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Overview
• Motivation

– Address the likely frequent failures in extreme-scale systems

• State Compensation:
– Tree-Based Overlay Networks (TBŌNs) failure recovery

– Use surviving state to compensate for lost state

– Leverage TBŌN properties
• Inherent information redundancies

– Weak data consistency model: convergent recovery
• Final output stream converges to non-failure case
• Intermediate output packets may differ
• Preserves all output information
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HPC System Trends

2007~4.2x104ORNLJaguar

2008~5x105ANLBlueGene/P
2010-2012~106ANL/LLNLBlueGene/Q

2008~2x105ORNLCray XT4
2007~5.2x104TACCSunFire x64

2008~3.2x104LANLRoadRunner
Time FrameSizeLocationSystem

•  60% larger than 103 processors

• 10 systems larger than 104 processors 
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Current Reliability Approaches
• Fail-over (hot backup)

– Replace failed primary w/ backup replica
– Extremely high overhead: 100% minimum!

• Rollback recovery
– Rollback to checkpoint after failure
– May require dedicated resources and lead

to overloaded network/storage resources
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Our Approach:
State Compensation

• Leverage inherent TBŌN redundancies
– Avoid explicit replication

• No overhead during normal operation
• Rapid recovery

– Limited process participation
• General recovery model

– Applies to broad classes of computations
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Background: TBŌN Model
FE Application Front-end
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TBŌN Input

TBŌN Output

CP0

Tree of
Communication

Processes

CP1 CP2

CP CP CP CP

CP CP

…

…
Packet

Filter
Filter
State

CP0

CP1 CP2

CP CP CP CP

CP CP



© 2007 Dorian C. Arnold Scalable TBŌN Failure Recovery8

A Trip Down Theory Lane
• Formal treatment provides confidence in

recovery model
– Reason about semantics before/after recovery

• Recovery model doesn’t change computation
– Prove algorithmic soundness
– Understand recovery model characteristics

• System reliability cannot depend upon
intuition and ad-hoc reasoning
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Theory Overview
• TBŌN end-to-end

argument: output only
depends on state at the
end-points

• Can recover from lost of
any internal filter and
channel states

CPi

CPk CPl

CPj

channel state

channel state

filter state
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Theory Overview (cont’d)

CPi

CPk CPl

CPj

channel state

channel state

filter state

TBŌN Output Theorem
Output depends only on channel
states and root filter state

All-encompassing Leaf State Theorem
State at leaves subsume channel state
(all state throughout TBŌN)

Result: only need leaf state to recover
from root/internal failures



© 2007 Dorian C. Arnold Scalable TBŌN Failure Recovery11

Theory Overview (cont’d)
• TBON Output Theorem

• All-encompassing Leaf State Theorem
– Builds on Inherent Redundancy Theorem
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Background: Notation

CPi

CPk CPl

CPj

csn,p( CPi )

cs( CPj )

fsp(CPj )

fsn(CPi )
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Background: Data Aggregation
Filter function:

Packets from
input channels Current filter stateOutput packet Updated filter state

f (inn (CPi ); f sn (CPi )) ! f outn (CPi ); f sn + 1(CPi )g
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Background: Filter Function
• Built on state join and difference operators
• State join operator,

– Update current state by merging inputs

– Commutative:

– Associative:

– Idempotent:

i nn (CPi ) t f sn (CPi ) ! f sn + 1(CPi )

a t a = a

(a t b) t c = a t (bt c)

a t b = bt a

t
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Background: Descendant Notation
CPi

CP CP

CP CP CP CP

CP CP

…

…

desc0(CPi )

desc1(CPi )

desck(CPi )

desck-1(CPi )

fs( desck(CPi ) ): join of filter states of specified processes
cs( desck(CPi ) ): join of channel states of specified processes
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TBŌN Properties:
Inherent Redundancy Theorem

The join of a CP’s filter state with its pending channel state
equals the join of the CP’s children’s filter states.

CP1 CP2

CP0

fsn(CP0 ) fsq(CP2 )fsp(CP1 )csn,p(CP0 ) csn,q(CP0 ) =
ttt

The join of a CP’s filter state with its pending channel state
equals the join of the CP’s children’s filter states.
The join of a CP’s filter state with its pending channel state
equals the join of the CP’s children’s filter states.
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TBŌN Properties:
Inherent Redundancy Theorem

The join of a CP’s filter state with its pending channel state
equals the join of the CP’s children’s filter states.

CP1 CP2

CP0

fs( desc1(CP0 ))cs( desc0(CP0)) =fs( desc0(CP0 ))
t
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TBŌN Properties:
All-encompassing Leaf State Theorem
The join of the states from a sub-tree’s leaves equals

the join of the states at the sub-tree’s root and all in-flight data

CP5 CP6

CP2

CP0

CP3 CP4

CP1

The join of the states from a sub-tree’s leaves equals
the join of the states at the sub-tree’s root and all in-flight data
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TBŌN Properties:
All-encompassing Leaf State Theorem
The join of the states from a sub-tree’s leaves equals

the join of the states at the sub-tree’s root and all in-flight data

From Inherent Redundancy Theorem:

f s(desck (CP0)) = f s(desck¡ 1(CP0)) t cs(desck¡ 1(CP0))…

f s(desck (CP0)) = f s(CP0) t cs(desc0(CP0)) t : : : t cs(desck¡ 1(CP0))

f s(desc2(CP0)) = f s(desc1(CP0)) t cs(desc1(CP0))
f s(desc1(CP0)) = f s(desc0(CP0)) t cs(desc0(CP0))
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State Composition
• Motivated by previous theory

– State at leaves of a sub-tree subsume state
throughout the higher levels

• Compose state below failure zones to
compensate for lost state

• Addresses root and internal failures

• State decomposition for leaf failures
– Generate child state from parent and sibling’s
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State Composition

CPi

CPk CPl

CPj

cs( CPi , m)

cs( CPj )

fs(CPj )

If CPj fails, all state associated with
CPj is lost

TBŌN Output Theorem:
Output depends only on channel
states and root filter state

All-encompassing Leaf State Theorem:
State at leaves subsume channel state
(all state throughout TBŌN)

Therefore, leaf states can replace
lost channel state without changing
computation’s semantics
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State Composition Algorithm
 if detect child failure
     remove failed child from input list
     resume filtering from non-failed children
 endif

 if detect parent failure
     do
         determine/connect to new parent
     while failure to connect

     propagate filter state to new parent
 endif
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Summary: Theory can be Good!
• Allows us to make recovery guarantees

• Yields sensible, understandable results

• Better-informed implementation
– What needs to be implemented
– What does not need to be implemented
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Bonus Slides!
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State Composition Performance

LAN connection establishment: ~1 millisecond

r ecover y latency = (connection establi shment £ max adoptees)+
output over head
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Failure Model
• Fail-stop

• Multiple, simultaneous failures
– Failure zones: regions of contiguous failure

• Application process failures
– May view as sequential data sources/sink
– Amenable to basic reliability mechanisms

• Simple restart, sequential checkpointing


