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Motivation

• Problems are difficult to reproduce
– Intermittent or environment-specific (anomalies)
– “Rare but dangerous”

• Systems are large collections of black boxes
– Many distributed components, different vendors
– Little support for monitoring/debugging

• Collected data are difficult to analyze
– High volume
– High concurrency

Diagnosis of production systems is hard
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E-commerce systems
• Multi-tier: Clients, Web, DB servers, Business Logic
• Hard to debug: vendors have SWAT teams to fix bugs

– Some companies get paid $1000/hour
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Common Environments

• Clusters and HPC systems
– Large-scale: failures happen often (MTTF: 30 – 150 hours)
– Complex: processing a Condor job involves 10+ processes

• The Grid: Beyond a single supercomputer
– Decentralized
– Heterogeneous: different schedulers, architectures

• Hard to detect failures, let alone debug them
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Approach

• User provides activation and deactivation events
• Agent propagates through the system

– Collects distributed control-flow traces
• Framework analyzes traces automatically

– Separates traces into flows (e.g., HTTP requests)
– Identifies anomalous flows and the causes of anomalies
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Self-Propelled Instrumentation:
Overview

• The agent sits inside the process
– Agent = small code fragment

• The agent propagates through the code
– Receives control
– Inserts calls to itself ahead of the control flow
– Crosses process, host, and kernel boundaries
– Returns control to the application

• Key features
– On-demand distributed deployment
– Application-agnostic distributed deployment
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Dynamic, low-overhead control flow tracing



Cross-process Propagation
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On-demand distributed deployment



-9- Distributed Self-Propelled Instrumentation

PDG for a Simple Socket
Program

• PDG: Parallel Dynamic Program Dependence Graph
– Nodes: observed events
– Intra-process edges: link consecutive events
– Cross-process edges: link sends with matching recvs

• PDGs from real systems are more complex

start connect

accept recv send close

send recv stop
client

server
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PDG for One Condor Job
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Automated Diagnosis

• Challenge for manual examination
– High volume of trace data

• Automated Approach: find anomalies
– Normal behavior often is repetitive
– Pathological problems often are easy to find
– Focus on anomalies: infrequent bad behavior
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Overview of the Approach

• Obtain a collection of control flows
– E.g., per-request traces in a Web server

• Anomaly detection: find an unusual flow
– Summarize each flow as a profile
– Assign suspect scores to profiles

• Root cause analysis: find why a profile is anomalous
– Function responsible for the anomaly
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Anomaly Detection: Distributed Profiles
main
entry

foo
entry

send foo
exit

main
exit

recv bar
exit

main
exit
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h

pt(h) = <0.4, 0.3, 0.3>
tmain tfoo

vi = 1 if function fi was
called; vi = 0 otherwise

pv = <v1, …, vF>Coverage

Concatenate pt and pspc = <t1,…, s1,…>Composite

si = normalized number of
bytes sent by fi

ps = <s1, …, sF>Communication

ti = normalized time spent
in function fi

pt = <t1, …, tF>Time

tbar
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•σ(g) = distance to a common or known-normal node
•Can detect multiple anomalies
•Does not require known examples of prior runs

– Unsupervised algorithm
•Can use such examples for fewer false positives

– One-class ranking algorithm

g

h

σ(g,gk)gk

Anomaly Detection: Suspect Scores
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Finding the Cause: Coverage
Analysis

• Find call paths taken only in the anomalous flow
– Δ = {main→A, main→A→B, main→A→C, main→D→E, main→D→C}

• Correlated with the failure
• Likely location of the problem
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• Limitation of coverage analysis: too many reports
– Noise in the trace, different input, workload

• Can eliminate effects of earlier differences
– Retain the shortest prefixes in Δ
– Merge leaves

• Can rank paths by the time of occurrence or length
– Put the cause ahead of the symptoms or simplify manual examination
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PDG for One Condor Job
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PDG for Two Condor Jobs
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Separating Concurrent Flows

• Concurrency produces interleaved traces
– Servers switch from one request to another

• Analyzing interleaved traces is difficult
– Irrelevant details from other users
– High trace variability → everything is an

anomaly
• Solution: separate traces into flows
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Flow-Separation Algorithm

• Decide when two events are in the same flow
– (send → recv) and (local → non-recv)

• Remove all other edges
• Flow = events reachable from a start event
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• Rules violated for programs with queues
– enQ1 and deQ1 must belong to the same flow
– Assigned to different flows by our application-

independent algorithm

client1

client2
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enQ1

enQ2

deQ1

deQ2

Limitation
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client1

client2

server
enQ1

enQ2

deQ1

deQ2

Addressing the Limitation:
Directives

• Pair events using <evt,joinattr> custom directives
• Evt: location in the code
• Joinattr: related events have equal attr values
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Experimental Study: Condor

Job description

Condor_submit

schedd

shadow

Job output

negotiator

collector

startd

starter

user job

Submitting host Central Manager Execution Host
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Job-run-twice Problem

• Fault handling in Condor
– Any component can fail
– Detect the failure
– Restart the component

• Bug in the shadow daemon
– Symptoms: user job ran twice
– Cause: intermittent crash after shadow

reported successful job completion
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Debugging Approach
• Insert an intermittent fault into shadow
• Submit a cluster of several jobs

– Start tracing condor_submit
– Propagate into schedd, shadow, collector,

negotiator, startd, starter, mail, the user job
• Separate the trace into flows

– Processing each job is a separate flow
• Identify anomalous flow

– Use unsupervised and one-class algorithms
• Find the cause of the anomaly
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Finding Anomalous Flow
Unsupervised scores
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• Suspect scores for composite profiles
• Without prior knowledge, Flows 1 and 5 are unusual

– Infrequent but normal activities
– Use prior known-normal traces to filter them out

• Flow 3 is a true anomaly
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Finding the Cause
• Computed coverage difference

– 900+ call paths
• Filtered the differences

– 37 call paths left
• Ranked the differences

– 14th path by time / 1st by length as called by schedd:
main
→ DaemonCore::Driver
→ DaemonCore::HandleDC_SERVICEWAITPIDS
→ DaemonCore::HandleProcessExit
→ Scheduler::child_exit
→ DaemonCore::GetExceptionString

– Called when shadow terminates with a signal
• Last function called by shadow = failure location
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Conclusion
• Self-propelled instrumentation

– On-demand, low-overhead control-flow tracing
– Across process and host boundaries

• Automated root cause analysis
– Finds anomalous control flows
– Finds the causes of anomalies

• Separation of concurrent flows
– Little application-specific knowledge
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