Statistical Binary Parsing

Using Machine Learning to Extract Code from Uncooperative Programs

> Nathan Rosenblum Paradyn Project

Paradyn / Condor Week Madison, Wisconsin April 30 - May 3, 2007

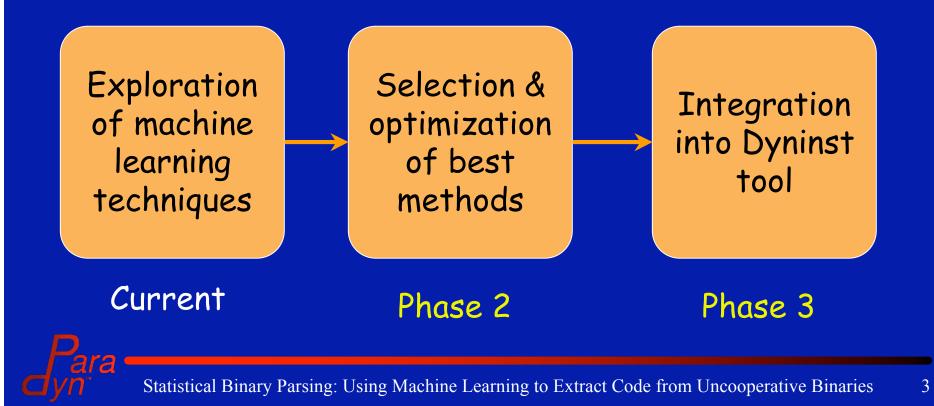
Research Participants

- Barton Miller UW Madison
- Jerry Zhu UW Madison
- Karen Hunt DoD
- Jeff Hollingsworth UMD

2

Context of Current Work

- Exploratory
- Focus: evaluating machine learning techniques
- Eventual integration with Dyninst



Talk Outline Binary parsing challenges

- Machine Learning Infrastructure
- Testing and Evaluation Infrastructure
- Preliminary Results

4

Automated Batch Parsing

- Cannot rely on human input
 - Parsing very large (100 MB) binaries
 - Parsing large numbers of binaries
 - Decisions require expert knowledge
- Complete & accurate information is essential
 - Binary modification, instrumentation
 - Misidentifying code can have catastrophic consequences
- Goal: Find code location in binaries
 - Eliminate *false positives*
 - Minimize false negatives

Parsing Challenges

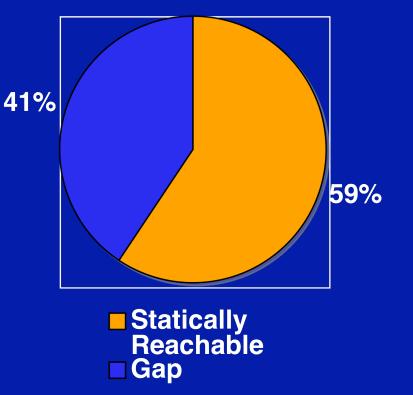
Obtaining full coverage may be difficult:

- Missing symbol information
- Variability in function layout (e.g. code sharing, outlined basic blocks)
- High degree of indirect control flow
- Basic strategy: recursive descent parsing
 - Disassemble from known entry points
 - Discover functions through calls

