

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

More MR under Condor

> More debugging, NPEs

> Updated MR again

> Some performance regressions
> One power outage

> 12 weeks later...

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Success!

THE UNIVERSITY

www.cs.wisc.edu/Condor WISCONSIN

MADISON

T %

WISCONSIN

MADISON

Conclusions

> Job trackers must be managed!
* Glide-in is more than Condor on batch

> Hadoop - more than just MapReduce

> HDFS - good partner for Condor
> All this stuff is moving fast

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

