
Group File Operations:
A New Idiom for Scalable Tools

Michael J. Brim
Paradyn Project

Paradyn / Condor Week
Madison, Wisconsin

April 30 – May 3, 2007

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 2 of 23

Talk Overview

• Group Process Control and Inspection

• A New Group File Idiom

• TBŌN-FS: Scalable Group File Operations

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 3 of 23

Research Domain
• HPC Tools & Middleware

• Middleware: run applications and manage system
• Tools: diagnose and correct problems

• Large scale systems
• Tools and middleware are CRUCIAL
• More resources to manage
• Many problems appear as scale increases

Tools/middleware that can be used on the
largest current systems are scarce

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 4 of 23

Example Tools & Middleware
• Parallel Application Runtime Environments

• MPI, PVM, BProc, IBM POE, Sun CRE, Cplant yod

• Parallel Application Monitoring and Steering
• Paradyn, Open|SpeedShop, MATE

• Distributed Application Debuggers
• TotalView, DDT, Eclipse PTP, mpigdb

• Resource Monitoring and Management
• SLURM, PBS, LoadLeveler, LSF, Ganglia

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 5 of 23

Group Process Control and Inspection

• Modify or examine process state
• Launch processes and manage stdin/out/err
• Send job control signals (e.g. STOP, CONT, KILL)
• Read and write memory, registers
• Collect asynchronous events (e.g. breakpoints and signals)
• Read process information files (i.e. Linux /proc)

• For groups of 10,000 – 100,000 processes

And More!!!

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 6 of 23

New Idiom: Group File Operations
• Abstract all operations as file access

• Natural, Intuitive, Portable
•/proc

 8th edition UNIX (1985)
 Plan9 (1992) → 4.4BSD (1994), Solaris 2.6 (1997)
 Linux

• Global mount of remote files
• Distributed OS: LOCUS (1983), …, BProc (2002)
• Remote mount: UNIX United (1987), …, Xcpu (2006)

• Operate on groups of files (processes)
• How to do so in a scalable manner?

 /proc

 /proc

 /proc

 /proc

 /proc /proc

 /proc

 /proc

 /proc

 /proc

 /proc /proc

 /proc

 /proc

 /proc

 /proc

 /proc /proc

 /proc

 /proc

 /proc

 /proc

 /proc /proc

ClusterX
Compute Nodes

User Host

/ClusterX/

 /cn0/…

 /cn1/…

 /cn2/…

 …

 /cn99999/…

Tool Process

Global Mount

File Operations

Group Operations: Current Technology

Virtual
File System

File
System

User
Level

vfs_read()

fs_read()

GroupRead()
{
 foreach(member)
 read(fd,…);
}

User-level group operations iterate.

Cost ≈ G × (T + L + R)

User-Kernel Trap
(T)

Local Processing (L)

Remote Communication &
Processing (R)

System
Calls sys_read()

/proc

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 9 of 23

Scalable Group File Operations

• How to avoid iteration over files?
• Explicit groups: gopen()
• One OS interaction for each group operation

• How to provide scalable group operations?
• Group-Aware File System: TBŌN-FS

Virtual
File System

File
System

User
Level

System
Calls sys_read()

Group Operations: Scalable Approach

fs_grp_read()

With OS and File System support, group
operations can use scalable techniques.

Cost ≈ T + L + (log(G) × R)
vfs_read()

/proc /proc

GroupRead()
{
 read(gfd, …);
}

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 11 of 23

Group File Operations
• Forming Groups

• Directory = a natural file system group abstraction
mkdir/rmdir : create/delete group
mv,cp,ln : add members
rm : delete members

• Accessing Groups
 gfd = gopen(char* gdir, int flags)

• Operating on Groups
• Pass group file descriptor to file operations

 e.g., read, write, lseek, chmod
• Semantics - operation applied to each group member

/proc/proc /proc /proc

Group File Operations
int rc = read(gfd, databuf, 1024)

read(1024)read(1024)read(1024)read(1024)

Return Code
(status/error)

Data Output
Buffer

rc rc rc rcdata data data data

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 13 of 23

Data Aggregation

• Definition: construct a whole from parts

• Provides various levels of data resolution
SUMMARY PARTIAL COMPLETE

• min
• max
• average
• sum

• x > 0.9
• y є {…}
• TopN(z)

• concatenate
• equiv. class

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 14 of 23

Aggregating Group Results
• Fit existing interfaces

• Status → summary
Need to choose appropriate default for each op

• Data → concatenate

• New operations for controlling results
• Retrieve individual status gstatus(…)
• Load custom aggregations
gloadaggr(…)

• Bind aggregations to operations
gbindaggr(…)

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 15 of 23

Example: System Resource Monitor

• Collects 1-, 5-, 15-minute load averages
• Reads /proc/loadavg from each node

• Calculates (for each granularity)
• Minimum load across all nodes
• Maximum load across all nodes
• Average load across all nodes

BEFORE AFTER

 open()

 read(1min)
 read(5min)
 read(15min)
 close()

 ComputeMMA(…)

 symlink()

gfd = gopen(“grp_dir”)

