
April 30, 2007 Correct Relocation

Correct Relocation:
Do You Trust a Mutated Binary?

Drew Bernat
bernat@cs.wisc.edu

-2- Correct Relocation

Binary Manipulation

• We want to:
– Insert new code
– Modify or delete code
– These operations move program code

• Binaries are brittle
– Code movement may affect program semantics

• We want to move code without breaking
the program

-3- Correct Relocation

Relocation
• Relocation moves code while maintaining its

original execution semantics
– May radically transform the code

• Does not rely on external information
• Binary tools use relocation extensively

– Execute original + relocated code (Dyninst)
– Always execute relocated code (PIN, Valgrind,

DynamoRIO, VMWare, DELI)

Relocation is critical for binary manipulation

-4- Correct Relocation

0x5000: mov 0x1011, ebx
 ...

0x3000: mov 0x8(ebp), eax
 ...
0x4000: ja 0x30
 ...0x5000: call ebx_thunk

foo:
0x1000: push ebp
0x1001: mov esp, ebp
0x1003: mov 0x8(ebp), eax
0x1006: cmp 0x5, eax
0x1009: ja 0x30
0x100b: call ebx_thunk
0x1011: add ebx, eax
 ...
ebx_thunk:
0x2000: mov (esp), ebx
0x2003: ret

Relocation Examples

0x4000: ja -0x2ff7
 ...

0x5000: push $0x1011
0x5005: jmp ebx_thunk
 ...

0x5000: push $0x1011
0x5005: jmp ebx_thunk’
 ...
ebx_thunk’:
0x6000: mov (esp), ebx
0x6003: call map_return
0x6008: ret

-5- Correct Relocation

Current Approaches
• Strict Relocation

– Maintains the semantics of each individual instruction
– Safe in nearly all cases
– Can impose severe slowdown
– Trades speed for strictness

• Ad-Hoc Relocation
– Emit more efficient code by partially emulating the

original code
– Pattern matching may fail and generate incorrect code
– Trades strictness for speed

-6- Correct Relocation

Benefits and Drawbacks

Ad-Hoc
Relocation

Strict
Relocation

GoodPoor

PoorGood

FastSafe

GoodGood
Partial

Relocation

-7- Correct Relocation

Our Approach
• Develop a formal model of relocation

– Reason about the relationship of the moved
code to:
• Its new location
• Surrounding code

– Based on semantics of code instead of pattern-
matching against syntax

• Strictness of emulation based on demands
of the moved code (and surrounding code)

-8- Correct Relocation

Effects of Code Movement
• Moving certain instructions will change

their semantics
– Relative branches, loads, stores
– We call these PC referencing instructions

• Patching tools overwrite program code
– Other code that references this code will be

affected
• Relocation may affect non-relocated code!

-9- Correct Relocation

Effects of Moving Code

foo:
0x1000: push ebp
0x1001: mov esp, ebp
0x1003: mov 0x8(ebp), eax
0x1004: cmp 0x5, eax
0x1006: ja 0x30
0x1008: call ebx_thunk
0x100d: add ebx, eax
0x100f: mov (eax), edx
0x1011: jmp edx

• No change

• Relative branch

• Relative load

• Branch to result
 of relative load

-10- Correct Relocation

0xf000: push ebp
0xf001: mov esp, ebp
 ...

main:
 ...
0x0050: call foo
 ...
foo:
0x1002: push ebp
0x1003: mov esp, ebp
 ...
bar:
 ...
0x2010: mov (0x1000), eax
0x2015: add (0x1004), eax

0x1002: jmp 0xf000
 ...

Effects of Overwriting Code

-11- Correct Relocation

Approach
• Model

– Relocated code, surrounding code
– Properties of code affected by relocation

• Analysis
– Deriving these properties from the binary

• Transformations
– How do we modify code to run correctly and

efficiently?

-12- Correct Relocation

Model
• Define properties of code that relocation

affects
– PC referencing
– Dependence on moved or overwritten code

• A single instruction may have multiple
properties

• These combinations of properties
determine how to relocate the instruction
– Or compensate non-relocated instructions

-13- Correct Relocation

Program Regions
• R = {ii, …, ij}

– Instructions to relocate

• A = {ik, …, il}
– Analyzed region
– Surrounds R

• U = {i0, … in} – R - A
– Unanalyzed region
– Models limits of analysis

• R’ = {ip, ..., iq}
– Relocated instructions

R

A

U

R’

-14- Correct Relocation

• Direct (REF)
– Control (REFC)
– Data (REFD)
– Predicate (REFP)

• Indirect (REF*)
– Control (REF*C)
– Data (REF*D)
– Predicate (REF*P)

Properties of Moved Code

foo:
0x1000: push ebp
0x1001: mov esp, ebp
0x1003: mov 0x8(ebp), eax
0x1004: cmp 0x5, eax
0x1006: ja 0x30
0x1008: call ebx_thunk
0x100d: add ebx, eax
0x100f: mov (eax), edx
0x1011: jmp edx

