
University of Maryland

New APIs from P/D Separation

James Waskiewicz

University of Maryland

“Separation” completed

 Paradynd now uses the Dyninst API
– Formerly made calls to the low-level code

hidden by Dyninst
•A development/testing nightmare

– Now just links to libdyninstAPI
•like any other mutator

– End of a long, several-year process

 Brute-force final push:
– Modify paradynd to use existing APIs as much

as possible
– Add new APIs to Dyninst as necessary

•Functionality needed by Paradyn that was
not previously available

University of Maryland

“Active” Snippet Insertion
 All instrumentation is now sanity-checked vs.

current process state
– Requires doing full stack walk(s) for each insertion

• Stack walks are cached to improve performance in
case of multiple insertions

– Makes sure that snippets are not added to points that
are currently executing inside instrumentation

• Would cause re-writing of currently executing code
(segfault)

 Insertion may change process state
– Changes stackwalks for specific circumstances

• Eg. Active call site (on the stack),
– Modify stack frame to jump into instrumentation

upon return.

University of Maryland

“Catchup” Snippet Execution Analysis

 Problem:
– Atomic insertion of multiple snippets may

imply a required sequence of execution

•Might be violated, depending on where the
program is stopped

– Simple Example: (should do this in a diagram)
– Snip1: At entry of foo(), turn on timer t

– Snip2: At exit of foo(), turn off timer t

– The program is stopped at point P, just after the
entry point of foo()

– User inserts Snip1 and Snip2 in an atomic
operation at P and continues execution

– Snip2 is executed, without Snip1 having
preceeded it

University of Maryland

“Catchup” Analysis, con’t…

 Solution:
– We cannot predict the intent of user snippets
– But we CAN provide notification when any

snippets in an insertion set fall after the
current PC

 Requires full stack examination
– For each thread

•Much like we need to do for “active”
insertions

 Q: Necessity or Value-add?
– Most of the analysis for catchup is available

by other means in Dyninst
•Stack walks, address comparisons

University of Maryland

Added APIs

 Bpatch_process
– Bool wasRunningWhenAttached()

– Bool isMultithreadCapable()

– Bool finalizeInsertionSetWithCatchup(…)

– Bool oneTimeCodeAsync(…) (overload)

 Bpatch_snippetHandle
– getProcess()

 Bpatch_snippet
– getCostAtPoint(Bpatch_point *p)

University of Maryland

Dyninst Object
Serialization/Deserialization

Binary for performance, XML for
interoperability

University of Maryland

Why Binary Serialization (Caching)?
 Large Binaries

– We’ve had reports of existing Dyninst analyses taking a
prohibitively long time for large binaries (100s of MB)

• Eg. Full CFG analysis of large statically linked
scientific simulators

 More complex analyses are in the works
– Dyninst continues to offer newer and more expensive-

to-compute features
• Control Flow Graphs
• Data Slicing
• Stripped binary analysis

– Complex tools that use these analyses may find them
cost-prohibitive

• If they have to be re-performed every time the tool
is run

• Why not just save them?

University of Maryland

Caching policy
 Binary serialization should happen

transparently
– User-controlled on/off switch

• Bpatch_setCaching(bool)
– Granularity:

• One binary cache file per library / executable
– Checksum-based cache invalidation

• Rebuild cache for a given binary when the binary
changes

– Example: libc is large and expensive to fully analyze,
but it seldom changes

 Needs to support incremental analysis
– User calls to API functions trigger on-demand analyses
– Thus caching must also support incremental additions

• Eg. Successive, more refined tool runs

University of Maryland

Why XML Serialization?
 Create standardized representations for

– Basic symbol table information
– Abstract program objects

• Functions, loops, blocks….
– More complex binary analyses

• CFG, Data Slicing, etc…

 Exports Dyninst’s expertise for easy use by
– Other tools
– Interfacing the textual world

• Parse-able snapshots of programs
– Cross-platform aggregation of results

 Allows Dyninst to use output from other
tools in its own analyses
– Other tools may perform different and/or richer

analysis that would be valuable for Dyninst

University of Maryland

Unified serialization…

 Multiple types of serialization can share the
same infrastructure
– Leverage c++ and the Dyninst class hierarchy

– Keep serialization/deserialization process as
extensible as possible

• Add new types of output down the road?

 Desired behavior:
– serialize(filename, HierarchyRootNode, Translator);

• Serialize hierarchy into <filename>

• Traverse hierarchy in a (somewhat) generic manner

• Translator uses overloaded virtual translation
functions that can be specialized as needed

University of Maryland

… and deserialization

 Desired behavior: A simple interface
– deserialize(file, HierarchyRootNode,Translator)

 Requires either:
• Alternative constructor hierarchy

– Not consistent with extensibility requirement (need
one ctor per I/O format)

• Default constructor with subsequent setting of
values

– Functions that translate from serial stream to in-
memory object

– Child objects can be rebuilt hierarchically, but not all
data structures will be saved

• Hashes, indexing systems, etc.

