Scalable Failure Recovery for Tree-based Overlay Networks

Dorian C. Arnold University of Wisconsin

> Paradyn/Condor Week April 30 - May 3, 2007 Madison, WI

- Motivation
 - Address the likely frequent failures in extreme-scale systems
- State Compensation:
 - Tree-Based Overlay Networks (TBONs) failure recovery
 - Use surviving state to compensate for lost state
 - Leverage TBON properties
 - Inherent information redundancies
 - Weak data consistency model: convergent recovery
 - Final output stream converges to non-failure case
 - Intermediate output packets may differ
 - Preserves all output information

HPC System Trends

- 60% larger than 10³ processors
- 10 systems larger than 10⁴ processors

System	Location	Size	Time Frame
RoadRunner	LANL	~3.2×10 ⁴	2008
Jaguar	ORNL	~4.2×10 ⁴	2007
SunFire x64	TACC	~5.2×10 ⁴	2007
Cray XT4	ORNL	~2×10 ⁵	2008
BlueGene/P	ANL	~5×10 ⁵	2008
BlueGene/Q	ANL/LLNL	~10 ⁶	2010-2012

Large Scale System Reliability

covery

Current Reliability Approaches

- Fail-over (hot backup)
 - Replace failed primary w/ backup replica
 - Extremely high overhead: 100% minimum!
- Rollback recovery
 - Rollback to checkpoint after failure
 - May require dedicated resources and lead to overloaded network/storage resources

Our Approach: State Compensation

- Leverage inherent TBON redundancies
 - Avoid explicit replication
- No overhead during normal operation
- Rapid recovery
 - Limited process participation
- General recovery model
 - Applies to broad classes of computations

Background: TBŌN Model

A Trip Down Theory Lane

- Formal treatment provides confidence in recovery model
 - Reason about semantics before/after recovery
 - Recovery model doesn't change computation
 - Prove algorithmic soundness
 - Understand recovery model characteristics

 System reliability cannot depend upon intuition and ad-hoc reasoning

Theory Overview

 TBON end-to-end argument: output only depends on state at the end-points

 Can recover from lost of any internal filter and channel states

© 2007 Dorian C. Arnold

9

Theory Overview (cont'd)

TBON Output Theorem Output depends only on channel states and root filter state

All-encompassing Leaf State Theorem State at leaves subsume channel state (all state throughout TBŌN)

Result: only need leaf state to recover from root/internal failures

© 2007 Dorian C. Arnold

10

Theory Overview (cont'd)

TBON Output Theorem

All-encompassing Leaf State Theorem
 Builds on Inherent Redundancy Theorem

Background: Notation

Background: Data Aggregation

Filter function:

 $f(in_n(CP_i); fs_n(CP_i))! fout_n(CP_i); fs_{n+1}(CP_i)g$

Packets from input channels

Current filter stateput packet

Updated filter state

Background: Filter Function

- Built on state join and difference operators
- State join operator,
 - Update current state by merging inputs $in_n(CP_i)tfs_n(CP_i)!fs_{n+1}(CP_i)$

at b= bt a

- Commutative:
- (at b)t c = at (bt c)
- Associative:

at a = a

- Idempotent:

Background: Descendant Notation

fs($desc^k(CP_i)$): join of filter states of specified processes cs($desc^k(CP_i)$): join of channel states of specified processes

TBŌN Properties: Inherent Redundancy Theorem

The join of a CP's filter state with its pending channel state equals the join of the CP's children's filter states.

The join of a CP's filter state with its pending channel state equals the join of the CP's children's filter states.

TBŌN Properties: All-encompassing Leaf State Theorem

The join of the states from a sub-tree's leaves equals the join of the states at the sub-tree's root and all in-flight data

TBON Properties: All-encompassing Leaf State Theorem

The join of the states from a sub-tree's leaves equals the join of the states at the sub-tree's root and all in-flight data

From Inherent Redundancy Theorem: $f s(desc^{1}(CP_{0})) = f s(desc^{0}(CP_{0})) t cs(desc^{0}(CP_{0}))$ $f s(desc^{2}(CP_{0})) = f s(desc^{1}(CP_{0})) t cs(desc^{1}(CP_{0}))$ $f s(desc^{k}(CP_{0})) = f s(desc^{k} (CP_{0})) t cs(desc^{k} (CP_{0}))$

 $f s(desck(CP_0)) = f s(CP_0) t cs(desc^0(CP_0)) t ::: t cs(desck_i (CP_0))$

State Composition

- Motivated by previous theory
 - State at leaves of a sub-tree subsume state throughout the higher levels
- Compose state below failure zones to compensate for lost state
- Addresses root and internal failures
- State decomposition for leaf failures
 - Generate child state from parent and sibling's

State Composition

If CP_j fails, all state associated with CP_i is lost

TBŌN Output Theorem: Output depends only on channel states and root filter state

All-encompassing Leaf State Theorem: State at leaves subsume channel state (all state throughout TBON)

Therefore, leaf states can replace lost channel state without changing computation's semantics

State Composition Algorithm

if detect child failure
 remove failed child from input list
 resume filtering from non-failed children
endif

if detect parent failure
 do
 determine/connect to new parent
 while failure to connect

propagate filter state to new parent
endif

Para dyn

Summary: Theory can be Good!

- Allows us to make recovery guarantees
- Yields sensible, understandable results
- Better-informed implementation
 - What needs to be implemented
 - What does not need to be implemented

References

- Arnold and Miller, "State Compensation: A Scalable Failure Recovery Model for Tree-based Overlay Networks", UW-CS Technical Report, February 2007.
- Other papers and software: http://www.paradyn/org/mrnet

Bonus Slides!

State Composition Performance

recovery latency = (connection establishment £ max adoptees)+ - output overhead -

LAN connection establishment: ~1 millisecond

Failure Model

- Fail-stop
- Multiple, simultaneous failures
 Failure zones: regions of contiguous failure
- Application process failures
 May view as sequential data sources/sink
 - Amenable to basic reliability mechanisms
 - Simple restart, sequential checkpointing