-15- Correct Relocation

Predicate PC References
bool dl_open_check(char *name,

 void *calladdr)
{
 // Check if the caller is
 // from libdl or libc

bool safe_open = false;
if (IN(libc_obj, calladdr)

 || IN(libdl_obj, calladdr)
safe_open = true;

if (!safe_open) return false;

 // Perform further checks
 ...
}

• Safety check in
library load
– Address of

caller passed in
– Checked against

legal callers
• Predicate

expressions

-16- Correct Relocation

Properties of Overwritten Code

• Control (CF)
– Instructions with

successors in R

• Data (DF)
– Loads from R
– Stores to R

main:
 ...
0x0050: call foo
 ...
foo:
 ...
0x1004: cmp 0x5, eax
0x1006: ja 0x30
 ...
bar:
 ...
0x2010: mov (0x1000), eax
0x2015: add (0x1004), eax

foo:
 ...
0x1004: cmp 0x5, eax
0x1006: ja 0x30
 ...

R

A

A

 {0x0050, 0x1004}CF

 {0x2010, 0x2015}DF

-17- Correct Relocation

Properties Summary

DFCF

REF

REF*

C

C

P

P

D

D

-18- Correct Relocation

Analysis Overview
1. Choose R and A

– R: instruction, basic block, function, …
– A: how much do we analyze?

2. Identify sources of REF and REF* in R
– Follow data dependence chains into A and U

3. Determine {...}CF and {...}DF
– Begin with interprocedural CFG and points-to

analysis
– Be conservative and assume incomplete

information

-19- Correct Relocation

REF/REF* Analysis

• Create the Program
Dependence Graph
– Covering R + A

• Identify source
instructions

• Follow data
dependence edges
– Into A (or U)

foo:
 ...
0x1004: cmp 0x5, eax
0x1006: ja 0x30
0x1008: call ebx_thunk
0x100d: add ebx, eax
0x100f: mov (eax) edx
0x1011: jmp edx

0x1006: ja 0x30
0x1008: call ebx_thunk
0x100d: add ebx, eax

REF*C

-20- Correct Relocation

Transformation Goals
• We want to emulate the smallest set of

original code semantics

• Transformations must maintain the
properties determined by analysis
– But any others are not required

• Our approach: define transformations for
each combination of properties

-21- Correct Relocation

Granularity of Relocation
• Current methods relocate by instruction

– Maintain equivalence at the instruction boundary

• “Unobserved” results

• Relocate instructions as a group
– Maintain boundary semantics of the code
– Reduce complexity and improve efficiency

-22- Correct Relocation

0x5000: mov 0x1011, ebx
0x5005: add ebx, eax
 ...

0x5000: push $0x1011
0x5005: mov (esp), ebx
0x5008: pop
0x5009: add ebx, eax
 ...

Partial Relocation Example

0x5000: push $0x1011
0x5005: jmp ebx_thunk’
0x500a: add ebx, eax
 ...

ebx_thunk’:
0x6000: mov (esp), ebx
0x6003: call map_return
0x6008: ret

0x5000: add 0x1011, eax
 ...

REFC

REFD

-23- Correct Relocation

Research Plan
• This work is preliminary

– Properties are defined
– Analysis requirements are defined

• Still a lot to do
– Determine transformations
– Implementation in Dyninst
– Performance analysis

-24- Correct Relocation

Questions?

-25- Correct Relocation

0xf008: mov 0x1008, ebx

0xf00e: add ebx, eax

0xf010: mov (eax, 4), ebx

0xf012: jmp ebx

0xf040: <case 1> ...

0xf060: <case 2> ...

0xf080: <case 3> ...

0xf0a0: <case 4> ...

foo:
0x1008: call ebx_thunk
0x100d: add ebx, eax
0x100f: mov (eax, 4), ebx
0x1011: jmp ebx
0x1012: <jump table data>
 ...
0x1040: <case 1> ...
0x1060: <case 2> ...
0x1080: <case 3> ...
0x10a0: <case 4> ...

Relocating a Jump Table
foo3:
0xf008: call ebx_thunk
0xf00d: add ebx, eax
0xf00f: mov (eax, 4), ebx
0xf011: jmp ebx
0xf012: <relocated jump
 table data>
0xf040: <reloc case 1>
0xf060: <reloc case 2>
0xf080: <reloc case 3>
0xf0a0: <reloc case 4>

foo1:
0x1008: jmp <0xf008>

0x1012: <jump table data>
 ...
0x1040: <case 1> ...
0x1060: <case 2> ...
0x1080: <case 3> ...
0x10a0: <case 4> ...

foo2:
0x1008: jmp <0xf008>

0x1012: <jump table data>
 ...
0x1040: jmp <0xf040>
0x1060: jmp <0xf060>
0x1080: jmp <0xf080>
0x10a0: jmp <0xf0a0>

-26- Correct Relocation

Complex Instructions
• Instructions may have multiple properties

– Example: a relative branch in R may be both CF
and REFC

• Some overlap is due to implicit control flow
– Instructions in R may be tagged as REFC due to

fallthrough to next instruction
• We can model instructions as combinations

of independent operations if necessary
– Separate out the “next PC” calculation

