Condor in Dynamic Environments

lan Alderman ialderman@cyclecomputing.com

A Little History...

Condor – A Hunter of Idle Workstations

- 1988 paper introducing Condor.
- Described system using cycle-scavenging: batch jobs run on desktop machines when their daytime users are idle.
- Before: 23 VAXstation II workstations utilized at ~30%.
- After: 200 CPU-days used over 5 months by 1000 jobs.
- Key features:
 - Transparent to interactive users, batch users.
 - Fair sharing among batch users.

Leaders in Condor Grid and Cloud Solutions http://www.cyclecomputing.com

Checkpointing and migration for batch jobs.

A busy week...

CYCLECOMPUTING

Fast forward to today

- Condor widely used, very successful.
 Look around you!
- Key reason: assumption of dynamic environment:

• Design goals from 1988 still valid today.

"Workstations are autonomous computing resources and should be managed by their own users."

• High Throughput via automated policy management.

• There are differences between today's dynamic environments and idle workstations.

Today's Dynamic Environments?

- Virtualized Environments!
- Slots/machines come and go on demand.
- Essentially the same problem as autonomous user-managed workstations.
- Similar but different policy considerations...
 e.g. Workstations: Round robin to distribute load. VMs: Fill entire host to minimize instances.
- Thesis: Even with these differences, the same features make Condor work well in both use cases...

Today: Notes from the field

- My work on CycleCloud Managed Condor *pools* on Amazon EC2.
 - Instance Types/Profiles
 - Auto-start/stop
 - Spot instances
- VMWare Environments tiered use of available resources.
 - Still have peak vs. median usage problem that <u>leads to</u> <u>waste.</u>

Wasted during Spring Break...

Version 3.2.13 licensed to Demo License (Internal Use Only) Terms & Conditions

© 2009 Cycle Computing, LLC. All Rights Reserved

CYCLECOMPUTING

EC2 Background: Amazon Elastic Compute Cloud

- Pay for use utility computing.
- BYOVM: you have root, they have kernel.
- Request instance; charged for each hour or portion.
- Range of machine configurations.
- Appearance of unlimited capacity.
- Proprietary highly-available storage backend: S3.

CYCLECOMPUTING

Back to Spring Break...

Version 3.2.13 licensed to Demo License (Internal Use Only) Terms & Conditions

© 2009 Cycle Computing, LLC. All Rights Reserved

CYCLECOMPUTING

Condor pools on demand

CycleCloud Service: at-cost or supported pools.
Relies on dynamic features of Condor: instances stop and start as needed.

High-CPU XLarge 8x Cor	re (20 Compute Ur	it) & 7 GB RAM - 64bit	\$	CentOS Execute - 64b	it 🗘						
Save Options Small 1x Core (1 Compute Unit) & 1.75 GB RAM - 32bit Large 2x Core (4 Compute Units) & 7.5 GB RAM - 64bit XLarge 4x Core (8 Compute Units) & 15 GB RAM - 64bit											
						High-CPU Medium 2x Core (5 Compute Unit) & 1.7 GB RAM - 32bit					
						High-CPU XLarge 8x Core					
igh-Mem XXLarge 4x Core (13 Compute Unit) & 34 GB RAM - 64bit											
High-Mem Quad XLarge 8x Core (26 Compute Unit) & 68 GB RAM - 64bit											
	Small 1x Core (1 Compu Large 2x Core (4 Compu KLarge 4x Core (8 Comp High-CPU Medium 2x Co High-CPU XLarge 8x Cor High-Mem XXLarge 4x C High-Mem Quad XLarge	Small 1x Core (1 Compute Unit) & 1.75 GB Large 2x Core (4 Compute Units) & 7.5 GB KLarge 4x Core (8 Compute Units) & 15 GB High-CPU Medium 2x Core (5 Compute Unit High-CPU XLarge 8x Core (20 Compute Unit High-Mem XXLarge 4x Core (13 Compute Unit High-Mem Quad XLarge 8x Core (26 Compute Unit)	Large 2x Core (4 Compute Units) & 7.5 GB RAM - 64bit XLarge 4x Core (8 Compute Units) & 15 GB RAM - 64bit High-CPU Medium 2x Core (5 Compute Unit) & 1.7 GB RAM - 32bit High-CPU XLarge 8x Core (20 Compute Unit) & 7 GB RAM - 64bit High-Mem XXLarge 4x Core (13 Compute Unit) & 34 GB RAM - 64bit	Small 1x Core (1 Compute Unit) & 1.75 GB RAM - 32bit Large 2x Core (4 Compute Units) & 7.5 GB RAM - 64bit XLarge 4x Core (8 Compute Units) & 15 GB RAM - 64bit High-CPU Medium 2x Core (5 Compute Unit) & 1.7 GB RAM - 32bit High-CPU XLarge 8x Core (20 Compute Unit) & 7 GB RAM - 64bit High-Mem XXLarge 4x Core (13 Compute Unit) & 34 GB RAM - 64bit High-Mem Quad XLarge 8x Core (26 Compute Unit) & 68 GB RAM - 64bit	Small 1x Core (1 Compute Unit) & 1.75 GB RAM - 32bit Large 2x Core (4 Compute Units) & 7.5 GB RAM - 64bit KLarge 4x Core (8 Compute Units) & 15 GB RAM - 64bit High-CPU Medium 2x Core (5 Compute Unit) & 1.7 GB RAM - 32bit High-CPU XLarge 8x Core (20 Compute Unit) & 7 GB RAM - 64bit High-Mem XXLarge 4x Core (13 Compute Unit) & 34 GB RAM - 64bit High-Mem Quad XLarge 8x Core (26 Compute Unit) & 68 GB RAM - 64bit						

