Distributed Self-Propelled
Instrumentation

Alex Mirgorodskiy

VMware, Inc.

Barton P. Miller

University of Wisconsin-Madison

Motivation

Diagnosis of production systems is hard

* Problems are difficult to reproduce
- Intermittent or environment-specific (anomalies)
- "Rare but dangerous”

+ Systems are large collections of black boxes

- Many distributed components, different vendors
- Little support for monitoring/debugging

- Col
- F

- F

ected data are difficult to analyze
igh volume
igh concurrency

Distributed Self-Propelled Instrumentation

Common Environments

client,

Internet

firewall

client,

client, J& B

iWeb iApp | Database
Server Server Server
E-commerce sys’rems pProcesses processes processes

* Multi-tier: Clients, Web, DB servers, Business Logic
* Hard to debug: vendors have SWAT teams to fix bugs
- Some companies get paid $1000/hour

-3- Distributed Self-Propelled Instrumentation

Common Environments

Central Execution Host

Submitting host
Manager

Clusters and HPC systems

- Large-scale: failures happen often (MTTF: 30 - 150 hours)
- Complex: processing a Condor job involves 10+ processes
The Grid: Beyond a single supercomputer

- Decentralized

- Heterogeneous: different schedulers, architectures

Hard to detect failures, let alone debug them

-4- Distributed Self-Propelled Instrumentation

Approach

Process P

S-S
?

S

network

\. Process Q Process R

- User provides activation and deactivation events

- Agent propagates through the system
- Collects distributed control-flow traces

* Framework analyzes traces automatically
- Separates traces into flows (e.g., HTTP requests)
- Identifies anomalous flows and the causes of anomalies

-b- Distributed Self-Propelled Instrumentation

Self-Propelled Instrumentation:
Overview

+ The agent sits inside the process
- Agent = small code fragment

+ The agent propagates through the code

- Receives control

- Inserts calls to itself ahead of the control flow
- Crosses process, host, and kernel boundaries

- Returns control to the application

- Key features
- On-demand distributed deployment
- Application-agnostic distributed deployment

-6- Distributed Self-Propelled Instrumentation

Within-process Propagation

instrumenter.so

bar 83f0: push %ebp
83fl: mov $%$esp, %ebp

83£3: ... : call instrument (£oo)
cav VI

8405: mov %ebp,%esp jmp 0x84U5
8413: pop %ebp

8414: ret

8430: push %ebp

8431: mov %esp, %ebp Patch?2

8433: ... ' call instrument (%eax)

call *%eax

8446: mov %ebp, %esp jmp 0x8446
8449: xor %eax, %eax

844b: pop %ebp

844c: ret

Dynamic, low-overhead control flow tracing

Cross-process Propagation
Host A Host B

spDaemon

recv (portQ) R
pidQ=port2pid (portQ)

hijack (pidQ, agent.so)
9 f send (done) D

Process P Process Q

/

get peer
inject
send (mark)
send (msq)
jmp back

if at mark
propagate
recv (msQg)
jmp back

On-demand distributed deployment

PDG for a Simple Socket
Program

start connect send recv stop

client © K X] 22
server »®

accept recv send close

* PDG: Parallel Dynamic Program Dependence Graph
- Nodes: observed events
- Intra-process edges: link consecutive events
- Cross-process edges: link sends with matching recvs

* PDGs from real systems are more complex

Distributed Self-Propelled Instrumentation

ne Condor Job

mm 77”‘TH m TH"*'"" T

Automated Diagnhosis

* Challenge for manual examination

- High volume of trace data

» Automated Approach: find anomalies

- Normal behavior often is repetitive

- Pathological problems often are easy to find
- Focus on anomalies: infrequent bad behavior

Distributed Self-Propelled Instrumentation

Overview of the Appr'oach

- Obtain a collection of control flows
- E.g., per-request traces in a Web server

* Anomaly detection: find an unusual flow
- Summarize each flow as a profile
- Assigh suspect scores to profiles

* Root cause analysis: find why a profile is anomalous
- Function responsible for the anomaly

Distributed Self-Propelled Instrumentation

Anomaly Detection: Distributed Profiles

main foo send
entry entry
© »®

foo main
exit exit

1s 1s

>Q@ X
2S t

main tfoo tbar

p'(h) =<0.4,0.3, 0.3>

1s

@ —>
bar main

exit exit

t. = normalized time spent
in function f,

Communication

s. = hormalized number of
bytes sent by f.

Composite

Concatenate pt and p*

Coverage

v, = 1 if function f, was
called; v. = 0 otherwise

Distributed Self-Propelled Instrumentation

Anomaly Detection: Suspect Scores

*o(g) = distance to a common or known-normal node
» Can detect multiple anomalies

* Does not require known examples of prior runs
- Unsupervised algorithm

* Can use such examples for fewer false positives
- One-class ranking algorithm

-14- Distributed Self-Propelled Instrumentation

Finding the Cause: Coverage
Analysis

Anom Norm A = Anom - Norm

LA

Find call paths taken only in the anomalous flow
- A ={main— A, main+A—B, main>A—C, main—»D—E, main—=D—C}

- Correlated with the failure

» Likely location of the problem

-15- Distributed Self-Propelled Instrumentation

Finding the Cause: Coverage
Analysis

A’ A = Anom - Norm

o - @

Limitation of coverage analysis: too many reports
- Noise in the trace, different input, workload
Can eliminate effects of earlier differences

- Retain the shortest prefixes in A
- Merge leaves

Can rank paths by the time of occurrence or length
- Put the cause ahead of the symptoms or simplify manual examination