• These must be rebuilt as part of deserialization

University of Maryland

Simple Example Using SymtabAPI

Dyn_Symbol func1

Dyn_Symbol func2

Dyn_Symbol funcN

Dyn_Symbol var1

Class Dyn_Symtab {

Vector<Dyn_Symbol> syms;

Bool is_a_out;

String fname;

};

University of Maryland

Simple Example Using SymtabAPI

Dyn_Symbol func1

Dyn_Symbol func2

Dyn_Symbol funcN

Dyn_Symbol var1

Class Dyn_Symtab {

Vector<Dyn_Symbol> syms;

Bool is_a_out;

String fname;

};

Serialize(symtab, toXML, f.xml)

f.xmlTranslator toXML

•Open File
•Write XML preamble

•open (f.xml)
•Start_symtab(f)

<Dyn_Symtab>

University of Maryland

Simple Example Using SymtabAPI

Dyn_Symbol func1

Dyn_Symbol func2

Dyn_Symbol funcN

Dyn_Symbol var1

Class Dyn_Symtab {

Vector<Dyn_Symbol> syms;

Bool is_a_out;

String fname;

};

Serialize(symtab, toXML, f.xml)

f.xmlTranslator toXML

•Write-out object fields (scalar)

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)
•Out_val(is_a_out)

<Dyn_Symtab>
 <name> nm </name>
 <isAOut> y </isAOut>

•Translator can output all
relevant types

University of Maryland

Simple Example Using SymtabAPI

Dyn_Symbol func1

Dyn_Symbol func2

Dyn_Symbol funcN

Dyn_Symbol var1

Class Dyn_Symtab {

Vector<Dyn_Symbol> syms;

Bool is_a_out;

String fname;

};

Serialize(symtab, toXML, f.xml)

f.xmlTranslator toXML

•Write-out object fields (vector)

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)
•Out_val(is_a_out)
•Out_vector(syms)

<Dyn_Symtab>
 <name> nm </name>
 <isAOut> y </isAOut>
 <Dyn_SymbolList>
 <nsyms> N+1 </nsyms>
 <Dyn_Symbol>
 <name> f1 </name>
 </Dyn_Symbol>

 <Dyn_Symbol>
 <name> v1 </name>
 </Dyn_Symbol>
 </Dyn_SymbolList>

•Helper functions take
care of container classes

•Foreach (syms)
• out_val(sym)

University of Maryland

Simple Example Using SymtabAPI

Dyn_Symbol func1

Dyn_Symbol func2

Dyn_Symbol funcN

Dyn_Symbol var1

Class Dyn_Symtab {

Vector<Dyn_Symbol> syms;

Bool is_a_out;

String fname;

};

Serialize(symtab, toXML, f.xml)

f.xmlTranslator toXML

•Finish up, close file

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)
•Out_val(is_a_out)
•Out_vector(syms)

<Dyn_Symtab>
 <name> nm </name>
 <isAOut> y </isAOut>
 <Dyn_SymbolList>
 <nsyms> N+1 </nsyms>
 <Dyn_Symbol>
 <name> f1 </name>
 </Dyn_Symbol>

 <Dyn_Symbol>
 <name> v1 </name>
 </Dyn_Symbol>
 </Dyn_SymbolList>
</Dyn_Symtab>

•Foreach (syms)
------out_val(sym)

•End_symtab(f)
•Close(f)

University of Maryland

Simple Example With Binary Output

Translator sequence is identical

(at the highest structural level)

Translator toXML

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)
•Out_val(is_a_out)
•Out_vector(syms)

•Foreach (syms)
------out_val(sym)

•End_symtab(f)
•Close(f)

Translator toBin

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)
•Out_val(is_a_out)
•Out_vector(syms)

•Foreach (syms)
------out_val(sym)

•End_symtab(f)
•Close(f)

University of Maryland

Simple Example With Binary Output

Lowest level data type outputs are
specialized per output format

Translator toXML

•open (f.xml)
•Start_symtab(f)
•Out_val(fname)

Translator toBin

•open (f.bin)
•Start_symtab(f)
•Out_val(fname)

TranslatorBase
Virtual out_val(name)

0x18 ; size
0xa3 ; data…
0x11
0x37
.
.

<name>
 nameValue
</name> Higher level outputs are generalized

by default, specialized as needed

University of Maryland

Recap

 Paradyn/Dyninst finally disentangled
– After many years and many incremental efforts

• (not just mine)

 Upcoming serialization / deserialization
features will:
– Improve tool performance, esp. for

• Large binaries

• Repeated expensive analyses

– Allow for easier interoperability with other tools via an
XML interface

• XML spec will likely resemble the internal Dyninst
class structure

• Please contact us if you have any specific instances
of interoperability we should take into account

University of Maryland

Questions?

