Extending Condor

Condor Week 2010

Todd Tannenbaum

Condor Project
Computer Sciences Department
University of Wisconsin-Madison

IIIIIIIIIIIII

AAAAAA

Some classifications

Application Program Interfaces
(APIs)

> Job Contro
> Operational Monitoring

Y Extensions). ¢

www.cs.wisc.edu/Condor 2 WISCONSIN

MMMMMMM

Job Control APIs

The biggies:
> Command Line Tools
> Web Service Interface (SOAP)

http://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=SoapWisdom

> DRMAA
> Condor DBQ

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 3 WISCONSIN

MMMMMMM

Operational Monitoring APIs

> Via Web Services (SOAP)

> Via Relational Database: Quill

* Job, Machine, and Matchmaking data echoed
intfo PostgreSQL RDBMS

> Via a file: the Event Log

* Structured journal of job events

* Sample code in C++ to read/parse these events
> Via Enterprise messaging: Condor AMQP

* EventlLog events echoed into Qpid

* Plug: Vidhya Murali's talk tomorrow afternoon

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 4 WISCONSIN

MMMMMMM

Extending Condor

> APIs: How to
interface w/

C d © Original Artist A~V
Reproduction rights obtainable’from
O n O r' www. CartoonStock.com NOT —TO\J IGHT.
T HAVE A

HEADACHE

v 0O —

> Extensions:
Changing Condor's || @ 3&
(N

behavior
° I\
Hooks vy
__*Plugins o

high throughput computing ,
IIIIIIIIIIIIIIIII

www.cs.wisc.edu/Condor > WISCONSIN

MMMMMMM

Job Wrapper Hook

> Allows an administrator to specify a
“wrapper” script to handle the execution of
all user jobs

> Set via condor_config
"USER_JOB_WRAPPER"

> Wrapper runs as the user, command-line
args are passed, machine & job ad is
available.

> Errors can be propagated to the user.
> Example: condor_limits_wrapper.sh

high throughput computing ,
IIIIIIIIIIIIIIIIIII

www.cs.wisc.edu/Condor 6 WISCONSIN

MMMMMMM

Job Fetch & Prepare Hooks

> Job Fetch hooks

* Call outs from the condor_startd

* Extend claiming

* Normally jobs are pushed from schedd to
startd - now jobs can be "pulled” from
anywhere

> Job Running Hooks

* Call outs from the condor_starter

* Transform the job classad

° Perform any other pre/post logic

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 7 WISCONSIN

MMMMMMM

What hooks are available?

> Fetch Hooks (condor_startd):
° FETCH_JOB
°* REPLY_FETCH
° EVICT _CLAIM

> Running Hooks (condor_starter):
° PREPARE_JOB

* UPDATE_JOB_INFO
* JOB_EXIT

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 8 WISCONSIN

MMMMMMM

HOOK_FETCH_JOB

> Invoked by the startd whenever it
wants to try to fetch new work

* FetchWorkDelay expression

> Hook gets a current copy of the slot
ClassAd

> Hook prints the job ClassAd to
STDOUT

> If STDOUT is empty, there's no work,

P23

www.cs.wisc.edu/Condor ? WISCONSIN

MMMMMMM

HOOK_REPLY_FETCH

> Invoked by the startd once it decides
what to do with the job ClassAd
returned by HOOK_FETCH_WORK

> Gives your external system a chance
to know what happened

> argv[1]: "accept” or "reject”

> Gets a copy of slot and job ClassAds
> Condor ignores all output

> Op’rlonal hook

www.cs.wisc.edu/Condor 10 WISCONSIN

MMMMMMM

HOOK_EVICT_CLAIM

> Invoked if the startd has to evict a
claim that's running fetched work

> Informational only: you can't stop or
delay this train once it's left the
station

> STDIN: Both slot and job ClassAds
> STDOUT: > /dev/null

www.cs.wisc.edu/Condor

HOOK_PREPARE_JOB

> Invoked by the condor_starter when
it first starts up (only if defined)

> Opportunity to prepare the job
execution environment
* Transfer input files, executables, etc.

