
Narrowing the GAP: Enhancing gem5’s GPU
Memory Bandwidth Accuracy

Yu Xia∗, Vishnu Ramadas∗, Matthew Poremba†, Matthew D. Sinclair∗
∗University of Wisconsin-Madison, †AMD Research

xia73@wisc.edu vramadas@wisc.edu Matthew.Poremba@amd.com sinclair@cs.wisc.edu

I. INTRODUCTION

Computer systems research heavily relies on simulation
tools like gem5 to effectively prototype and validate new ideas.
However, publicly available simulators struggle to accurately
model systems as architectures evolve rapidly. This is a major
issue because incorrect simulator models may lead researchers
to draw misleading or even incorrect conclusions about their
research prototypes from these simulators. Although this chal-
lenge pertains to many open source simulators [1]–[3], we
focus on the widely used, open source gem5 simulator. In GAP
we showed that gem5’s GPGPU models [4] have significant
correlation issues versus real hardware [5], [6]. GAP also
improved the fidelity of gem5’s AMDGPU model, particularly
for cache access latencies and bandwidths. However, one
critical issue remains: our microbenchmarks reveal 88% error
in memory bandwidth between gem5’s current model and
corresponding real AMD GPUs. To narrow this gap, we exam-
ined recent patents and gem5’s memory system bottlenecks,
then made several improvements including: utilizing a re-
designed HBM memory controller [7], enhancing TLB request
coalescing, adding support for multiple page sizes, adding a
page walk cache, and improving network bandwidth modeling.
Collectively, these optimizations significantly improve gem5’s
GPU memory bandwidth by 3.8×: from 153 GB/s to 583
GB/s. Moreover, our address translation enhancements can be
ported to other ISAs where similar support is also needed,
improving gem5’s MMU support [8].

II. IMPLEMENTATION & METHODOLOGY

To test the gem5 GPU models main memory bandwidth,
we wrote a hand-tuned, inline-assembly GPU microbenchmark
that stresses the main memory bandwidth. On a real AMD
Vega 20 (Radeon VII) GPU, the microbenchmark obtains 1223
GB/s, close to the Vega 20’s reported 1024 GB/s limit (it
somewhat exceeds the reported max due to ROCm counter
inaccuracies). Unfortunately, gem5’s GPU model only reaches
153 GB/s for the same test (88% error).

Initially we suspected gem5’s old, inaccurate High-
Bandwidth Memory (HBM) model was limiting the maximum
memory bandwidth of the GPU model. Thus, we modified
the GPU model to support a new, higher fidelity HBM
controller [7]. With this model we successfully obtain a peak
bandwidth of 1024 GB/s when directly connecting traffic gen-
erators. However, when using it with gem5’s GPU model our
test only achieved 166 GB/s, hinting at additional bottlenecks.

We systematically examined the memory subsystem to
locate these bottleneck(s). One major inefficiency was that
modern AMD GPUs support different page sizes to reduce
address translation overhead [9], [10]. Specifically, most GPU
memory accesses use 2MB pages. Unfortunately, gem5’s
GPU TLB model only supported 4KB pages – degrading
performance by requiring multiple entries when scanning a
2MB page. Thus, we added support for multiple page sizes in
gem5’s GPU TLB models. Our code is generic such that any
arbitrary page size can be used. However, this change did not
immediately help. Before an address translation completes, its
page size is unknown. As a result, multiple translations for
4KB pages within the same larger (e.g. 2MB) page are often
sent concurrently to the TLBs, wasting bandwidth.

Accordingly we redesigned the GPU TLB coalescer to
coalesce address translation requests if they fall within the
same larger (e.g. 2MB) region. On request return, if the page
size is found to be less than that size, stalled requests to other
pages are issued. This reduces redundant translation queries for
identical pages, minimizing contention and improving memory
throughput to 302 GB/s.

