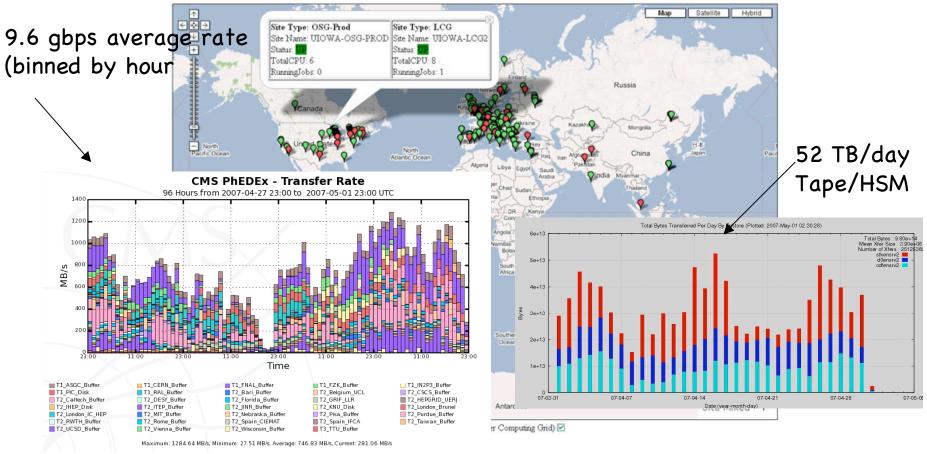


OSG Security

D. Petravick Fermilab May 2, 2007

Largest Scientific Environments

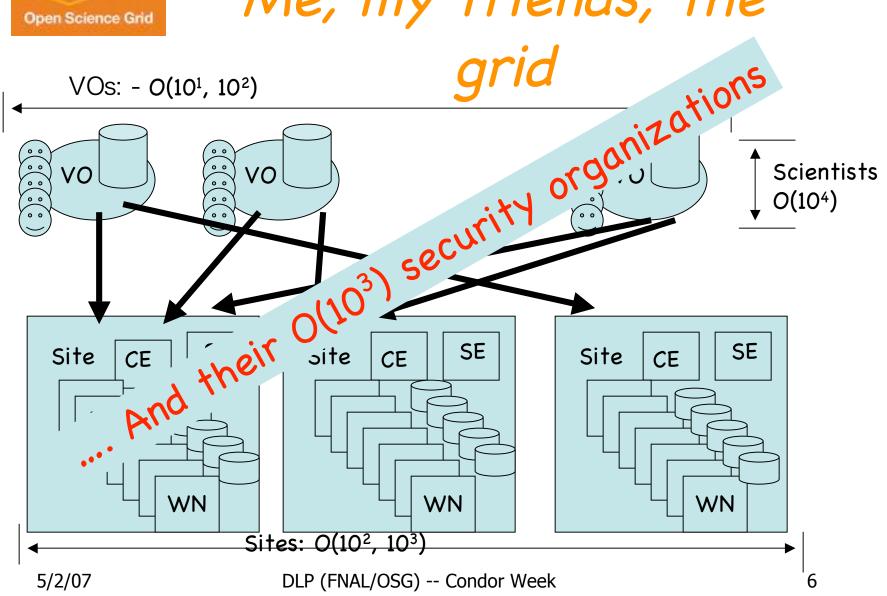
- May very well be in experimental High Energy Physics.
 - Global collaborations > 2000 scientists
 - Nations make contributions to build the accelerator and experimental equipment.
 - Tremendous amounts of data,
 - need to constantly calibrate, select and analyze.
 - Experiment
 - has pledged computing resources.
 - Has non-pledged resources.