> INPUT: both slot and job ClassAds

> OUTPUT: ighored, but starter won't
continue until this hook exits

> Not specific to fetched work

P23

www.cs.wisc.edu/Condor 12 WISCONSIN

MMMMMMM

HOOK_UPDATE_JOB_INFO

> Periodically invoked by the starter to
let you know what's happening with the
job

> INPUT: both ClassAds

* Job ClassAd is updated with additional
attributes computed by the starter:
* ImageSize, JobState, RemoteUserCpu, etc.

> OUTPUT: ignored

P23

www.cs.wisc.edu/Condor 13 WISCONSIN

MMMMMMM

HOOK_JOB_EXIT

> Invoked by the starter whenever the
job exits for any reason

> Argv[1] indicates what happened:
* "exit": Died a natural death

* “evict": Booted off prematurely by the
startd (PREEMPT == TRUE, condor_off,
etc)

* "remove”: Removed by condor_rm
* "hold": Held by condor_hold

www.cs.wisc.edu/Condor

Given

* Job Wrapper hook
* Job Fetch hooks

* Job Running hooks

Which one is
redundent?

Why?

iﬂ NDOR
high throughput computing .

www.cs.wisc.edu/Condor

Sidebar: "Toppings”

* Tf work arrived via fetch
hook "foo", then prepare
hooks "foo" will be used.

* What if an individual job
could specify a job prepare
hook to use???

* Prepare hook to use can be
alternatively specified in
job classad via attribute
"HookKeyword"

* How cool is that???

www.cs.wisc.edu/Condor 16 WlSC%NSIN

MMMMMMM

Toppings: Simple Example
> In condor_config:

ANSYS_HOOK_PREPARE_JOB= \
$(LIBEXEC)/ansys_prepare_hook.sh
> Contents of ansys_prepare_hook.sh:
#!/bin/sh
#Read and discard the job classad
cat >/dev/null
echo'Cmd="/usr/local/bin/ansys""

TH

lllllllllll

www.cs.wisc.edu/Condor 17 WISCONSIN

MMMMMMM

Topping Example, cont.

> In job submit file:
universe=vanilla
executable=whatever
arguments=...
+HookKeyword="ANSYS"
queue

high throughput computing .

www.cs.wisc.edu/Condor

Job Router Hooks

JOB_ROUTER_ENTRIES_CMD

- read the routing table from an external program
- optional periodic refresh

<hookname> HOOK_TRANSLATE
- transform original job to "routed" job

<hookname>_HOOK_UPDATE_JOB_INFO
- periodically update routed job ClassAd

<hookname> HOOK_JOB_FINALIZE

- handle job completion and update original job
ClassAd

<hookname>_HOOK_JOB_CLEANUP
- handle cleaning up when done managing job

www.cs.wisc.edu/Condor

Configuration Hook

> Instead of reading from a file, run a
program to generate Condor config
settings

> Append "|" to CONDOR_CONFIG or
LOCAL_CONFIG_FILE. Example:

LOCAL CONFIG FILE = \

/opt/condor/sbin/make config

www.cs.wisc.edu/Condor 20 WISCONSIN

MMMMMMM

File Transfer Hooks

> Allows the administrator to configure
hooks for handling URLs during
Condor's file transfer

> Enables transfer from third party
directly to execute machine, which can
offload traffic from the submit point

> Can be used in a number of clever ways

www.cs.wisc.edu/Condor

File Transfer Hooks

> APT is extremely simple

> Must support being invoked with the
"-classad” option to advertise its
abilities:
#!/bin/env perl

if (SARGV[0] eqgq "-classad") {
print "PluginType = \"FileTransfer\"\n";
print "SupportedMethods = \"http, ftp, file\"\n";
exit 0Oy