-16- Distributed Self-Propelled Instrumentation

ne Condor Job

mm 77”‘TH m TH"*'"" T

PDG for Two Condor Jobs

T“f 'VWFTWH\”T TR Wl “ m F
T A A I W IR T ‘ T

Il
1 il
T At AR | \w‘ ‘u
H‘\‘ i [[ttt HM\ “\N‘ i il “‘ i | \‘
d{lihlw11}‘1“11‘\:‘\1‘\‘1‘”‘i”‘“M‘H‘l‘\‘ b i |

il H I
A
— T i
H“l‘ Il ‘I Hmr' “‘i U\ w“ \”‘ Wh w“(”‘“”“\““‘“” MHW mM <“\ [| [“H | ‘\ "h‘
Uiz AR TR 11 ! LR D
“l‘w‘”\“w\’: !‘1’\\‘1’1\“‘”‘”‘““w i ‘“ ”\‘”\\’ ‘“}‘;‘“‘{\!‘ il ‘!‘r:‘wl'lwl”i‘w‘l‘& M‘ A ‘ : P ‘ “ | ‘

H | HW\M il

| i
w“‘w‘\w\ A ‘;f I w\ : | M |

i “\l H “‘ i
il JLL“‘HJMMNMM‘M\”WMJ it ”“‘ “‘ !

| \ |
Mw‘\

H\
H\

|
|
WLl

H

\'

Separating Concurrent Flows

» Concurrency produces interleaved traces
- Servers switch from one request to another

» Analyzing interleaved traces is difficult
- Trrelevant details from other users

- High trace variability = everything is an
anomaly

» Solution: separate traces into flows

Distributed Self-Propelled Instrumentation

Flow-Separation Algorithm

. send (=10% show
click, connect URL page paqe
® »@ %

browser,
recv send
select accept select URL page

Web - >0

/
SeIVET “select accept select recv send
URL page
browser, ® >0

send recv
URL page

- Decide when two events are in the same flow
- (send — recv) and (local = non-recv)
* Remove all other edges

- Flow = events reachable from a start event

click, connect

-20- Distributed Self-Propelled Instrumentation

Limitation

client,
enQ, E! deQ,
server ® >® >0 >® »®
/ enQ, deQ,
client,

* Rules violated for programs with queues
- enQ; and deQ; must belong to the same flow

- Assigned to different flows by our application-
independent algorithm

-21- Distributed Self-Propelled Instrumentation

Addressing the Limitation:
Directives

client,
server [L

client,

» Pair events using <evt,joinattr> custom directives
» Evt: location in the code
- Joinattr: related events have equal attr values

Distributed Self-Propelled Instrumentation

Experimental Study: Condor

Submitting host Central Manager Execution Host

0
- P
O

Job description

0
i 0
0 0

Job output

Distributed Self-Propelled Instrumentation

Job-run-twice Problem

* Fault handling in Condor

- Any component can fail
- Detect the failure
- Restart the component

* Bug in the shadow daemon
- Symptoms: user job ran twice

- Cause: intermittent crash after shadow
reported successful job completion

Distributed Self-Propelled Instrumentation

Debugging Approach

- Insert an intermittent fault into shadow

» Submit a cluster of several jobs
- Start tracing condor_submit

- Propagate into schedd, shadow, collector,
negotiator, startd, starter, mail, the user job

» Separate the trace into flows
- Processing each job is a separate flow

» Identify anomalous flow
- Use unsupervised and one-class algorithms

* Find the cause of the anomaly

Distributed Self-Propelled Instrumentation

Finding Anomalous Flow

Unsupervised scores 04 One-class scores

0.3
0.2

o | 1 |
07 \ \ \ \

flowl flow2 flow3 flow4 flowd flowl flow2 flow3 flow4 flow5

» Suspect scores for composite profiles

» Without prior knowledge, Flows 1 and 5 are unusual
- Infrequent but normal activities
- Use prior known-normal traces to filter them out

* Flow 3 is a true anomaly

-26- Distributed Self-Propelled Instrumentation

Finding the Cause

Computed coverage difference
- 900+ call paths

Filtered the differences
- 37 call paths left

Ranked the differences
- 14th path by time / 15 by length as called by schedd:

main
— DaemonCore::Driver
— DaemonCore::HandleDC_SERVICEWAITPIDS
— DaemonCore::HandleProcessExit
— Scheduler::child_exit
— DaemonCore::GetExceptionString
- Called when shadow terminates with a signal

Last function called by shadow = failure location

-27- Distributed Self-Propelled Instrumentation

Conclusion

+ Self-propelled instrumentation
- On-demand, low-overhead control-flow tracing
- Across process and host boundaries

» Automated root cause analysis
- Finds anomalous control flows
- Finds the causes of anomalies

» Separation of concurrent flows
- Little application-specific knowledge

Distributed Self-Propelled Instrumentation

Related Publications

A.V. Mirgorodskiy and B.P. Miller, "Diagnosing Distributed

Systems with Self-Propelled Instrumentation", Under

submission,

- f‘(rﬁc://f’rp.cs.wisc.edu/paradyn/papers/MirgorodskiyO7DisTDiagnosis.
P

A.V. Mirgorodskiy, N. Maruyama, and B.P. Miller, "Problem

Diagnosis in Large-Scale Computing Environments", SC'06,

Tampa, FL, November 2006,

- ffrp:/d/]f’rp.cs.wisc.edu/paradyn/papers/MirgorodskiyOéPr'oblemDiagno
SIS.p

A.V. Mirgorodskiy and B.P. Miller, "Autonomous Analysis of

Interactive Systems with Self-Propelled Instrumentation”,

12th Multimedia Computing and Networking (MMCN 2005),

San Jose, CA, January 2005,

- ftp://ftp.cs.wisc.edu/paradyn/papers/MirgorodskiyO4SelfProp.pdf

-29- Distributed Self-Propelled Instrumentation

