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Context of Current Work

» Exploratory
* Focus: evaluating machine learning techniques
* Eventual integration with Dyninst

Exploration Selection &
of machine optimization
learning of best

techniques methods

Integration
intfo Dyninst
tool

Current Phase 2 Phase 3
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Talk Outline
» Binary parsing challenges

* Machine Learning Infrastructure
» Testing and Evaluation Infrastructure

* Preliminary Results
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Automated Batch Parsing

» Cannot rely on human input
* Parsing very large (100 MB) binaries
* Parsing large numbers of binaries
* Decisions require expert knowledge

» Complete & accurate information is essential

» Binary modification, instrumentation
- Misidentifying code can have catastrophic consequences

* Goal: Find code location in binaries
- Eliminate false positives
* Minimize false negatives
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Parsing Challenges

» Obtaining full coverage may be difficult:
* Missing symbol information

» Variability in function layout (e.g. code sharing,
outlined basic blocks)

* High degree of indirect control flow

* Basic strategy: recursive descent parsing
* Disassemble from known entry points
* Discover functions through calls
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Incomplete Parsing Coverage

* 41% of functions in
surveyed binaries
unreachable

* As many as 90% in
some programs

- Unreachable functions = Statically
eachable

occupy gap regions in Gap
the binary
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Challenge: Accurate Gap Parsing

* Gaps are sequences of bytes

* Need to identify functions in gaps
* Equivalently, identify function entry blocks

Candidate Entry Points
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OffseT Parsing Alignment

pUSh ebp Illlllllllllllllllll.

mov esp,
ebp Q Q .-lllll
aEEEEEEE llllllll:

esp . @
0xf0 : .

sub 0x18
csp ;i Conflicting
i candidate

‘IIIIIII

0x0

eax : enTr'y blocks

cmpl 0x5
0x80494a8

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries




Current Dyninst Techniques

* Dyninst searches for common patterns

©)

* push %ebp; mov %esp, sebp

©)

* push %esi; mov %esi, <mem>

* Performs well
* Low false positive rate: 92% precision on average

» Heuristic - patterns are moving target
* Larger programs - more false positives

» Compiler may not emit expected preamble
* Partial known sequences
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Exploiting Available Information

» Some properties of
functions are
relatively uniform

* E.g., stack setup

* Use properties of
Staticall
known code to " Reachable
search gaps =/ap
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Statistical Binary Parsing

* Parsing as a supervised

machine- Iear‘nmg Weighted Features
problem

» Build model from training
examples

- Use model to classify
code in gaps

- Goals:

+ Extensible: incorporate
multiple features

- Opportunistic: exploit all

Decision Function

available information A iy clessiitiar G

candidate entry blocks
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Learning Infrastructure

» Logistic Regression classifier

* Incorporates several features:
* Instruction frequency (language models)
* Function entry sequences
* Control flow

» Assigns probability to candidate functions
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Language Models

* Frequency of instruction occurrence
» Compares entry and non-enftry models

Entry LM

» Log-odds ratio

A
Candidate entry block
Non-entry LM
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Function Entry Sequences
* Method 1: Maximum Prefix Match Length

* Incorporates instruction ordering
» Construct prefix trie of entry block sequences
- Compute maximum match length for candidate entry blocks

Candidate 1: actual entry block e
a,pb,d,h,x,

, O,d,Nn, %, ..
Candidate 2: non-entry block é é

d,Jd, X, VY, 2Z,.. é é é
Limited flexibility!

a,%,b,d,h, .. é b b
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Function Entry Sequences
* Method 2: Fuzzy String Matching

- Levenshtein Distance counts edits between strings
= Insertion, deletion, change

- Flexible: matches sequences but allows gaps

Match minimum
edit distance

Candidate (valid) Best match

Entry Prefixes

a,<,b,d,h,.. a,b,d,h,..
A
e renerrm e, lnsarv‘-'On
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Incorporating Control Flow

Parsing from every byte in a range creates a graph

# blocks reachable from candidate

Reachability Ratio =

# blocks connected to candidate
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Experimental Framework

- Goal: evaluate effectiveness of features
* 625 Linux x86 binaries

* Binaries have full symbol tables

* Function locations provide ground truth
reference set

- Stripped binaries provide training data

- Dyninst prefix heuristic provides baseline
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Obtaining Training and Test Data

» Classifier is trained and evaluated on each binary
independently

* Positive training examples:

» Known function entry blocks

* Negative training examples:

* Known non-entry blocks

* Blocks generated from parse at every byte within known
functions ("anti-gaps"”)

» Test examples are all candidates in gaps
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Scaling Experiments

* Experiment design facilitates scaling
» Separation of model creation, training, and evaluation
» Independent analysis of each binary
- Suitable for batch processing systems like Condor

* Reduced cost in final Dyninst implementation
» Early rejection of invalid parses
- On-demand analysis of sub-regions of gaps
* Final approach will use subset of techniques
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Results

* Language Model features have limited utility
- Limited training data
* May be improved by training over whole corpus

* Prefix-based features work well
* LD better than MPML
* LD is current best combined with Dyninst heuristic
* Most sensitivity to training data variation

* Incorporating control flow is essential
* 60% reduction in false positives over best method alone
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Results

* Current status:
+ 70% reduction in false positives over Dyninst heuristic
* Nearly identical false negative rates

Total

: Gap Funcs Precision Recall
Functions

Prog

grep 140 94 100% | 90.5%

mutt 1122 98.6% | 98.6%

emacs 3214 99.9% 99.9%

Abiword 13844 100% 100%

apg 991 41.7% 99.4%
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Future Work

- Model extension, evaluation and refinement
* What other features characterize entry points?
* Which features best distinguish valid entry points?

* Integration into Dyninst
* Model training
* Parsing optimizations
- APT extensions
» Fall 2007
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Future Work

* Dealing with limited training data

» Can similar binaries be exploited to obtain more ftraining examples?

» Incorporating additional sources of information

v-table

SymbOIS, ariS|n
debug P 9 Call

information tables

Function Unified
entry classification
detection model

Pointer
analysis
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Questions?
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Backup slides
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Language Models

* Obtained by Maximum Likelihood Estimate
(MLE) of instructions (unigram) and pairs of
instructions (bigram)

Ecntb (insn; ) +1
Probabilities b E EntryBlocks

P(lnsn ) S . ~
k .

based on E Ecntb (i) + |[Insns|

frequency of |

. . beEntryBlocks i€ Insns

Instruction

occurrence P(block,) = HP(i)

1E1Insns,,
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Language Models

* Log-odds ratio computed from language models

- Two models trained:

* Entry blocks b)

P
OddSHOI’lei’lﬂ"y (b) = M
* Non-entry blocks 1=P  niry (D)
odds,,,, (b) )

Oddsnonentry (b)

LOR(b) = log(
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An example

(Paoaa) ¢

D) G tan > ) &) G s (ansnes  Coroamad)
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