
University of Maryland

Supporting OpenMP and other Higher
Languages in Dyninst

Nick Rutar
University of Maryland

University of Maryland

Parallel Language Support for Dyninst

 OpenMP and other parallel languages are
becoming more popular

 Advantageous to parse and instrument
 New languages on horizon

– Want API to be extensible for adding languages
 Start with OpenMP

– Unless otherise specified, talk will be OpenMP
 UPC, Titanium, Fortress, X10, Chapel

planned for future

University of Maryland

OpenMP Parallel & Work-Sharing Constructs
 Parallel

– Main construct
 Do/for

– Loop parallelism
 Sections

– Non-iterative work sharing
 Single

– Executed by only one thread in the team
 Combined Parallel & Work-Sharing

– Parallel Do
– Parallel Sections

University of Maryland

OpenMP Synchronization Constructs
 Master

– Only master thread operates on it
 Critical

– Area of code executed by one thread at a time
 Barrier

– All threads must reach point before execution continues
 Atomic

– Specific memory location updated atomically
 Flush

– Sync point that must have consistent view of memory
 Ordered

– Iterations in loop will be executed in same order as serial
– Has to be associated with a for directive

University of Maryland

Parallel/Work Sharing Traits (Power)

 Sets up parallelism with
– Call to _xlsmpParSelf
– Register bookkeeping

• Set up parameters for parallel behavior
– Call to _xlsmp*_TPO

• This call then calls parallel regions discussed below
 Actual parallel regions stored in function

– Format
• <CallingFunction>@OL@<Var++>

– Parallel Functions(Regions) can call out
• Nested Constructs, e.g. Parallel, for

University of Maryland

Associated Setup Functions(Power)
 Parallel

– _xlsmpParRegionSetup_TPO
 Do/for

– _xlsmpWSDoSetup_TPO
 Sections

– _xlsmpWSSectSetup_TPO
 Single

– _xlsmpSingleSetup_TPO
 Parallel Do

– _xlsmpParallelDoSetup_TPO
 Parallel Sections -

– _xlsmpWSSectSetup_TPO

University of Maryland

Synchronization Traits (Power)

 Master
– Makes call to _xlsmpMaster_TPO
– Checks to see if master thread

• If so, explicitly calls a @OL function
 Critical

– Calls _xlsmpFlush
– Calls _xlsmpGetDefaultSLock
– Performs operation (no @OL call)
– Calls _xlsmpRelDefaultSLock
– Calls _xlsmpFlush

University of Maryland

Synchronization Traits (Power)
 Barrier

– Calls _xlsmpBarrier_TPO
 Atomic

– Calls _xlsmpGetAtomicLock
– Performs operation(not an @OL call)
– Calls _xlsmpRelAtomicLock

 Flush
– Calls _xlsmpFlush

 Ordered
– Calls _xlsmpBeginOrdered_TPO
– Explicitly Calls @OL function to do operation
– Calls _xlsmpEndOrdered_TPO

University of Maryland

Instrumentable Regions
 Instrument entire function of @OL call

– Entire region contained neatly within outlined function
– Parallel, Do, Section, Single, Ordered, Master

 Instrument region
– Make inst point immediately after given call
– Store info about end of region
– Critical, Ordered, Master, Atomic

 One instruction “region”
– Flush & Barrier calls can be instrumented
– Insert call to Flush or Barrier in an existing parallel region

 Loop Region
– Region consists of the instructions in parallel loop body

University of Maryland

Bpatch_parRegion

 New class to deal with parallel languages
 Standard region functions

– getStartAddress()
– getEndAddress()
– size()
– getInstructions()

 Generic Parallel Functions
– getClause(const char * key)

 Language Specific Functions
– replaceOMPParameter(const char * key, int value)

University of Maryland

getClause
 Accesses information about parallel region
 Every region has at least Region_Type key

– Enum for designating what region it is
• enum{OMP_NONE, OMP_PARALLEL, OMP_DO_FOR, …}
• Other language regions easily added

 Region Specific Keys
– OMP_DO_FOR

• CHUNK_SIZE
• IF
• NUM_ITERATIONS
• ORDERED
• SCHEDULE

 Documentation, API calls contain valid clauses

University of Maryland

replaceOMPParameter
 OpenMP passes in parameters to setup

functions that dictate behavior
– Work Sharing Constructs

• If
• Nowait
• Loops

– Schedule Type
– Static, dynamic, guided, runtime

– Chunk Size
– We can dynamically modify these values
– Significantly change behavior without recompilation

University of Maryland

/* Instrument first instruction in each OpenMP Section Construct */
BPatch_thread* appThread= bPatch.createProcess()
BPatch_image* appImage = appThread->getImage();
BPatch_Vector< BPatch_parRegion * > *appParRegions =

appImage->getParRegions();
for(int i = 0; i < appParRegions->size(); i++)
 {
 int regionType = (*appParRegions)[i]->getClause("REGION_TYPE");
 if (regionType != OMP_SECTIONS)
 continue;
 BPatch_Vector< BPatch_instruction *> *regionInstructions =
 (*appParRegions)[i]->getInstructions();
 BPatch_instruction *bpInst = (*regionInstructions)[0];
 long unsigned int firstAdd = (long unsigned int)bpInst->getAddress();
 BPatch_point*point=appImage->createInstPointAtAddr ((caddr_t)firstAdd);
 appThread->insertSnippet(, *point, , ,);
 }

Sample Code

University of Maryland

Current Status & Future Work

 Everything in talk implemented on
– Power
– Solaris

 Future Work
– Additional platforms for OpenMP support
– Additional Language support

• UPC is next on list
– Support for shared/private variables

• Variables still handled as BPatch_[Local]Var
• No distinction between shared or private

University of Maryland

Demo

 OpenMP implementation of Life
– Trivial nearest neighbor computation

 Ran on AIX, Power4 with 8 processors
 Implementation has chunk size of 1
 Dynamically change chunk size to 64

– Approximately double speed-up for mutatee

University of Maryland

Questions?

University of Maryland

