
Distributed Self-Propelled
Instrumentation

Alex Mirgorodskiy
VMware, Inc.

Barton P. Miller
University of Wisconsin-Madison

-2- Distributed Self-Propelled Instrumentation

Motivation

• Problems are difficult to reproduce
– Intermittent or environment-specific (anomalies)
– “Rare but dangerous”

• Systems are large collections of black boxes
– Many distributed components, different vendors
– Little support for monitoring/debugging

• Collected data are difficult to analyze
– High volume
– High concurrency

Diagnosis of production systems is hard

-3- Distributed Self-Propelled Instrumentation

E-commerce systems
• Multi-tier: Clients, Web, DB servers, Business Logic
• Hard to debug: vendors have SWAT teams to fix bugs

– Some companies get paid $1000/hour

Internet

proxy
server

client1

client2

client3

client4

fir
ew
al
l

Load
balancer W2

A2

D2

W1

W3

A3

A1
D1

Common Environments

Web
Server
processes

App
Server
processes

Database
Server
processes

-4- Distributed Self-Propelled Instrumentation

Common Environments

• Clusters and HPC systems
– Large-scale: failures happen often (MTTF: 30 – 150 hours)
– Complex: processing a Condor job involves 10+ processes

• The Grid: Beyond a single supercomputer
– Decentralized
– Heterogeneous: different schedulers, architectures

• Hard to detect failures, let alone debug them

Job description

submit

schedd

shadow

negotiator

collector

startd

starter

user job

Submitting host Central
Manager

Execution Host

-5- Distributed Self-Propelled Instrumentation

Approach

• User provides activation and deactivation events
• Agent propagates through the system

– Collects distributed control-flow traces
• Framework analyzes traces automatically

– Separates traces into flows (e.g., HTTP requests)
– Identifies anomalous flows and the causes of anomalies

Host A Host BProcess P

Process Q

Agent

network

Process R

-6- Distributed Self-Propelled Instrumentation

Self-Propelled Instrumentation:
Overview

• The agent sits inside the process
– Agent = small code fragment

• The agent propagates through the code
– Receives control
– Inserts calls to itself ahead of the control flow
– Crosses process, host, and kernel boundaries
– Returns control to the application

• Key features
– On-demand distributed deployment
– Application-agnostic distributed deployment

a.out
bar

8430:
8431:
8433:
8444:
8446:
8449:
844b:
844c:

push
mov
...
call
mov
xor
pop
ret

foo %ebp
%esp,%ebp

*%eax
%ebp,%esp
%eax,%eax
%ebp

call
call
jmp

Patch1
instrument(foo)
foo
0x8405

instrumenter.so

call
call
jmp

instrument(%eax)
*%eax
0x8446

Patch2

patch
jmp

jmp

jmp

%ebp
%esp,%ebp

foo
%ebp,%esp
%ebp

push
mov
...
call
mov
pop
ret

83f0:
83f1:
83f3:
8400:
8405:
8413:
8414:

InjectActivatePropagateAnalyze: build
call graph/CFG
with Dyninst

Within-process Propagation

Dynamic, low-overhead control flow tracing

Cross-process Propagation

send(msg)

get peer
inject
send(mark)
send(msg)
jmp back

a.out agent.so

Process P

agent.so a.out

recv(msg)

if at mark
 propagate
recv(msg)
jmp back

Process Q

msg mark

recv(portQ)
pidQ=port2pid(portQ)

hijack(pidQ, agent.so)
send(done)

spDaemon

socket

Host BHost A

On-demand distributed deployment

-9- Distributed Self-Propelled Instrumentation

PDG for a Simple Socket
Program

• PDG: Parallel Dynamic Program Dependence Graph
– Nodes: observed events
– Intra-process edges: link consecutive events
– Cross-process edges: link sends with matching recvs

• PDGs from real systems are more complex

start connect

accept recv send close

send recv stop
client

server

-10- Distributed Self-Propelled Instrumentation

PDG for One Condor Job

-11- Distributed Self-Propelled Instrumentation

Automated Diagnosis

• Challenge for manual examination
– High volume of trace data

• Automated Approach: find anomalies
– Normal behavior often is repetitive
– Pathological problems often are easy to find
– Focus on anomalies: infrequent bad behavior

-12- Distributed Self-Propelled Instrumentation

Overview of the Approach

• Obtain a collection of control flows
– E.g., per-request traces in a Web server

• Anomaly detection: find an unusual flow
– Summarize each flow as a profile
– Assign suspect scores to profiles

• Root cause analysis: find why a profile is anomalous
– Function responsible for the anomaly

Fl
ow

s

Φ1

Φ2

Φ3

Φ4
cause

-13- Distributed Self-Propelled Instrumentation

Anomaly Detection: Distributed Profiles
main
entry

foo
entry

send foo
exit

main
exit

recv bar
exit

main
exit

1s 1s 2s 2s

3s 1s

h

pt(h) = <0.4, 0.3, 0.3>
tmain tfoo

vi = 1 if function fi was
called; vi = 0 otherwise

pv = <v1, …, vF>Coverage

Concatenate pt and pspc = <t1,…, s1,…>Composite

si = normalized number of
bytes sent by fi

ps = <s1, …, sF>Communication

ti = normalized time spent
in function fi

pt = <t1, …, tF>Time

tbar

-14- Distributed Self-Propelled Instrumentation

•σ(g) = distance to a common or known-normal node
•Can detect multiple anomalies
•Does not require known examples of prior runs