6

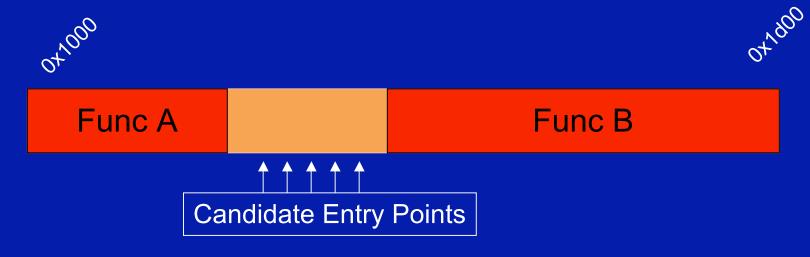
Incomplete Parsing Coverage

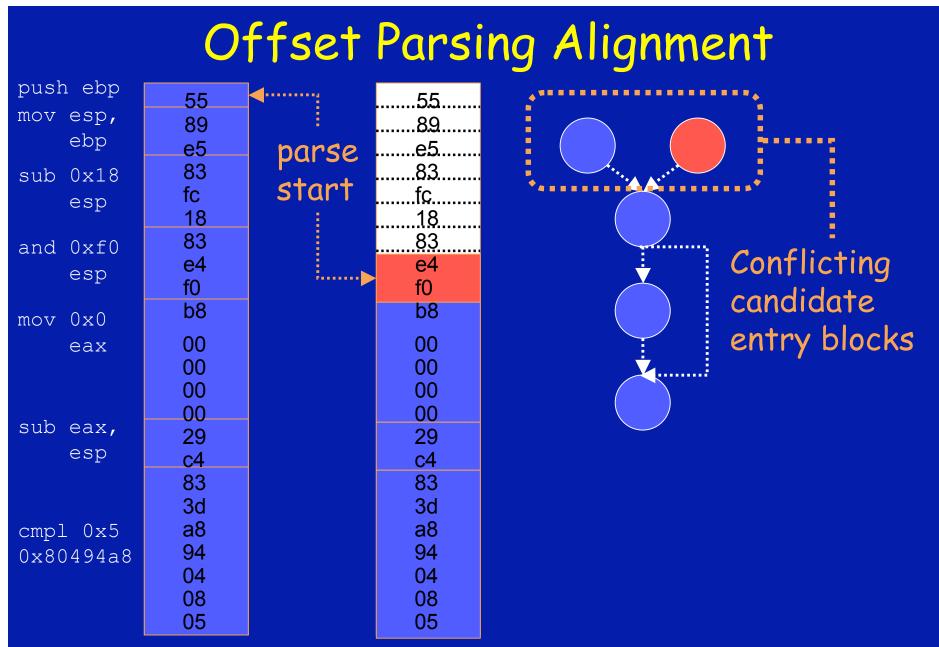
- 41% of functions in surveyed binaries unreachable
- As many as 90% in some programs
- Unreachable functions occupy gap regions in the binary



Challenge: Accurate Gap Parsing

- Gaps are sequences of bytes
- Need to identify functions in gaps
 - Equivalently, identify function entry blocks



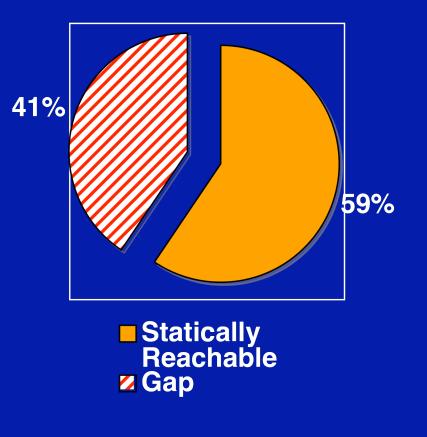


Current Dyninst Techniques

- Dyninst searches for common patterns
 - push %ebp; mov %esp,%ebp
 - push %esi; mov %esi,<mem>
- Performs well
 - Low false positive rate: 92% precision on average
- Heuristic patterns are moving target
- Larger programs more false positives
- Compiler may not emit expected preamble
 - Partial known sequences

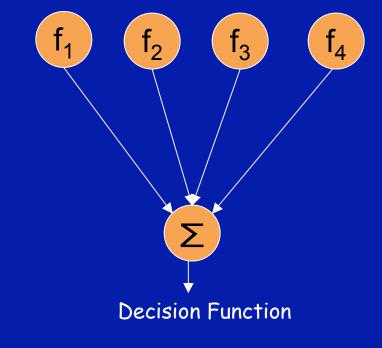
Exploiting Available Information

- Some properties of functions are relatively uniform
 E.g., stack setup
- Use properties of known code to search gaps



Statistical Binary Parsing

- Parsing as a supervised machine-learning problem
 - Build model from training examples
 - Use model to classify code in gaps
- Goals:
 - Extensible: incorporate multiple *features*
 - Opportunistic: exploit all available information



A binary classifier for candidate entry blocks

Learning Infrastructure

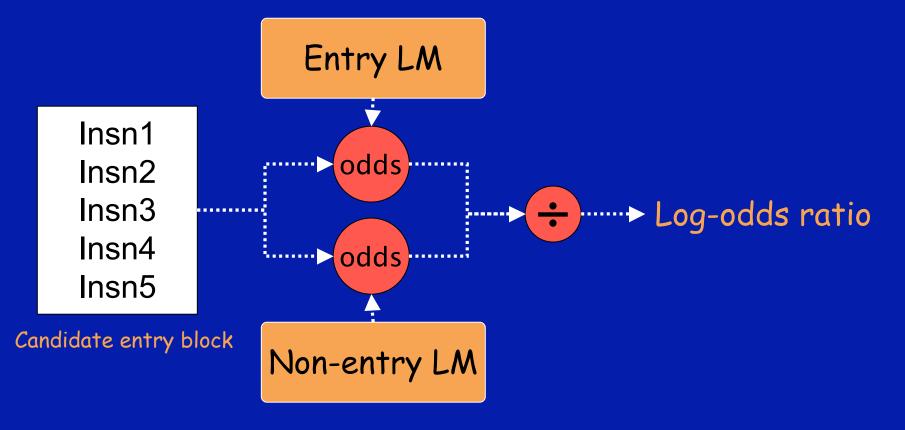
Logistic Regression classifier

- Incorporates several features:
 - Instruction frequency (language models)
 - Function entry sequences
 - Control flow