CYCLECOMPUTING

EC2 Instances Menu

AWS Name	Arch C	Memo ores(GB)			rice/ ore	Memory (GB)/Core
m1.small	32	1	1.7	\$0.085	\$0.085	1.7
m1.large	64	2	7.5	\$0.340	\$0.170	3.75
m1.xlarge	64	4	15	\$0.680	\$0.170	3.75
c1.medium	n 32	2	1.7	\$0.170	\$0.085	0.85
c1.xlarge	64	8	7	\$0.680	\$0.085	0.875
m2.xlarge	64	2	17.1	\$0.500	\$0.250	8.55
m2.2xlarge	e 64	4	34.2	\$1.200	\$0.300	8.55
m2.4xlarge	e 64	8	68.4	\$2.400	\$0.300	8.55

EC2 Instances Compared - Area ~ Price

High-CPU Amazon EC2 nodes have best price/performance

CYCLECOMPUTING

Making Condor work in EC2

- Naïve: Boot instances in EC2, add to pool.
- Better: Create a pool in EC2.
- No Condor configuration changes required, but...
 - Disable preemption.
 - Configure authentication, integrity, encryption.
 - Optimize for security, performance, scalability.
- Additional configuration:
 - Patches, information flow, installed applications, shared files, encrypt data at rest and in transit, etc...

CYCLECOMPUTING

Why High Throughput leads to Efficient Computing

CYCLECOMPUTING

Auto-start, auto-stop mechanisms

<u>Auto-start</u>: Jobs present in queue \rightarrow machines start.

Jobs run!

User sets type of machine, limit # of instances to start.

<u>Auto-stop</u>: Before beginning of next hour:

- Check to see if jobs still running if not, shut down.
- Users manually start machines that will auto-stop.
- Mechanisms for auto-starting different machine types based on user requirements.
- Users can supply *hints* about job run time for autostart.

Spot Instances

Same set of instance options.

- Lower cost, weaker service characteristics:
 - Could go away at any time.
 - If it goes away, you don't pay.
- Bid for maximum you're willing to pay, get machines at that price if available (i.e. going rate is <=).
- If going rate goes above your maximum, your instances are terminated.

CYCLECOMPUTING

Spring Break volatility...

Version 3.2.13 licensed to Demo License (Internal Use Only) Terms & Conditions

© 2009 Cycle Computing, LLC. All Rights Reserved

Spot Instance Policy Brainstorm

 Jobs expected to run for more than one hour need dedicated resources to avoid waste (getting billed but not finishing) Job: REQUIREMENTS = isSpotInstance =?= FALSE

Machine: START = Target.EstimatedRuntime =?= UNDEFINED || Target.EstimatedRuntime >=3600 isOwner = False

- Jobs run on the cheapest nodes possible
- Jobs prefer to run on machines up for lower fractions of an hour (to allow auto-stop to work) RANK = 100 * SlotHourCost + FractionOfHourUP

Spot instance prices over time: Linux

CYCLECOMPUTING

Some folks don't want EC2

- What about internal VM environments?
 Most places have them, and they're over provisioned
- VMWare environments:
 - Help with server consolidation (Run 40 VMs on beefy servers rather than 40 servers).
 - Still have peak vs. median usage problem.
 - For example, 500 Core VMWare environment running SAP that is 25-40% utilized on average, but still needs all that hardware for peak.

VMWare tiered applications

Thankfully VMWare has tiers:

- Production (PRD) usurps User Acceptance Testing (UAT) environment, which usurps Dev(DEV) environment.
- Perfect for harvesting (just like Spot Instances).

Create a GRID tier that PRD/UAT/DEV usurp for resources and have the cores join locally.
 Add VMs to pool when there are jobs in queue, and remove GRID when PROD/UAT need them surp for the cores for the cores of th

VMWare Policy Use Cases

Same high level policies work:

- Jobs prefer dedicated nodes.
- Still cycle harvesting, just from a multi-core VM environment rather than just workstations.
- Just like auto-start, we'll add VM requests to VMWare when there are jobs, remove them when they're idle.
- Goal: Turn 40% Utilization to 90-95% utilization using technical computing workloads.

CYCLECOMPUTING

Back to a busy week...

CYCLECOMPUTING

A lot has changed...

Thanks to Moore's Law

CYCLECOMPUTING

But some things have stayed the same:

1988	2010
"We need more compute power"	"We need more compute power"
Dynamic Environments are plentiful	Dynamic Environments are plentiful
	-

