
University of Maryland

Supporting OpenMP and other Higher
Languages in Dyninst

Nick Rutar
University of Maryland

University of Maryland

Parallel Language Support for Dyninst

 OpenMP and other parallel languages are
becoming more popular

 Advantageous to parse and instrument
 New languages on horizon

– Want API to be extensible for adding languages
 Start with OpenMP

– Unless otherise specified, talk will be OpenMP
 UPC, Titanium, Fortress, X10, Chapel

planned for future

University of Maryland

OpenMP Parallel & Work-Sharing Constructs
 Parallel

– Main construct
 Do/for

– Loop parallelism
 Sections

– Non-iterative work sharing
 Single

– Executed by only one thread in the team
 Combined Parallel & Work-Sharing

– Parallel Do
– Parallel Sections

University of Maryland

OpenMP Synchronization Constructs
 Master

– Only master thread operates on it
 Critical

– Area of code executed by one thread at a time
 Barrier

– All threads must reach point before execution continues
 Atomic

– Specific memory location updated atomically
 Flush

– Sync point that must have consistent view of memory
 Ordered

– Iterations in loop will be executed in same order as serial
– Has to be associated with a for directive

University of Maryland

Parallel/Work Sharing Traits (Power)

 Sets up parallelism with
– Call to _xlsmpParSelf
– Register bookkeeping

• Set up parameters for parallel behavior
– Call to _xlsmp*_TPO

• This call then calls parallel regions discussed below
 Actual parallel regions stored in function

– Format
• <CallingFunction>@OL@<Var++>

– Parallel Functions(Regions) can call out
• Nested Constructs, e.g. Parallel, for

University of Maryland

Associated Setup Functions(Power)
 Parallel

– _xlsmpParRegionSetup_TPO
 Do/for

– _xlsmpWSDoSetup_TPO
 Sections

– _xlsmpWSSectSetup_TPO
 Single

– _xlsmpSingleSetup_TPO
 Parallel Do

– _xlsmpParallelDoSetup_TPO
 Parallel Sections -

– _xlsmpWSSectSetup_TPO

University of Maryland

Synchronization Traits (Power)

 Master
– Makes call to _xlsmpMaster_TPO
– Checks to see if master thread

• If so, explicitly calls a @OL function
 Critical

– Calls _xlsmpFlush
– Calls _xlsmpGetDefaultSLock
– Performs operation (no @OL call)
– Calls _xlsmpRelDefaultSLock
– Calls _xlsmpFlush

University of Maryland

Synchronization Traits (Power)
 Barrier

– Calls _xlsmpBarrier_TPO
 Atomic

– Calls _xlsmpGetAtomicLock
– Performs operation(not an @OL call)
– Calls _xlsmpRelAtomicLock

 Flush
– Calls _xlsmpFlush

 Ordered
– Calls _xlsmpBeginOrdered_TPO
– Explicitly Calls @OL function to do operation
– Calls _xlsmpEndOrdered_TPO

University of Maryland

Instrumentable Regions
 Instrument entire function of @OL call

– Entire region contained neatly within outlined function
– Parallel, Do, Section, Single, Ordered, Master

 Instrument region
– Make inst point immediately after given call
– Store info about end of region
– Critical, Ordered, Master, Atomic

 One instruction “region”
– Flush & Barrier calls can be instrumented
– Insert call to Flush or Barrier in an existing parallel region

 Loop Region
– Region consists of the instructions in parallel loop body

University of Maryland

Bpatch_parRegion

 New class to deal with parallel languages
 Standard region functions

– getStartAddress()
– getEndAddress()
– size()
– getInstructions()

 Generic Parallel Functions
– getClause(const char * key)

 Language Specific Functions
– replaceOMPParameter(const char * key, int value)

University of Maryland

getClause
 Accesses information about parallel region
 Every region has at least Region_Type key

– Enum for designating what region it is
• enum{OMP_NONE, OMP_PARALLEL, OMP_DO_FOR, …}
• Other language regions easily added

 Region Specific Keys
– OMP_DO_FOR

• CHUNK_SIZE
• IF
• NUM_ITERATIONS
• ORDERED
• SCHEDULE

 Documentation, API calls contain valid clauses

University of Maryland

replaceOMPParameter
 OpenMP passes in parameters to setup

functions that dictate behavior
– Work Sharing Constructs

• If
• Nowait
• Loops

– Schedule Type
– Static, dynamic, guided, runtime

– Chunk Size
– We can dynamically modify these values
– Significantly change behavior without recompilation

University of Maryland

/* Instrument first instruction in each OpenMP Section Construct */
BPatch_thread* appThread= bPatch.createProcess()
BPatch_image* appImage = appThread->getImage();
BPatch_Vector< BPatch_parRegion * > *appParRegions =

appImage->getParRegions();
for(int i = 0; i < appParRegions->size(); i++)
 {
 int regionType = (*appParRegions)[i]->getClause("REGION_TYPE");
 if (regionType != OMP_SECTIONS)
 continue;
 BPatch_Vector< BPatch_instruction *> *regionInstructions =
 (*appParRegions)[i]->getInstructions();
 BPatch_instruction *bpInst = (*regionInstructions)[0];
 long unsigned int firstAdd = (long unsigned int)bpInst->getAddress();
 BPatch_point*point=appImage->createInstPointAtAddr ((caddr_t)firstAdd);
 appThread->insertSnippet(, *point, , ,);
 }

Sample Code

University of Maryland

Current Status & Future Work

 Everything in talk implemented on
– Power
– Solaris

 Future Work
– Additional platforms for OpenMP support
– Additional Language support

• UPC is next on list
– Support for shared/private variables

• Variables still handled as BPatch_[Local]Var
• No distinction between shared or private

University of Maryland

Demo

 OpenMP implementation of Life
– Trivial nearest neighbor computation

 Ran on AIX, Power4 with 8 processors
 Implementation has chunk size of 1
 Dynamically change chunk size to 64

– Approximately double speed-up for mutatee

University of Maryland

Questions?

University of Maryland