Assigns probability to candidate functions

Language Models

- Frequency of instruction occurrence
- Compares entry and non-entry models



Function Entry Sequences

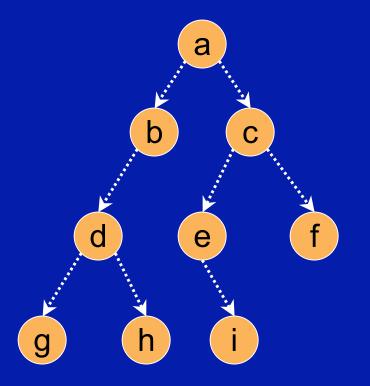
- Method 1: Maximum Prefix Match Length
 - Incorporates instruction ordering
 - Construct *prefix trie* of entry block sequences
 - Compute maximum match length for candidate entry blocks

Candidate 1: actual entry block

a, b, d, h, x, ... MPML: 4
Candidate 2: non-entry block
a, q, x, y, z, ... MPML: 1
Limited flexibility!

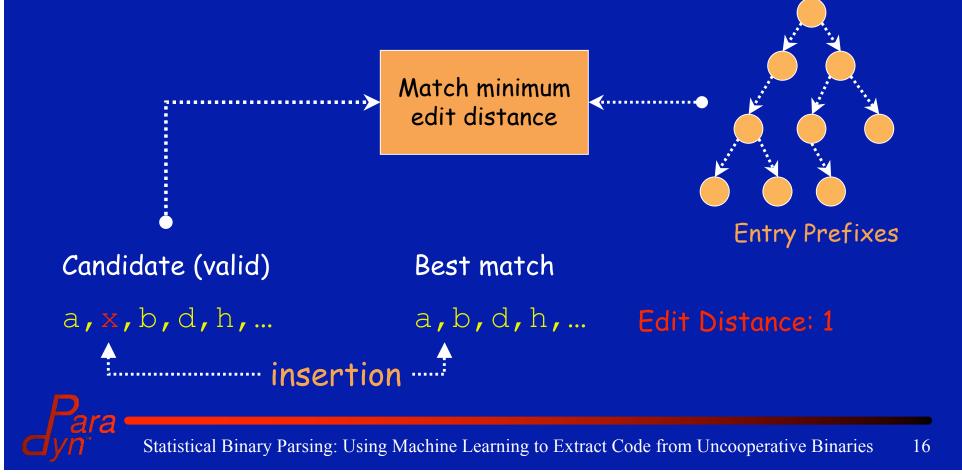
a, x, b, d, h, ...

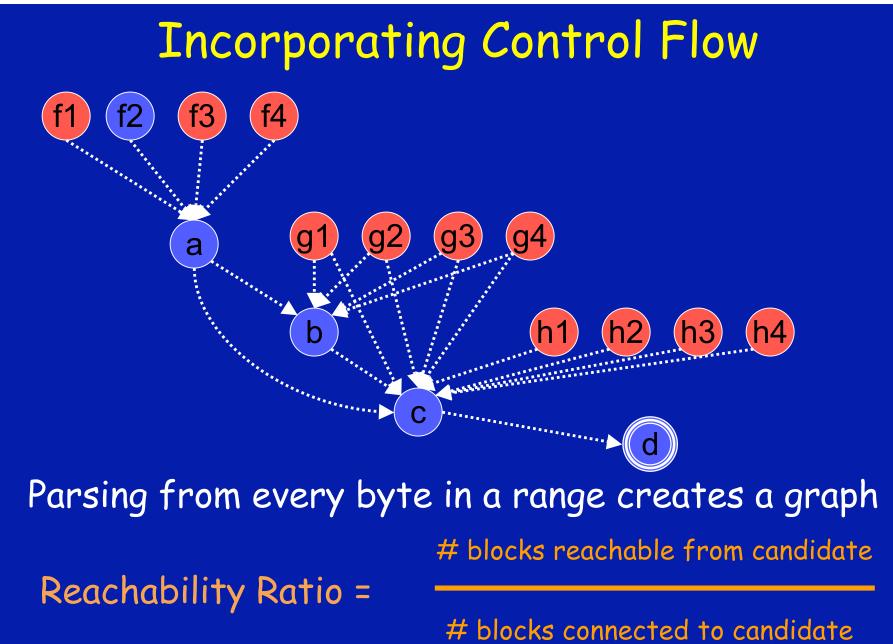
MPML: 1



Function Entry Sequences

- Method 2: Fuzzy String Matching
 - Levenshtein Distance counts edits between strings
 - Insertion, deletion, change
 - Flexible: matches sequences but allows gaps





