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Throughput Applications
• Characterized by

– Many tasks: Thousands to millions
– Short task runtimes: May be less than 60s
– Tasks are commonly serial

• Key performance metric: time-to-solution
• Examples:

– scientific workflows
– parameter sweep
– master-worker
– “pleasantly parallel”



Grid Computing
• Grids

– Benefit: Provide plenty of computing resources
– Challenge: Using those resources effectively

• Grid Overheads
– Queuing Delays
– Software Overheads
– Scheduling Delays
– Scheduling Policies
– => Bad performance for throughput applications!

• Some solutions
– Task clustering (workflows)
– Advance reservations



Multi-level Scheduling
• Way for an application to use grid without the overheads
• Overlay a personal cluster on top of grid resources
• Pilot jobs install and run a user-level resource

manager, which contacts an application-specific
scheduler to be matched with application jobs

• Glidein: How to do MLS using Condor



Benefits of MLS and Glideins
• Running short jobs on the grid

– Condor dispatches jobs faster than, e.g. Globus
• Bypass site scheduling policies

– Use application-specific policies
– e.g. prioritize jobs based on application needs

• Avoid competition for resources
– Glideins reserve resources for multiple jobs
– Minimizes queuing delays

• Better application scalability
– Compared to GT2 GRAM, for example
– Fewer jobmanagers => reduced load on gateway



Corral
• Resource provisioning system

– Uses multi-level scheduling model
– Allocate resources explicitly rather than implicitly
– Pay to allocate resources once and reuse them
– Effectively minimizes grid overheads
– Requires resource specification

• Corral web service
– Automates the installation and configuration of

Condor on grid sites
– Submits glideins to provision resources



How Corral works
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In addition to the Condor central manager, the user
runs a service container that hosts the Corral web

service.



How Corral works
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Create Site

The user creates a new site by sending a request
to Corral. The request specifies details about the
grid site including: job submission information, file

system paths, etc.



How Corral works

Condor Central
Manager

User

Head Node

Worker Nodes

Globus

LRM

Condor

LOCAL SITE GRID SITE

Corral

Corral
Server

Install &
Configure

Condor

C

Corral installs Condor executables on a shared file
system at the grid site. The appropriate executables
are automatically selected and downloaded from a
central repository based on architecture, operating

system and libraries.



How Corral works
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The user provisions resources by submitting
glidein requests to Corral. The request specifies

the number of hosts/CPUs to acquire and the
duration of the reservation.



How Corral works
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Corral translates the user’s request into a glidein
job, which is submitted to the grid site.



How Corral works
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Glidein

The glidein job starts Condor daemons on the
worker nodes of the grid site.



How Corral works
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Contact Central
Manager

The Condor daemons contact the user’s Condor
central manager and become part of the user’s

resource pool.



How Corral works
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The user submits application jobs to their Condor
pool. The jobs are matched with available glidein

resources.



How Corral works
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The application jobs are dispatched to the remote
workers for execution.



How Corral works
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When the user is finished with their application
they cancel their glidein request (or let it expire

automatically).



How Corral works
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When the request is cancelled Corral kills the
glidein job, which causes the Condor daemons on
the worker nodes to un-register themselves with

the user’s Condor pool and exit.



How Corral works
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The user can submit multiple glidein requests for a
single site. When the user is done with the site

they ask Corral to remove the site.



How Corral works
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Finally, Corral removes Condor from the shared
file system at the grid site. This removes all
executables, configuration files, and logs.



Corral Features
• Auto-configuration

– Detect architecture, OS, glibc => Condor package
– Determine public IP (if any)
– Generates Condor configuration file

• Large requests
– 1 glidein job = N slots

• Multiple interfaces
– Command-line, SOAP, Java API

• Automatic resubmission
– Indefinitely, N times, until date/time

• Notifications
– Asynchronous API for integration with other tools



Networking Challenges
• Firewalls / Private IPs

– Block communication between glideins and pool
– Use: GCB/CCB, VPN, or CM on head node
– Glideins can’t be used on some sites

• Port Usage
– Condor requires many ports
– Issue for LOWPORT/HIGHPORT firewall holes
– TCP TIME_WAIT can consume ports

• WAN issues
– Large glidein pools look like DDoS attacks
– Traffic gets blocked sometimes



SCEC CyberShake
• Probabilistic seismic hazard analysis workflow

– How hard will the ground shake in the future?

• Uses Pegasus and DAGMan for workflow management

Transformation Tasks Runtime (s)

SGT Extraction 7,000 139

Seismogram Synthesis 420,000 48

Peak Ground Motion 420,000 1

847,000

25.45

Total Tasks:

Mean Runtime:



CyberShake Progress
• Using Corral since January

– Provisioning resources from the TeraGrid
– Requests: 185
– Slots: 33,137
– CPU Hours: 240,496

• Application Progress
– Jan 2009-Apr 2009

• Tasks: >11.3M
• Jobs: >352K

– May 2009 (planned)
• Tasks: ~168M
• Jobs: ~5M

• With glideins a site can be completed in ~3 hours
on 800 cores (down from 18+ hours)



Future Work

• Dynamic Provisioning
– Automatically grow/shrink pool according to

application needs
• Support for other features

– GSI security
– CCB for firewall traversal (GCB already)
– Grid matchmaking
– Parallel universe

• Remote Pool?
– Deploy Collector/Negotiator/Schedd as well



Try it out

• Website:
– http://pegasus.isi.edu/corral

• Problems:
– juve@usc.edu

Questions?