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

File Transfer Hooks

> When invoked normally, a plugin simply
transfers the URL (first argument)
into filename (second argument)

quoting could be an issue but this runs in user space

scmd = "curl " . SARGV[0] . " -o " . SARGVI[1l];
system ($cmd) ;
Sretval = $?;

exit Sretval;

high throughput computing ,
IIIIIIIIIIIIIIIIIII

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

File Transfer Hooks
> In the condor_config file, the
administrator lists the transfer hooks
that can be used

> Condor invokes each one to find out its
abilities

> If something that looks like a URL is
added to the list of input files, the
plugin is invoked on the execute

~machine

P23

www.cs.wisc.edu/Condor

File Transfer Hooks

> condor_config:
n FILETRANSFER_PLUGINS = curl_plugin,
hdfs_plugin, gdotorg_plugin, rand_plugin
> Submit file:

n transfer_input_files = normal_file,
http://cs.wisc.edu/~zkm/data_file,
rand://1024/random_kilobyte

IIIIIIIIIIIII

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

File Transfer Hooks

> As you can see, the format of the URL
is relatively arbitrary and is
inferpreted by the hook

> This allows for tricks like rand://,
blastdb://, data://, etc.

> Currently a bug prevents this from
working for VMWare images but soon
_ we'll support vim:// as well. -

www.cs.wisc.edu/Condor WISCONSIN

MMMMMMM

Plugins

high throughput computing .

www.cs.wisc.edu/Condor

Plugins
> Shared Library Plugins

* (Gets mapped right into the process space of
the Condor Services! May not block! Must be
thread safel

* (General and ClassAd Functions

> Condor ClassAd Function Plugin

°* Add custom built-in functions to the ClassAd
Language.

* Via condor_config "CLASSAD_LIB PATH"
* Cleverly used by SAMGrid

www.cs.wisc.edu/Condor 28 WISCONSIN

MMMMMMM

General Plugins

> In condor_config, use "PLUGINS" or
"PLUGIN_DIR".

> Very good idea to do:
* SUBSYSTEM.PLUGIN or
* SUBSYSTEM.PLUGIN_DIR

> Implement C++ child class, and Condor will
call methods at the appropriate times.

> Some general methods ﬂini’rialize,
shutdown), and then callbacks based on

plugin type
> What's available? Plugin Discovery..

www.cs.wisc.edu/Condor

cd src/

Plugin Discovery

dir /s Example*Plugin.cpp
You will find:

Examp
Examp
Examp
Examp
Examp
Examp

eCollectorPlugin.cpp
eMasterPlugin.cpp
eNegotiatorPlugin.cpp
eClassAdLogPlugin.cpp
eScheddPlugin.cpp
eStartdPlugin.cpp

And a ClassAdLogPluginManager.cpp

high throughput computing .

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

Collector Plugin

struct ExampleCollectorPlugin : public CollectorPlugin
{

void initialize();

void shutdown();

void update(int command, const ClassAd &ad):

void invalidate(int command, const ClassAd &ad);

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 31 WISCONSIN

MMMMMMM

ClassAdLog Plugin Methods

virtua
virtua
virtua

void newClassAd(const char *key) = O;
void destroyClassAd(const char *key) = O;
void setAttribute(const char *key,

const char *name,

const char *value) = O;

virtual void deleteAttribute(const char *key,

high throughput computing .

const char *name) = O;

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 32 WISCONSIN

MMMMMMM

Other Extending Ideas...

www.cs.wisc.edu/Condor

AAAAAA

Custom ClassAd Attributes

> Job ClassAd

° +Name = Value in submit file

* SUBMIT_EXPRS in condor_config
> Machine ClassAd

°* STARTD_EXPRS in condor_config for
static attributes

°* STARTD_CRON_* settings in
condor_config for dynamic attributes

www.cs.wisc.edu/Condor 34 WISCONSIN

MMMMMMM

Thinking out of the box...

> MAIL in condor_config

> WINDOWS SOFTKILL in
condor_config

> Green Computing Settings

* HIBERNATION_PLUGIN (called by the
startd)

* ROOSTER_WAKEUP_CMD

www.cs.wisc.edu/Condor 33 WISCONSIN

MMMMMMM

All else fails? Grab Sourcel

Condor is
open
source ya
know...

www.cs.wisc.edu/Condor 36 WISCONSIN

MMMMMMM

jﬂ NDOR
high throughput computing .