– Unsupervised algorithm
•Can use such examples for fewer false positives

– One-class ranking algorithm

g

h

σ(g,gk)gk

Anomaly Detection: Suspect Scores

-15- Distributed Self-Propelled Instrumentation

Finding the Cause: Coverage
Analysis

• Find call paths taken only in the anomalous flow
– Δ = {main→A, main→A→B, main→A→C, main→D→E, main→D→C}

• Correlated with the failure
• Likely location of the problem

main

D

main

A

B C

Anom Norm

D

E C

main

A

B C

Δ = Anom - Norm

D

E C

-16- Distributed Self-Propelled Instrumentation

• Limitation of coverage analysis: too many reports
– Noise in the trace, different input, workload

• Can eliminate effects of earlier differences
– Retain the shortest prefixes in Δ
– Merge leaves

• Can rank paths by the time of occurrence or length
– Put the cause ahead of the symptoms or simplify manual examination

main

A

B C

Δ = Anom - Norm

D

E C

main

A

Δ’

D

E,C

Finding the Cause: Coverage
Analysis

-17- Distributed Self-Propelled Instrumentation

PDG for One Condor Job

-18- Distributed Self-Propelled Instrumentation

PDG for Two Condor Jobs

-19- Distributed Self-Propelled Instrumentation

Separating Concurrent Flows

• Concurrency produces interleaved traces
– Servers switch from one request to another

• Analyzing interleaved traces is difficult
– Irrelevant details from other users
– High trace variability → everything is an

anomaly
• Solution: separate traces into flows

-20- Distributed Self-Propelled Instrumentation

Flow-Separation Algorithm

• Decide when two events are in the same flow
– (send → recv) and (local → non-recv)

• Remove all other edges
• Flow = events reachable from a start event

click1 connect
send
URL

recv
page

show
page

select accept

select accept

select recv
URL

send
page

select
recv
URL

send
page

click2 connect send
URL

recv
page

show
page

Web
server

browser2

browser1

-21- Distributed Self-Propelled Instrumentation

• Rules violated for programs with queues
– enQ1 and deQ1 must belong to the same flow
– Assigned to different flows by our application-

independent algorithm

client1

client2

server
enQ1

enQ2

deQ1

deQ2

Limitation

-22- Distributed Self-Propelled Instrumentation

client1

client2

server
enQ1

enQ2

deQ1

deQ2

Addressing the Limitation:
Directives

• Pair events using <evt,joinattr> custom directives
• Evt: location in the code
• Joinattr: related events have equal attr values

-23- Distributed Self-Propelled Instrumentation

Experimental Study: Condor

Job description

Condor_submit

schedd

shadow

Job output

negotiator

collector

startd

starter

user job

Submitting host Central Manager Execution Host

-24- Distributed Self-Propelled Instrumentation

Job-run-twice Problem

• Fault handling in Condor
– Any component can fail
– Detect the failure
– Restart the component

• Bug in the shadow daemon
– Symptoms: user job ran twice
– Cause: intermittent crash after shadow

reported successful job completion

-25- Distributed Self-Propelled Instrumentation

Debugging Approach
• Insert an intermittent fault into shadow
• Submit a cluster of several jobs

– Start tracing condor_submit
– Propagate into schedd, shadow, collector,

negotiator, startd, starter, mail, the user job
• Separate the trace into flows

– Processing each job is a separate flow
• Identify anomalous flow

– Use unsupervised and one-class algorithms
• Find the cause of the anomaly

-26- Distributed Self-Propelled Instrumentation

Finding Anomalous Flow
Unsupervised scores

0

0.5

1

1.5

2

flow1 flow2 flow3 flow4 flow5

One-class scores

0

0.1

0.2

0.3

0.4

flow1 flow2 flow3 flow4 flow5

• Suspect scores for composite profiles
• Without prior knowledge, Flows 1 and 5 are unusual

– Infrequent but normal activities
– Use prior known-normal traces to filter them out

• Flow 3 is a true anomaly

-27- Distributed Self-Propelled Instrumentation

Finding the Cause
• Computed coverage difference

– 900+ call paths
• Filtered the differences

– 37 call paths left
• Ranked the differences

– 14th path by time / 1st by length as called by schedd:
main
→ DaemonCore::Driver
→ DaemonCore::HandleDC_SERVICEWAITPIDS
→ DaemonCore::HandleProcessExit
→ Scheduler::child_exit
→ DaemonCore::GetExceptionString

– Called when shadow terminates with a signal
• Last function called by shadow = failure location

-28- Distributed Self-Propelled Instrumentation

Conclusion
• Self-propelled instrumentation

– On-demand, low-overhead control-flow tracing
– Across process and host boundaries

• Automated root cause analysis
– Finds anomalous control flows
– Finds the causes of anomalies

• Separation of concurrent flows
– Little application-specific knowledge

-29- Distributed Self-Propelled Instrumentation

Related Publications
• A.V. Mirgorodskiy and B.P. Miller, “Diagnosing Distributed

Systems with Self-Propelled Instrumentation", Under
submission,
– ftp://ftp.cs.wisc.edu/paradyn/papers/Mirgorodskiy07DistDiagnosis.

pdf
• A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller, “Problem

Diagnosis in Large-Scale Computing Environments", SC’06,
Tampa, FL, November 2006,
– ftp://ftp.cs.wisc.edu/paradyn/papers/Mirgorodskiy06ProblemDiagno

sis.pdf
• A.V. Mirgorodskiy and B.P. Miller, "Autonomous Analysis of

Interactive Systems with Self-Propelled Instrumentation",
12th Multimedia Computing and Networking (MMCN 2005),
San Jose, CA, January 2005,
– ftp://ftp.cs.wisc.edu/paradyn/papers/Mirgorodskiy04SelfProp.pdf