Experimental Framework

- Goal: evaluate effectiveness of features
- 625 Linux x86 binaries
- Binaries have full symbol tables
 - Function locations provide ground truth reference set
- Stripped binaries provide training data
- Dyninst prefix heuristic provides baseline

Obtaining Training and Test Data

- Classifier is trained and evaluated on each binary independently
- Positive training examples:
 - Known function entry blocks
- Negative training examples:
 - Known non-entry blocks
 - Blocks generated from parse at every byte within known functions ("anti-gaps")
- Test examples are all candidates in gaps

Scaling Experiments

- Experiment design facilitates scaling
 - Separation of model creation, training, and evaluation
 - Independent analysis of each binary
 - Suitable for batch processing systems like Condor
- Reduced cost in final Dyninst implementation
 - Early rejection of invalid parses
 - On-demand analysis of sub-regions of gaps
 - Final approach will use subset of techniques

Results

- Language Model features have limited utility
 - Limited training data
 - May be improved by training over whole corpus
- Prefix-based features work well
 - LD better than MPML
 - LD is current best combined with Dyninst heuristic
 - Most sensitivity to training data variation
- Incorporating control flow is essential
 60% reduction in false positives over best method alone

Results

Current status:

- 70% reduction in false positives over Dyninst heuristic
- Nearly identical false negative rates

Prog	Total Functions	Gap Funcs	Precision	Recall
grep	140	94	100%	90.5%
mutt	1122	223	98.6%	98.6%
emacs	3214	1596	99.9%	99.9%
Abiword	13844	538	100%	100%
gpg	991	172	41.7%	99.4%

Future Work

Model extension, evaluation and refinement

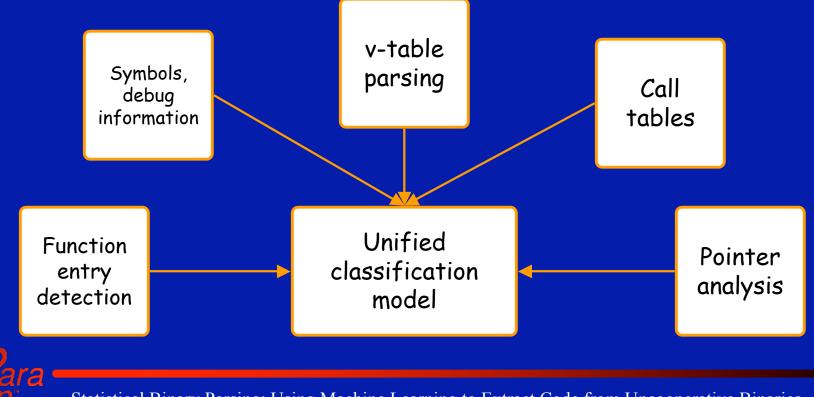
- What other features characterize entry points?
- Which features best distinguish valid entry points?

Integration into Dyninst

- Model training
- Parsing optimizations
- API extensions
- Fall 2007

Future Work

- Dealing with limited training data
 - Can similar binaries be exploited to obtain more training examples?
- Incorporating additional sources of information



Language Models

 Obtained by Maximum Likelihood Estimate (MLE) of instructions (unigram) and pairs of instructions (bigram)

Probabilities based on frequency of instruction occurrence

$$\sum_{b \in EntryBlocks} cnt_{b}(insn_{k}) + 1$$

$$P(insn_{k}) = \frac{\sum_{b \in EntryBlocks} cnt_{b}(i) + |Insns|}{\sum_{b \in EntryBlocks} cnt_{b}(i) + |Insns|}$$

$$P(block_{k}) = \prod_{i \in Insns_{b}} P(i)$$

Language Models

- Log-odds ratio computed from language models
- Two models trained:
 - Entry blocks
 - Non-entry blocks

$$odds_{entry}(b) = \frac{P_{entry}(b)}{1 - P_{entry}(b)}$$
$$odds_{nonentry}(b) = \frac{P_{nonentry}(b)}{1 - P_{nonentry}(b)}$$
$$LOR(b) = \log\left(\frac{odds_{entry}(b)}{odds_{nonentry}(b)}\right)$$

An example