Extra Slides

www.cs.wisc.edu/Condor

AAAAAA

Web Service Interface

> Simple Object Access Protocol
* Mechanism for doing RPC using XML
(typically over HTTP or HTTPS)

* A World Wide Web Consortium (W3C)
standard

> SOAP Toolkit: Transform a WSDL to
a client library

www.cs.wisc.edu/Condor 38 WISCONSIN

MMMMMMM

Benefits of a Condor SOAP
APTI

> Can be accessed with standard web
service tools

> Condor accessible from platforms
where its command-line tools are not
supported

> Talk to Condor with your favorite
language and SOAP toolkit

www.cs.wisc.edu/Condor 39 WISCONSIN

MMMMMMM

Condor SOAP API
functionality

> Get basic daemon info (version, platform)
> Submit jobs

> Retrieve job output

> Remove/hold/release jobs

> Query machine status

> Advertise resources

> Query job status

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 40 WISCONSIN

MMMMMMM

Getting machine status via

condor_collector

Machine List

high throughput computing .

SOAP
Your program
queryStartdAds()
K
SOAP library >
SOAP
over HTTP

www.cs.wisc.edu/Condor

TH

IIIIIIIIIII

MMMMMMM

Lets get some details...

jﬂ NDOR
high throughput computing .

www.cs.wisc.edu/Condor

AAAAAA

The API

> Core API, described with WSDL, is
designed to be as flexible as possible

* File transfer is done in chunks
* Transactions are explicit
> Wrapper libraries aim to make
common tasks as simple as possible
° Currently in Java and C#
* Expose an object-oriented interface

www.cs.wisc.edu/Condor

Things we will cover

> Condor setup

> Necessary tools

> Job Submission

> Job Querying

> Job Retrieval

> Authentication with SSL and X.509

www.cs.wisc.edu/Condor

IIIIIIIIIIIII

MMMMMMM

Condor setup

> Start with a working condor_config
> The SOAP interface is off by default
* Turn it on by adding ENABLE_SOAP=TRUE
> Access to the SOAP interface is denied by default

* Set ALLOW_SOAP and DENY_SOAP, they
work like ALLOW_READ/WRITE/..

* Example: ALLOW_SOAP=*/* cs.wisc.edu

www.cs.wisc.edu/Condor

Necessary tools

> You need a SOAP toolkit
* Apache Axis (Java) - http://ws.apache.org/axis/

* Microsoft .Net - hTTp://micr'osof’r.com/ne’r/A" our
* gSOAP (C/C++) - http://gsoap2.sf.net/
* ZSI (Python) - http://pywebsvcs.sf.net/ fexamples are
+ SOAP:Lite (Perl) - http://soaplite.com/ | 1N Java using
> You need Condor's WSDL files Apache Axis

* Find them in lib/webservice/ in your Condor release
> Put the two together to generate a client library

* $ java org.apache.axis.wsdl. WSDL2Java
condorSchedd.wsdl

> Compile that client library
* $ javac condor/*.java

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor 46 WISCONSIN

MMMMMMM

Client wrapper libraries

> The core APT has some complex spots
> A wrapper library is available in Java and C#

* Makes the API a bit easier to use (e.g. simpler file
transfer & job ad submission)

°* Makes the APT more OO, no need to remember and
pass around transaction ids

> We are going to use the Java wrapper library for our
examples

°* You can download it from http://www.cs.wisc.edu/condor/
birdbath/birdbath.jar

|)\ |
‘gﬁ!ygﬁ%ﬁ ; 47
s eyl A

www.cs.wisc.edu/Condor

Submitting a job
> The CLT way...

cp.sub:
universe = vanilla EXp'ICIt bits

executable = /bin/cp
arguments = cp.sub cp.worked

should transfer files = yes

transfer input files = cp.sub

when to transfer output = on exit

queue 1 o]
clusterid = X — ImpIICIt bits

procid = Y
owner = matt
requirements = Z

$ condor submit cp.sub

ONDOR m
high throughput computing ; 8 THE UNIVERSITY

www.cs.wisc.edu/Condor 4 WISCONSIN

MADISON

Submitting a job

* The SOAP way...