// Bind read to aggr
gbindaggr(gfd, OP_READ,

 AGGR_MIN_MAX_AVG)

// Read & Compute
read(gfd, 1min)
read(gfd, 5min)
read(gfd, 15min)

close(gfd)

gdefine()

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 17 of 23

Group File Operations: Other Uses?
• Distributed System Administration

• Disk-full clusters
System file patching
Software installation

• System log monitoring

• Utility programs that operate on file groups
• e.g., ps, top, grep, chmod/chown

• Internet Applications
• Peer2Peer – file retrieval a la BitTorrent
• Search/Crawl – websites are really just files

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 18 of 23

TBŌN-FS
• New distributed file system

• Scalable group file operations
• Efficient single file operations
• Tens to hundreds of thousands of servers

Single mount point

• Integrates Tree-Based Overlay Network
• One-to-many multicast & gather communication
• Distributed data aggregation

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 19 of 23

Scalable Group File Operations
• Why not use a distributed/parallel FS?

Distributed File System TBON-FSParallel File System

TBŌN-FS: Proposed Architecture

File
Systems
& Devices

User

sys_read()

read()

Virtual
File
System

System
Calls

TBON-FS /dev/tbonfs

Tool
Application

TBON-FS
Client

TBON-FS
Server

File Systems

Standard
File Access

TBON

vfs_read()

TBŌN-FS: Current Prototype

TBON-FS
Server

File Systems

Standard
File Access

TBON

Tool
Application

TBON-FS
Library

User
mount_tbonfs()
unmount_tbonfs()

gopen()
gsize()
gstatus()
gbindaggr()

grp_close()
grp_lseek()
grp_read()
grp_write()

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 22 of 23

Current & Future Research
• Group file operations

• OS support
• More file types & operations (e.g., sockets and pipes)

• Tool integrations
• Ganglia wide-area system monitor (in progress)
• TotalView debugger

• TBŌN Model Extensions
• Topology-aware filters
• Persistent host state
• Multi-organization TBON

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 23 of 23

Summary

• “Iteration is the bane of scalability.”

• Group File Operations
• Are natural, intuitive, and portable
• Eliminate iteration
• Allow for custom data aggregation

• TBON-FS: scalable group file operations

Distributed Debugger (BEFORE)
// Open all /proc/<pid>/mem
foreach file (‘ClusterX/cn*/[1-9]*/mem’)
fds[i] = open(file, flags);
grp_size++;

// Set breakpoint & wait
for i=0 to grp_size
lseek(fds[i], brkpt_addr, SEEK_SET);
write(fds[i], brkpt_code_buf, code_sz);

WaitForAll();

// Read variable & compute equivalence classes
for i=0 to grp_size
lseek(fds[i], var_addr, SEEK_SET);
var_buf = grp_var_buf[i];
read(fds[i], var_buf, var_sz);
close(fds[i]);

ComputeEquivClasses(grp_var_buf, var_classes_buf);

Distributed Debugger (AFTER)
// Open all /proc/<pid>/mem
foreach file (‘ClusterX/cn*/[0-9]*/mem’)
// add link to file in group directory
symlink(file, “grp_dir”);

gfd = gopen(“grp_dir”, flags);
grp_size = gsize(gfd);

// Set breakpoint & wait
lseek(gfd, brkpt_addr, SEEK_SET);
write(gfd, brkpt_code_buf, code_sz);
WaitForAll();

// Read variable & compute equivalence classes
lseek(gfd, var_addr, SEEK_SET);
gbindaggr(gfd, OP_READ, AGGR_EQUIV_CLASS, var_sz);
read(gfd, var_classes_buf, var_sz);
close(gfd);

System Monitor (BEFORE)
// Open all /proc/loadavg
foreach file (‘ClusterX/cn*/loadavg’)
fds[i] = open(file, flags);
grp_size++;

// Read 1-minute, 5-minute, 15-minute loads
for i=0 to grp_size
read(fds[i], 1min_buf[i], load_sz);
read(fds[i], 5min_buf[i], load_sz);
read(fds[i], 15min_buf[i], load_sz);
close(fds[i]);

// Compute min/max/avg for each granularity
ComputeMinMaxAvg(1min_buf, 5min_buf, 15min_buf);

System Monitor (AFTER)
// Open all /proc/loadavg
foreach member_file (‘ClusterX/cn*/loadavg’)
// add link to member in group directory
symlink(member_file, “grp_dir”);

gfd = gopen(“grp_dir”, flags);

// Read 1-minute, 5-minute, 15-minute loads
// and calculate min/max/avg
gbindaggr(gfd, OP_READ, AGGR_MIN_MAX_AVG, load_sz);
read(gfd, 1min_buf, load_sz);
read(gfd, 5min_buf, load_sz);
read(gfd, 15min_buf, load_sz);
close(gfd);

©2007 Michael J. Brim Group File Operations: A New Idiom for Scalable Tools 28 of 23

Related Work

• Xcpu
• File system interface for distributed process management
• Uses Plan9 9P protocol and recent Linux support (V9FS)

• HEC POSIX I/O Extensions
• Explicit sharing of files by process groups
•openg and sutoc

