
Statistical Binary Parsing
Using Machine Learning to

Extract Code from
Uncooperative Programs

Nathan Rosenblum
Paradyn Project

Paradyn / Condor Week
Madison, Wisconsin

April 30 – May 3, 2007



Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 2

Research Participants
•Barton Miller - UW Madison
•Jerry Zhu - UW Madison
•Karen Hunt - DoD
•Jeff Hollingsworth - UMD



Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 3

Context of Current Work
• Exploratory
• Focus: evaluating machine learning techniques
• Eventual integration with Dyninst

Exploration
of machine

learning
techniques

Selection &
optimization

of best
methods

Integration
into Dyninst

tool

Current Phase 2 Phase 3
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Talk Outline
•Binary parsing challenges

•Machine Learning Infrastructure

•Testing and Evaluation Infrastructure

•Preliminary Results
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Automated Batch Parsing
• Cannot rely on human input

• Parsing very large (100 MB) binaries
• Parsing large numbers of binaries
• Decisions require expert knowledge

• Complete & accurate information is essential
• Binary modification, instrumentation
• Misidentifying code can have catastrophic consequences

• Goal: Find code location in binaries
• Eliminate false positives
• Minimize false negatives
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Parsing Challenges
• Obtaining full coverage may be difficult:

• Missing symbol information
• Variability in function layout (e.g. code sharing,

outlined basic blocks)
• High degree of indirect control flow

• Basic strategy: recursive descent parsing
• Disassemble from known entry points
• Discover functions through calls
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Incomplete Parsing Coverage

• 41% of functions in
surveyed binaries
unreachable

• As many as 90% in
some programs

• Unreachable functions
occupy gap regions in
the binary
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Challenge: Accurate Gap Parsing
• Gaps are sequences of bytes
• Need to identify functions in gaps

• Equivalently, identify function entry blocks
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Offset Parsing Alignment
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start

Conflicting
candidate
entry blocks

push ebp
mov esp, 
    ebp

sub 0x18
    esp

and 0xf0
    esp

mov 0x0
    eax

sub eax,
    esp

cmpl 0x5
0x80494a8
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Current Dyninst Techniques
• Dyninst searches for common patterns

•  push %ebp; mov %esp,%ebp
•  push %esi; mov %esi,<mem>

• Performs well
• Low false positive rate: 92% precision on average

• Heuristic - patterns are moving target
• Larger programs - more false positives
• Compiler may not emit expected preamble

• Partial known sequences
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Exploiting Available Information

• Some properties of
functions are
relatively uniform
• E.g., stack setup

• Use properties of
known code to
search gaps
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Statistical Binary Parsing
• Parsing as a supervised

machine-learning
problem
• Build model from training

examples
• Use model to classify

code in gaps
• Goals:

• Extensible: incorporate
multiple features

• Opportunistic: exploit all
available information

f1 f2 f3 f4

∑

Weighted Features

Decision Function

A binary classifier for 
candidate entry blocks
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Learning Infrastructure
• Logistic Regression classifier

• Incorporates several features:
• Instruction frequency (language models)
• Function entry sequences
• Control flow

• Assigns probability to candidate functions
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Language Models
• Frequency of instruction occurrence
• Compares entry and non-entry models

Insn1
Insn2
Insn3
Insn4
Insn5

Entry LM

Non-entry LM

odds

odds
÷ Log-odds ratio

Candidate entry block
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Function Entry Sequences

a

b c

d e f

g h i

• Method 1: Maximum Prefix Match Length
• Incorporates instruction ordering
• Construct prefix trie of entry block sequences
• Compute maximum match length for candidate entry blocks

Candidate 1: actual entry block

Candidate 2: non-entry block

Limited flexibility!

a,b,d,h,x,… MPML: 4

a,q,x,y,z,… MPML: 1

a,x,b,d,h,… MPML: 1
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Function Entry Sequences
• Method 2: Fuzzy String Matching

• Levenshtein Distance counts edits between strings
 Insertion, deletion, change

• Flexible: matches sequences but allows gaps

Match minimum
edit distance

Candidate (valid) Best match

insertion

a,x,b,d,h,… a,b,d,h,… Edit Distance: 1

Entry Prefixes
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Incorporating Control Flow

Parsing from every byte in a range creates a graph

Reachability Ratio =
# blocks reachable from candidate

# blocks connected to candidate

f1 f2 f3 f4

a

h1 h2 h3 h4

c

b

d

g1 g2 g3 g4
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Experimental Framework

• Goal: evaluate effectiveness of features

• 625 Linux x86 binaries

• Binaries have full symbol tables
• Function locations provide ground truth

reference set

• Stripped binaries provide training data

• Dyninst prefix heuristic provides baseline
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Obtaining Training and Test Data
• Classifier is trained and evaluated on each binary

independently
• Positive training examples:

• Known function entry blocks

• Negative training examples:
• Known non-entry  blocks

• Blocks generated from parse at every byte within known
functions (“anti-gaps”)

• Test examples are all candidates in gaps
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Scaling Experiments
• Experiment design facilitates scaling

• Separation of model creation, training, and evaluation
• Independent analysis of each binary
• Suitable for batch processing systems like Condor

• Reduced cost in final Dyninst implementation
• Early rejection of invalid parses
• On-demand analysis of sub-regions of gaps
• Final approach will use subset of techniques
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Results
• Language Model features have limited utility

• Limited training data
• May be improved by training over whole corpus

• Prefix-based features work well
• LD better than MPML
• LD is current best combined with Dyninst heuristic
• Most sensitivity to training data variation

• Incorporating control flow is essential
• 60% reduction in false positives over best method alone
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Results

100%100%53813844Abiword

99.4%41.7%172991gpg

99.9%99.9%15963214emacs

98.6%98.6%2231122mutt

90.5%100%94140grep

RecallPrecisionGap FuncsTotal
FunctionsProg

• Current status:
• 70% reduction in false positives over Dyninst heuristic
• Nearly identical false negative rates
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Future Work
• Model extension, evaluation and refinement

• What other features characterize entry points?
• Which features best distinguish valid entry points?

• Integration into Dyninst
• Model training
• Parsing optimizations
• API extensions
• Fall 2007
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Future Work
• Dealing with limited training data

• Can similar binaries be exploited to obtain more training examples?

• Incorporating additional sources of information

v-table
parsingSymbols,

debug
information

Call
tables

Pointer
analysis

Function
entry

detection

Unified
classification

model
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Questions?
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Backup slides
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Language Models
• Obtained by Maximum Likelihood Estimate
(MLE) of instructions (unigram) and pairs of
instructions (bigram)

! 

P(insnk ) =

cntb (insnk )
b"EntryBlocks

# +1

cntb (i)
i"Insns

# + Insns
b"EntryBlocks

#

P(blockk ) = P(i)
i"Insnsb

$

Probabilities
based on
frequency of
instruction
occurrence
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Language Models
• Log-odds ratio computed from language models

! 

oddsentry (b) =
Pentry (b)

1" Pentry (b)

oddsnonentry (b) =
Pnonentry (b)

1" Pnonentry (b)

LOR(b) = log
oddsentry (b)

oddsnonentry (b)

# 

$ 
% % 

& 

' 
( ( 

• Two models trained:

• Entry blocks

• Non-entry blocks
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An example