1. Begin transaction
2 Create cluster Repeat to submit multiple clusters

‘3.Create job) /

4 .Send files “———_ Repeat to submit multiple

.2.Describe job) jobs in a single cluster
6.Commit transaction

high throughput computing .

www.cs.wisc.edu/Condor 49 W.;"c%‘ﬁé’fN

MMMMMMM

Submission from Java

Schedd schedd = new Schedd (“http://..”);
/Transaction xact =

schedd.createTransaction () ; 1. Begin transaction
>xact.beqin(30);
\ int cluster = xact.createCluster () ;|<— 2. Create cluster

int job = xact.createJob (cluster) ;]‘\ 3 Create iob

File[] files = { new File (“cp.sub”) }; ' J

xact.submit (cluster, job, “owner”,
UniverseType.VANILLA, “/bin/cp”,

“cp.sub cp.worked”, “requirements”,
null, files);

xact.commit () ; 4&5. Send files & describe job

,4 high throughput computin 5“ THE UNIVERS
igh throughp 9 4

www.cs.wisc.edu/Condor WISCONSIN

MADISON

Submission from Java

Schedd’s location
Schedd schedd = new Schedd[“http://m”)y(/”

Transaction xact =

schedd.createTransaction ()i - \gx time between calls (seconds)
xact.begl

int cluster = xact.createCluster();
int job = xact.createdJob(cluster);
File[] files = { new File("cp sub"

Job owner, e.g. “matt’
xact.submit (cluster, job, “owner’]/
UniverseType.VANILLA, “/bin/cp”,

“cp.sub cp.worked”, frequirementsﬂ,
nully.files); D

xXact.commit () ;

N

Requirements, e.g. “OpSys==\"Linux\

NDOR M
high throughput computing ; THE UNIVERSITY
51

www.cs.wisc.edu/Condor WISCONSIN

MADISON

Querying jobs

> The CLT way...

$ condor g

-- Submitter: localhost : <127.0.0.1:1234> : localhost
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
1.0 matt 10/27 14:45 0+02:46:42C 0 1.8 sleep 10000

42 jobs; 1 idle, 1 running, 1 held, 1 unexpanded

high throughput computing .

www.cs.wisc.edu/Condor

Querying jobs

> The SOAP way from Java...

String[] stat

usName = { %, “Idle”, “Running”, “Removed”,

“Completed”, “Held” 1};

int cluster =

int job = 0;

Schedd schedd
ClassAd ad =

int status =

System.out.pr

1; Also, getJobAds given a
constraint, e.g. “Owner==\"matt\

= new Schedd (“http://..”); g//
new ClassAd(schedd{getJobAd(cluster, job))}

Integer.valueOf (ad.get ("JobStatus”)) ;

intln (“"Job is “ + statusName[status]):;

THE UNIVERSITY

www.cs.wisc.edu/Condor >3 WISCONSIN

MADISON

7

Retrieving a job

> The CLI way..

> Well, if you are submitting to a local
Schedd, the Schedd will have all of a job's
output written back for you

> If you are doing remote submission you
need condor transfer data, which
takes a constraint and transfers all files in
spool directories of matching jobs

www.cs.wisc.edu/Condor

Retrieving a job

> The SOAP way in Java...

int cluster = 1; Discover available files
int job = 0;

Schedd schedd = new Schedd (“http://..”):
Transaction xact = schedd.createTransac

xact .begin (30) ; Remote file

FileInfo[] files = xact[listSpool(cluster, job)l
for (FileInfo file : files) {

xact.getFile(cluster, job, &ile.getName()} file.getSize (),
(new File(file.getName())ﬂ;

| N

xact.commit () ;

