
Statistical Binary Parsing
Using Machine Learning to

Extract Code from
Uncooperative Programs

Nathan Rosenblum
Paradyn Project

Paradyn / Condor Week
Madison, Wisconsin

April 30 – May 3, 2007

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 2

Research Participants
•Barton Miller - UW Madison
•Jerry Zhu - UW Madison
•Karen Hunt - DoD
•Jeff Hollingsworth - UMD

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 3

Context of Current Work
• Exploratory
• Focus: evaluating machine learning techniques
• Eventual integration with Dyninst

Exploration
of machine

learning
techniques

Selection &
optimization

of best
methods

Integration
into Dyninst

tool

Current Phase 2 Phase 3

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 4

Talk Outline
•Binary parsing challenges

•Machine Learning Infrastructure

•Testing and Evaluation Infrastructure

•Preliminary Results

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 5

Automated Batch Parsing
• Cannot rely on human input

• Parsing very large (100 MB) binaries
• Parsing large numbers of binaries
• Decisions require expert knowledge

• Complete & accurate information is essential
• Binary modification, instrumentation
• Misidentifying code can have catastrophic consequences

• Goal: Find code location in binaries
• Eliminate false positives
• Minimize false negatives

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 6

Parsing Challenges
• Obtaining full coverage may be difficult:

• Missing symbol information
• Variability in function layout (e.g. code sharing,

outlined basic blocks)
• High degree of indirect control flow

• Basic strategy: recursive descent parsing
• Disassemble from known entry points
• Discover functions through calls

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 7

Incomplete Parsing Coverage

• 41% of functions in
surveyed binaries
unreachable

• As many as 90% in
some programs

• Unreachable functions
occupy gap regions in
the binary

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 8

Challenge: Accurate Gap Parsing
• Gaps are sequences of bytes
• Need to identify functions in gaps

• Equivalently, identify function entry blocks

0x
10

00
0x

1d
00

Candidate Entry Points

Func A Func B

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 9

Offset Parsing Alignment
89
55

e5
83
fc
18
83
e4
f0
b8
00
00
00
00
29
c4
83
3d
a8
94
04
08
05

89
55

e5
83
fc
18
83
e4
f0
b8
00
00
00
00
29
c4
83
3d
a8
94
04
08
05

parse
start

Conflicting
candidate
entry blocks

push ebp
mov esp,
 ebp

sub 0x18
 esp

and 0xf0
 esp

mov 0x0
 eax

sub eax,
 esp

cmpl 0x5
0x80494a8

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 10

Current Dyninst Techniques
• Dyninst searches for common patterns

• push %ebp; mov %esp,%ebp
• push %esi; mov %esi,<mem>

• Performs well
• Low false positive rate: 92% precision on average

• Heuristic - patterns are moving target
• Larger programs - more false positives
• Compiler may not emit expected preamble

• Partial known sequences

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 11

Exploiting Available Information

• Some properties of
functions are
relatively uniform
• E.g., stack setup

• Use properties of
known code to
search gaps

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 12

Statistical Binary Parsing
• Parsing as a supervised

machine-learning
problem
• Build model from training

examples
• Use model to classify

code in gaps
• Goals:

• Extensible: incorporate
multiple features

• Opportunistic: exploit all
available information

f1 f2 f3 f4

∑

Weighted Features

Decision Function

A binary classifier for
candidate entry blocks

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 13

Learning Infrastructure
• Logistic Regression classifier

• Incorporates several features:
• Instruction frequency (language models)
• Function entry sequences
• Control flow

• Assigns probability to candidate functions

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 14

Language Models
• Frequency of instruction occurrence
• Compares entry and non-entry models

Insn1
Insn2
Insn3
Insn4
Insn5

Entry LM

Non-entry LM

odds

odds
÷ Log-odds ratio

Candidate entry block

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 15

Function Entry Sequences

a

b c

d e f

g h i

• Method 1: Maximum Prefix Match Length
• Incorporates instruction ordering
• Construct prefix trie of entry block sequences
• Compute maximum match length for candidate entry blocks

