
Corral: A Glide-in Based Service
for Resource Provisioning

Gideon Juve
USC Information Sciences Institute

juve@usc.edu



Outline

• Throughput Applications
• Grid Computing
• Multi-level scheduling and Glideins
• Corral
• Example: SCEC CyberShake
• Future Work



Throughput Applications
• Characterized by

– Many tasks: Thousands to millions
– Short task runtimes: May be less than 60s
– Tasks are commonly serial

• Key performance metric: time-to-solution
• Examples:

– scientific workflows
– parameter sweep
– master-worker
– “pleasantly parallel”



Grid Computing
• Grids

– Benefit: Provide plenty of computing resources
– Challenge: Using those resources effectively

• Grid Overheads
– Queuing Delays
– Software Overheads
– Scheduling Delays
– Scheduling Policies
– => Bad performance for throughput applications!

• Some solutions
– Task clustering (workflows)
– Advance reservations



Multi-level Scheduling
• Way for an application to use grid without the overheads
• Overlay a personal cluster on top of grid resources
• Pilot jobs install and run a user-level resource

manager, which contacts an application-specific
scheduler to be matched with application jobs

• Glidein: How to do MLS using Condor



Benefits of MLS and Glideins
• Running short jobs on the grid

– Condor dispatches jobs faster than, e.g. Globus
• Bypass site scheduling policies

– Use application-specific policies
– e.g. prioritize jobs based on application needs

• Avoid competition for resources
– Glideins reserve resources for multiple jobs
– Minimizes queuing delays

• Better application scalability
– Compared to GT2 GRAM, for example
– Fewer jobmanagers => reduced load on gateway



Corral
• Resource provisioning system

– Uses multi-level scheduling model
– Allocate resources explicitly rather than implicitly
– Pay to allocate resources once and reuse them
– Effectively minimizes grid overheads
– Requires resource specification

• Corral web service
– Automates the installation and configuration of

Condor on grid sites
– Submits glideins to provision resources



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

In addition to the Condor central manager, the user
runs a service container that hosts the Corral web

service.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Create Site

The user creates a new site by sending a request
to Corral. The request specifies details about the
grid site including: job submission information, file

system paths, etc.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Install &
Configure

Condor

C

Corral installs Condor executables on a shared file
system at the grid site. The appropriate executables
are automatically selected and downloaded from a
central repository based on architecture, operating

system and libraries.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Create
Glideins

C

The user provisions resources by submitting
glidein requests to Corral. The request specifies

the number of hosts/CPUs to acquire and the
duration of the reservation.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Submit
Glidein Job

C

Corral translates the user’s request into a glidein
job, which is submitted to the grid site.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C

master

startd
Start

Glidein

The glidein job starts Condor daemons on the
worker nodes of the grid site.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C

master

startd

Contact Central
Manager

The Condor daemons contact the user’s Condor
central manager and become part of the user’s

resource pool.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C

master

startd

Submit
Application

Job

The user submits application jobs to their Condor
pool. The jobs are matched with available glidein

resources.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C

master

startd

Run
Application

Job
job

The application jobs are dispatched to the remote
workers for execution.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C

master

startd

Remove
Glideins

When the user is finished with their application
they cancel their glidein request (or let it expire

automatically).



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C
Cancel

Glidein Job

Un-register

When the request is cancelled Corral kills the
glidein job, which causes the Condor daemons on
the worker nodes to un-register themselves with

the user’s Condor pool and exit.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

C
Remove

Site

The user can submit multiple glidein requests for a
single site. When the user is done with the site

they ask Corral to remove the site.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Uninstall
Condor

Finally, Corral removes Condor from the shared
file system at the grid site. This removes all
executables, configuration files, and logs.



Corral Features
• Auto-configuration

– Detect architecture, OS, glibc => Condor package
– Determine public IP (if any)
– Generates Condor configuration file

• Large requests
– 1 glidein job = N slots

• Multiple interfaces
– Command-line, SOAP, Java API

• Automatic resubmission
– Indefinitely, N times, until date/time

• Notifications
– Asynchronous API for integration with other tools



Networking Challenges
• Firewalls / Private IPs

– Block communication between glideins and pool
– Use: GCB/CCB, VPN, or CM on head node
– Glideins can’t be used on some sites

• Port Usage
– Condor requires many ports
– Issue for LOWPORT/HIGHPORT firewall holes
– TCP TIME_WAIT can consume ports

• WAN issues
– Large glidein pools look like DDoS attacks
– Traffic gets blocked sometimes



SCEC CyberShake
• Probabilistic seismic hazard analysis workflow

– How hard will the ground shake in the future?

• Uses Pegasus and DAGMan for workflow management

Transformation Tasks Runtime (s)

SGT Extraction 7,000 139

Seismogram Synthesis 420,000 48

Peak Ground Motion 420,000 1

847,000

25.45

Total Tasks:

Mean Runtime:



CyberShake Progress
• Using Corral since January

– Provisioning resources from the TeraGrid
– Requests: 185
– Slots: 33,137
– CPU Hours: 240,496

• Application Progress
– Jan 2009-Apr 2009

• Tasks: >11.3M
• Jobs: >352K

– May 2009 (planned)
• Tasks: ~168M
• Jobs: ~5M

• With glideins a site can be completed in ~3 hours
on 800 cores (down from 18+ hours)



Future Work

• Dynamic Provisioning
– Automatically grow/shrink pool according to

application needs
• Support for other features

– GSI security
– CCB for firewall traversal (GCB already)
– Grid matchmaking
– Parallel universe

• Remote Pool?
– Deploy Collector/Negotiator/Schedd as well



Try it out

• Website:
– http://pegasus.isi.edu/corral

• Problems:
– juve@usc.edu

Questions?


