
April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

The Deconstruction of Dyninst
Part 1: The SymtabAPI

Giridhar Ravipati
University of Wisconsin, Madison

– 2 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Motivation

 Binary tools are increasingly common
 Two categories of operation

• Analysis : Derive semantic meaning from the binary
code
– Symbol tables (if present)
– Decode (disassemble) instructions
– Control-flow information: basic blocks, loops, functions
– Data-flow information: from basic register information to highly

sophisticated (and expensive) analyses.
• Modification

– Insert, remove, or change the binary code, producing a new binary.

– 3 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Wide Use of Binary Tools

• Binary Modification
– Eel, Vulcan, Etch, Atom,

Diablo, Diota
• Binary Matching

– BMT
• Forensics

– Fenris
• Reverse engineering

– IDA Pro
• Binary Translation

– Objcopy, UQBT

• Program tracing
– QPT

• Program debugging
– Total view, gdb, STAT

• Program testing
– Eraser

• Performance modeling
– METRIC

• Performance profiling
– Paradyn, Valgrind, TAU,

OSS

Analysis and Modification are used in a wide variety
 of applications

– 4 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Lack of Code Sharing

 Some tools do analysis and some tools do
modification
• Only a few do both

 Tools usually depend on
• Similar analysis
• Similar modification techniques

 Too many different interfaces
• Usually too low level

 Developers are forced to reinvent the wheel
rather than use existing code

– 5 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Lack of Portability

 Myriad number of differences between
• File formats
• Architectures
• Operating systems
• Compilers
• …

 Building a portable binary tool is highly
expensive
• Many platforms in common use

– 6 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

High-level goals

 To build a toolkit that
• Has components for analysis
• Has components for modification
• Is portable & extensible
• Has an abstract interfaces
• Encourage sharing of functionality

 Deconstruct Dyninst into a toolkit that can
achieve these goals

– 7 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

DyninstAPI

 Library that provides a platform-independent
interface to dynamic binary analysis and
modification

 Goal
• Simplify binary tool development

 Why is Dyninst successful?
• Analysis and modification capabilities
• Portability
• Abstract interface

– 8 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Drawbacks of Dyninst

 Dyninst is complex
 Dyninst internal components are portable but

not sharable
 Sometimes Dyninst is not a perfect match for

user requirements
 Dyninst is feature-rich in some cases

• Provides unnecessary extra functionality

– 9 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Example Scenarios

 Hidden functionality
• Statically parse and analyze a binary without

executing it
• Just perform stackwalking on a binary compiled

without frame pointer information
 Build new tools

• Static binary rewriter
• Tool to add a symbol table to stripped binaries

– 10 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Our Approach

 Deconstruct the monolithic Dyninst into a
suite of components

 Each component provides a platform-
independent interface to a core piece of
Dyninst functionality

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

AST

Binary
Code

Instrumentation
Requests

Monolithic
Dyninst

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

Binary
Code

Code Gen Stack
Walker

Process
Control

SymtabAPI
Code

Parser

Idiom
Detector

Instrumentation
Requests

Instruction
Decoder

Instrumenter

AST

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

Instruction
Decoder

AST

Binary
Code

Code
Parser

Idiom
Detector

IA32

AMD64

POWER

IA64

SPARC

Instrumentation
Requests Process

ControlInstrumenter

IA32

AMD64

POWER

IA64

SPARC

Code Gen

IA32

AMD64

POWER

IA64

SPARC

Stack
Walker

Linux

AIX

Solaris

Windows

PE

ELF

XCOFF

IA32

AMD64

POWER

IA64

SPARC

April 2007The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

PE

Instruction
Decoder

AST

Binary
Code

ELF

XCOFF

Code
Parser

Idiom
Detector

IA32

AMD64

POWER

IA64

SPARC

Symbol
Table

Disassembly

Function
Objects

Call
Graph

Intra Proc
CFGs

Idiom
Signatures

Instrumentation
Requests Process

ControlInstrumenter

IA32

AMD64

POWER

IA64

SPARC

Code Gen

IA32

AMD64

POWER

IA64

SPARC

Stack
Walker

Linux

AIX

Solaris

Windows

IA32

AMD64

POWER

IA64

SPARC

– 15 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Goals of Deconstruction