On a last-level TLB miss, the system performs a page
table walk, which incurs multiple expensive memory accesses
due to the hierarchical page table structure. To reduce this
overhead, modern GPUs utilize a page walk cache (PWC) to
store frequently used page table entries and reduce redundant
memory accesses [11]. Accordingly, we added a PWC (de-
fault: 64-entries) to the GPU page table walker to improve
translation latency. This improved memory bandwidth to 341
GB/s. We also increased the bandwidth of the interconnect
network to better resemble real GPUs. This improved the
memory bandwidth to 583 GB/s, significantly narrowing the
gap between simulation and real hardware.

III. CONCLUSION

As hardware advances, simulator accuracy must evolve
accordingly. One well known issue with gem5 is its MMU
support. Accordingly, this work demonstrates how to reduce
this deficit in gem5’s GPU model through four optimizations:
a more accurate HBM memory controller, enhanced TLB
coalescing for large pages, a page walk cache, and increased
network bandwidth. These improvements collectively achieve
a 583 GB/s bandwidth (3.8×baseline), significantly narrowing
the gap to real hardware. We are pushing all of these en-
hancements to the public gem5 repository. However, additional
bottlenecks remain, which we are examining in ongoing work.



ACKNOWLEDGMENTS

This work is supported in part by the Semiconductor Re-
search Corporation and by the National Science Foundation
grant Frameworks-2311889.

REFERENCES

[1] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-core
Simulation,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC.
New York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/2063384.2063454

[2] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,”
in ACM/IEEE 47th Annual International Symposium on Computer
Architecture, ser. ISCA. Piscataway, NJ, USA: IEEE Press, 2020, pp.
473–486.

[3] Y. Sun, T. Baruah, S. A. Mojumder, S. Dong, X. Gong, S. Treadway,
Y. Bao, S. Hance, C. McCardwell, V. Zhao, H. Barclay, A. K.
Ziabari, Z. Chen, R. Ubal, J. L. Abellán, J. Kim, A. Joshi, and
D. Kaeli, “MGPUSim: Enabling Multi-GPU Performance Modeling and
Optimization,” in Proceedings of the 46th International Symposium on
Computer Architecture, ser. ISCA. New York, NY, USA: Association
for Computing Machinery, 2019, p. 197–209. [Online]. Available:
https://doi.org/10.1145/3307650.3322230

[4] A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in IEEE International Symposium on High Performance Com-
puter Architecture, ser. HPCA. Washington, DC, USA: IEEE Computer
Society, 2018, pp. 608–619.

[5] V. Ramadas, D. Kouchekinia, N. Osuji, and M. D. Sinclair, “Closing
the Gap: Improving the Accuracy of gem5’s GPU Models,” in 5th gem5
Users’ Workshop. New York, NY, USA: Association for Computing
Machinery, June 2023.

[6] V. Ramadas, D. Kouchekinia, and M. D. Sinclair, “Further Closing the
GAP: Improving the Accuracy of gem5’s GPU Models,” in 6th Young
Architects’ Workshop, ser. YArch. New York, NY, USA: Association
for Computing Machinery, April 2024.

[7] A. Akram, M. Babaie, W. Wlsasser, and J. Lowe-Power, “Modeling
HBM2 Memory Controller,” in 4th gem5 Users’ Workshop, 2022.

[8] M. Mannino, “PIPT/VIPT caches and TLB lookup latency,” https:
//github.com/orgs/gem5/discussions/2227.

[9] R. Ausavarungnirun, J. Landgraf, V. Miller, S. Ghose, J. Gandhi,
C. J. Rossbach, and O. Mutlu, “Mosaic: A GPU Memory Manager
with Application-Transparent Support for Multiple Page Sizes,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO. New York, NY, USA: Association
for Computing Machinery, 2017, p. 136–150. [Online]. Available:
https://doi.org/10.1145/3123939.3123975

[10] AMD, “ROCm: Open Platform For Development, Discovery and Edu-
cation around GPU Computing,” https://gpuopen.com/compute-product/
rocm/, 2021.

[11] J. Power, M. D. Hill, and D. A. Wood, “Supporting x86-64 Address
Translation for 100s of GPU Lanes,” in 20th International Symposium
on High Performance Computer Architecture, ser. HPCA, 2014, pp. 568–
578.