Candidate 1: actual entry block

Candidate 2: non-entry block

Limited flexibility!

a,b,d,h,x,… MPML: 4

a,q,x,y,z,… MPML: 1

a,x,b,d,h,… MPML: 1

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 16

Function Entry Sequences
• Method 2: Fuzzy String Matching

• Levenshtein Distance counts edits between strings
 Insertion, deletion, change

• Flexible: matches sequences but allows gaps

Match minimum
edit distance

Candidate (valid) Best match

insertion

a,x,b,d,h,… a,b,d,h,… Edit Distance: 1

Entry Prefixes

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 17

Incorporating Control Flow

Parsing from every byte in a range creates a graph

Reachability Ratio =
blocks reachable from candidate

blocks connected to candidate

f1 f2 f3 f4

a

h1 h2 h3 h4

c

b

d

g1 g2 g3 g4

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 18

Experimental Framework

• Goal: evaluate effectiveness of features

• 625 Linux x86 binaries

• Binaries have full symbol tables
• Function locations provide ground truth

reference set

• Stripped binaries provide training data

• Dyninst prefix heuristic provides baseline

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 19

Obtaining Training and Test Data
• Classifier is trained and evaluated on each binary

independently
• Positive training examples:

• Known function entry blocks

• Negative training examples:
• Known non-entry blocks

• Blocks generated from parse at every byte within known
functions (“anti-gaps”)

• Test examples are all candidates in gaps

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 20

Scaling Experiments
• Experiment design facilitates scaling

• Separation of model creation, training, and evaluation
• Independent analysis of each binary
• Suitable for batch processing systems like Condor

• Reduced cost in final Dyninst implementation
• Early rejection of invalid parses
• On-demand analysis of sub-regions of gaps
• Final approach will use subset of techniques

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 21

Results
• Language Model features have limited utility

• Limited training data
• May be improved by training over whole corpus

• Prefix-based features work well
• LD better than MPML
• LD is current best combined with Dyninst heuristic
• Most sensitivity to training data variation

• Incorporating control flow is essential
• 60% reduction in false positives over best method alone

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 22

Results

100%100%53813844Abiword

99.4%41.7%172991gpg

99.9%99.9%15963214emacs

98.6%98.6%2231122mutt

90.5%100%94140grep

RecallPrecisionGap FuncsTotal
FunctionsProg

• Current status:
• 70% reduction in false positives over Dyninst heuristic
• Nearly identical false negative rates

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 23

Future Work
• Model extension, evaluation and refinement

• What other features characterize entry points?
• Which features best distinguish valid entry points?

• Integration into Dyninst
• Model training
• Parsing optimizations
• API extensions
• Fall 2007

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 24

Future Work
• Dealing with limited training data

• Can similar binaries be exploited to obtain more training examples?

• Incorporating additional sources of information

v-table
parsingSymbols,

debug
information

Call
tables

Pointer
analysis

Function
entry

detection

Unified
classification

model

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 25

Questions?

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 26

Backup slides

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 27

Language Models
• Obtained by Maximum Likelihood Estimate
(MLE) of instructions (unigram) and pairs of
instructions (bigram)

!

P(insnk) =

cntb (insnk)
b"EntryBlocks

+1

cntb (i)
i"Insns

+ Insns
b"EntryBlocks

#

P(blockk) = P(i)
i"Insnsb

$

Probabilities
based on
frequency of
instruction
occurrence

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 28

Language Models
• Log-odds ratio computed from language models

!

oddsentry (b) =
Pentry (b)

1" Pentry (b)

oddsnonentry (b) =
Pnonentry (b)

1" Pnonentry (b)

LOR(b) = log
oddsentry (b)

oddsnonentry (b)

$
% %

&

'
((

• Two models trained:

• Entry blocks

• Non-entry blocks

Statistical Binary Parsing: Using Machine Learning to Extract Code from Uncooperative Binaries 29

An example