Local file

ONDOR M
high throughput computing ; 5 THE UNIVERSITY

www.cs.wisc.edu/Condor > WISCONSIN

MADISON

Authentication for SOAP

> Authentication is done via mutual SSL
authentication
* Both the client and server have certificates and identify
themselves
> It is not always necessary, e.qg. in some controlled

environments (a portal) where the submitting
component is trusted

> A necessity in an open environment -- remember
that the submit call takes the job's owner as a
parameter

* Imagine what happens if anyone can submit to a
Schedd running as root...

www.cs.wisc.edu/Condor 56 i

Details on setting

up authenticated
SOAP over HTTPS

DDDDD

high throughput computing .

IIIIIIIIIIIII

www.cs.wisc.edu/Condor >7 WISCONSIN

MMMMMMM

Authentication setup

> Create and sign some certificates
> Use OpenSSL to create a CA
* CA.sh -newca
> Create a server cert and password-less key
* CA.sh -newreq && CA.sh -sign
° mv hewcert.pem server-cert.pem
* openssl rsa -in newreq.pem -out server-key.pem
> Create a client cert and key

* CA.sh -newreq && CA.sh -sign && mv
newcert.pem client-cert.pem && mv newreq.pem
client-key.pem

|)\ |
‘gﬁ!ygﬁ%ﬁ ; 58
s eyl A

www.cs.wisc.edu/Condor

Authentication config
> Config options...
» ENABLE_SOAP_SSL is FALSE by default
*<SUBSYS>_SOAP_SSL_PORT

+ Set this to a different port for each
SUBSYS you want to talk to over ssl, the
default is a random port

+ Example: SCHEDD_SOAP_SSL_PORT=1980

* SOAP_SSL_SERVER_KEYFILE is required and
has no default

» The file containing the server’'s certificate
AND private key, i.e. "keyfile" after

cat server-cert.pem server-key.pem >
keyfile

www.cs.wisc.edu/Condor

Authentication config
> Config options continue...
* SOAP_SSL_CA_FILE is required

* The file containing public CA certificates
used in signing client certificates, e.g.
demoCA/cacert.pem

> All options except SOAP_SSL_PORT have an
optional SUBSYS_* version

* For instance, turn on SSL for everyone except
the Collector with

- ENABLE_SOAP_SSL=TRUE
+ COLLECTOR_ENABLE_SOAP_SSL=FALSE

www.cs.wisc.edu/Condor

One last bit of config

The certificates we generated have a principal name, which
is not standard across many authentication mechanisms

Condor maps authenticated names (here, principal names) to
canonical hames that are authentication method independent

This is done through mapfiles, given by
SEC_CANONICAL_MAPFILE and SEC_USER_MAPFILE

Canonical map: SSL .*emailAddress=(.*)
@cs.wisc.edu.* \1
User map: (.*) \1

"SSL" is the authentication method, " *emailAddress...*" is a
pattern fo match against authenticated names, and "\1" is
the canonical name, in this case the username on the email in
the principal

= |)\
‘gﬁ!ygﬁ%ﬁ ; 61
s eyl A

www.cs.wisc.edu/Condor

HTTPS with Java

> Setup keys...

* keytool -import -keystore truststore -trustcacerts -file
demoCA/cacert.pem
* openssl pkcs12 -export -inkey client-key.pem -in client-
cert.pem -out keystore
> All the previous code stays the same, just set some
properties
* javax.net.ssl.trustStore, javax.net.ssl.keyStore,

javax.net.ssl.keyStoreType,
javax.net.ssl.keyStorePassword

* Example: java -Djavax.net.ssl.trustStore=truststore -
Djavax.net.ssl.keyStore=keystore -
Djavax.net.ssl.keyStore Type=PKCS12 -
Djavax.net.ssl.keyStorePassword=pass Example https://...

www.cs.wisc.edu/Condor

|)\
‘gﬁ!ygﬁ%ﬁ ; 62
s eyl A