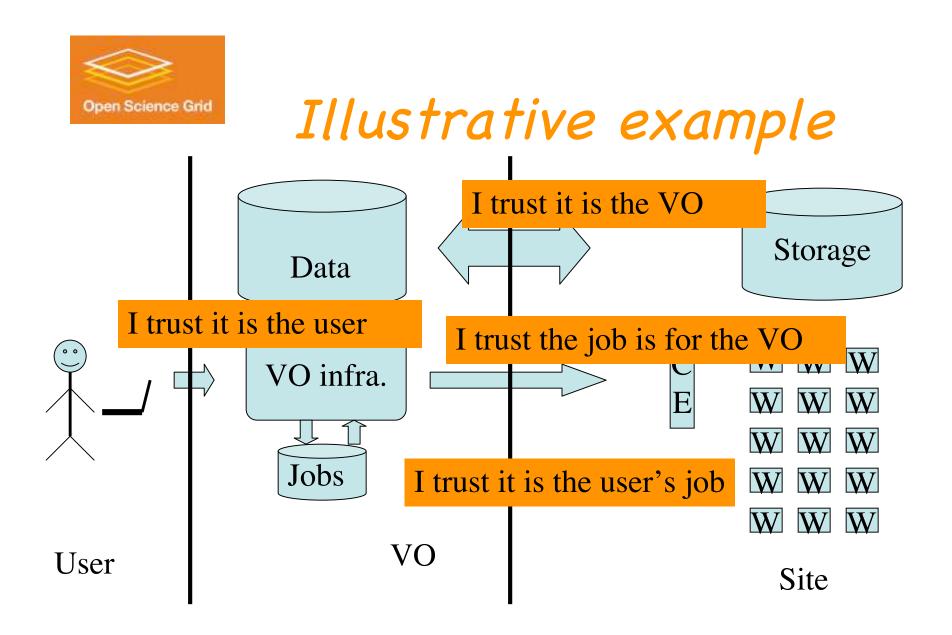


The OSG

- **Proposal:** "We propose to build a cyber-infrastructure that can grow to provide thousands of users effective access to 100,000 CPUs, 10s of PB of storage, located at hundreds of sites and interconnected by multiple 10Gb/s network links."
- Technical Basis:
 - Service-based access to compute and storage services.
 - A software stack used by experiments to manage their users, their jobs, and their jobs.
 - The environment interoperates with other similar grid environments.
 - LCG, teragrid, et al.

Example Capabilities




OSG Capacity Targets

	MSI2000 ►				Petabytes ▶			
Org	2006	2007	2008	2009	2006	2007	2008	2009
ATLAS	3	5	14	24	1.1	2.6	7.6	11.8
CMS	4	8	16	22	1.0	2.5	4.5	4.9
LIGO	4	5	6	6	0.2	TBD	TBD	TBD
STAR	2	3	6	12	0.04	0.06	0.1	0.2
other	10	13	17	22	1.0	1.0	1.4	1.9
Total	23	34	59	86	3.3	6.1	13.6	18.8

Me, my friends, the

Grid Security

- The goal of grid security is establish trust that computing organized along these lines will have appropriate integrity, availability, and confidentiality.
- OSG cannot bear the security responsibilities of sites or VO's.
- Therefore, initially, inter-entity security is conceptually a set of pair-wise agreements.
 - We have more than a few autonomous parties
 - Not a small task.

Operational Grid Security

- Based on NIST model -- <u>Controls</u> based on <u>risk</u>, rooted in <u>policy</u>.
 - Risk == f(vulnerability, threat)
 - Goal: Achieve acceptable risk
 - Recall -- context is open science.
 - Means: Controls
 - Management (what did we decide?)
 - Operational (we count on behaviors)
 - Technical (stuff done in HW/SW)

Some Specifics

- OSG security seeks to <u>compliment, not</u> <u>replace</u> site and VO security organizations.
 - Recall Roadmap: O(104) parties. Now: O(103)
 - Make the security discussion scalable by standardizing the many elements of the discussion.
 - Foster a secure software stack for grid services.
 - Foster communications
 - Know what's going on from the perspective of the whole grid

Scaling:

- Make the discussion standard.
 - Think of the market in mortgages
 - Many standard terms
- Model security policies
 - JSPG: sites, VOs, users.
 - IGTF: Identity providers.
 - TBD:
 - Service providers (likely JSPG),
 - <u>software providers</u>.

Foster secure software stack

- OSG Stack: Primary role is through the OSG software coordinator.
 - Sitess use versioned OSG stack w/OSG controls.
 - VO's -- Less standard, less enumerable
- Absolute dependency on the skills and quality of our system software community.
 - Success depends on sponsors of these groups
 - OSG job is to
 - Demand good qualities
 - Recognize good qualities.
 - Proselytize the scale changes

Foster communications

- Grid operating organization assembles, and maintains list of site security contacts.
- Two levels
 - Incident/urgent matters.
 - Discussion/thinking
- Communication is available for non-grid matters. (e.g sniffed password of a person w/ distributed administration responsibilities).

Current work: Situational Awareness

- Is the configuration of deployed stack at sites as expected?
- Is someone rattling the doorknob systematically at OSG sites?
- Has compromise of a server compromised the grid?
- Are AUP's abided by?

Summary

- Grid security is federated $O(10^4)$ entities.
 - The problem is made more tractable
 - By the service oriented access to resources.
 - By standardizing the terms of discussion.
 - Because interoperation is viewed as essential by all parties
- Currently, the security structure of sites is more standard than the structure of VO's.
- Grid security is complimentary to site and VO security organizations.
- Absolutely dependent on the quality of community written software components.