 Separate the key capabilities of Dyninst
 Each Component

• Is responsible for a specific functionality
• Provides a general solution

 Encourage sharing
• Share our functionality when building new tools
• Share functionality of other tools

– 16 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Benefits of Deconstruction

 Access to the hidden features of Dyninst

 Interoperability with other tools
• Standardized interfaces and sharing of

components

 Finer grain testing of Dyninst

– 17 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Benefits of Deconstruction [contd.]

 Code reuse among the tool community

 Make tools more portable

 Unexpected benefits with new application of
components

– 18 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Our Plan

Identify the key functionality
Refine and generalize the abstract

interfaces to these components
Extract and separate the functionality from

Dyninst
Rebuild Dyninst on top of these components
Create new tools

• Multi-platform static binary rewriter

– 19 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI

 The first component of the deconstructed
Dyninst

 Multi platform library for parsing symbol table
information from object files

 Leverages the experience and implementation
gained from building the DyninstAPI

– 20 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Goals

 Abstraction
• Be file format-independent

 Interactivity
• Update data incrementally

 Extensibility
• User-extensible data structures

 Generality
• Parse ELF/XCOFF/PE object files
• On-Disk/In-Memory parsing

– 21 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Abstractions

 Represents an object file in a canonical format
 Hides the multi-platform dependences

Header

Modules

Symbols

Relocation
sExcp Blocks

Archive

Debug Info

Header

Modules

Symbols

Relocation
sExcp Blocks

Debug Info

– 22 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Extensibility

 Abstractions are designed to be extensible

 Can annotate particular abstractions with tool
specific data
• e.g. : Store type information for every symbol in

the symbol table

– 23 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Interactivity/Extensibility

Symbol Address

func1

func2 0x0804cd1d

variable1

0x0804cc84

0x0804cd00

YesR4
YesR3
NoR2
YesR1

Is Live?Register

... ...

Type Information
int

Size

100

4

050

– 24 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

SymtabAPI Interface

 Information from a parsed-binary is kept in
run time data structures

 Intuitive query-based interface
• e.g. findSymbolByType(name,type)
• Returns matching symbols

 Data can then be updated by the user
 Modifications available for future queries

– 25 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Query/Update/Export/Emit

SymtabAPI

Parse

Binary Tool

Query

Response

Update Export/Emit

Binary
Code

XML

New
Binary

– 26 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Summary of Operations

 Parse the symbols in a binary
 Query for symbols
 Update existing symbol information
 Add new symbols
 Export/Emit symbols

 More details/operations in the SymtabAPI
programmer’s guide

– 27 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Current Status

 Released the initial version of SymtabAPI with
the 5.1 release of Dyninst

 Dyninst on top of SymtabAPI
 XML export
 Emit on Linux and AIX

– 28 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Ongoing & Future Work

 Import XML
 Emit a new binary on windows
 Debugging information for symbols
 Interfaces for the remaining components
 Multi-platform static binary rewriter

– 29 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Demo
 Please stop by and see our demo of stripped

binary parsing with the SymtabAPI’s emit
functionality on Linux

Tuesday, May 1, 2007
Room No – 206

2:00 PM – 3:00 PM

– 30 –The Deconstruction of Dyninst: Part 1- the SymtabAPI

Downloads

 SymtabAPI
• http://www.paradyn.org/html/downloads.html

 SymtabAPI Programmer’s guide
• http://www.paradyn.org/html/symtabAPI.html

 Ravipati, G., Bernat, A., Miller, B.P. and
Hollingsworth, J.K., "Toward the
Deconstruction of Dyninst", Technical Report

