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I. INTRODUCTION

Computer systems research heavily relies on simulation
tools like gem5 to effectively prototype and validate new ideas.
However, publicly available simulators struggle to accurately
model systems as architectures evolve rapidly. This is a major
issue because incorrect simulator models may lead researchers
to draw misleading or even incorrect conclusions about their
research prototypes from these simulators. Although this chal-
lenge pertains to many open source simulators [1]–[3], we
focus on the widely used, open source gem5 simulator. In GAP
we showed that gem5’s GPGPU models [4] have significant
correlation issues versus real hardware [5], [6]. GAP also
improved the fidelity of gem5’s AMDGPU model, particularly
for cache access latencies and bandwidths. However, one
critical issue remains: our microbenchmarks reveal 88% error
in memory bandwidth between gem5’s current model and
corresponding real AMD GPUs. To narrow this gap, we exam-
ined recent patents and gem5’s memory system bottlenecks,
then made several improvements including: utilizing a re-
designed HBM memory controller [7], enhancing TLB request
coalescing, adding support for multiple page sizes, adding a
page walk cache, and improving network bandwidth modeling.
Collectively, these optimizations significantly improve gem5’s
GPU memory bandwidth by 3.8×: from 153 GB/s to 583
GB/s. Moreover, our address translation enhancements can be
ported to other ISAs where similar support is also needed,
improving gem5’s MMU support [8].

II. IMPLEMENTATION & METHODOLOGY

To test the gem5 GPU models main memory bandwidth,
we wrote a hand-tuned, inline-assembly GPU microbenchmark
that stresses the main memory bandwidth. On a real AMD
Vega 20 (Radeon VII) GPU, the microbenchmark obtains 1223
GB/s, close to the Vega 20’s reported 1024 GB/s limit (it
somewhat exceeds the reported max due to ROCm counter
inaccuracies). Unfortunately, gem5’s GPU model only reaches
153 GB/s for the same test (88% error).

Initially we suspected gem5’s old, inaccurate High-
Bandwidth Memory (HBM) model was limiting the maximum
memory bandwidth of the GPU model. Thus, we modified
the GPU model to support a new, higher fidelity HBM
controller [7]. With this model we successfully obtain a peak
bandwidth of 1024 GB/s when directly connecting traffic gen-
erators. However, when using it with gem5’s GPU model our
test only achieved 166 GB/s, hinting at additional bottlenecks.

We systematically examined the memory subsystem to
locate these bottleneck(s). One major inefficiency was that
modern AMD GPUs support different page sizes to reduce
address translation overhead [9], [10]. Specifically, most GPU
memory accesses use 2MB pages. Unfortunately, gem5’s
GPU TLB model only supported 4KB pages – degrading
performance by requiring multiple entries when scanning a
2MB page. Thus, we added support for multiple page sizes in
gem5’s GPU TLB models. Our code is generic such that any
arbitrary page size can be used. However, this change did not
immediately help. Before an address translation completes, its
page size is unknown. As a result, multiple translations for
4KB pages within the same larger (e.g. 2MB) page are often
sent concurrently to the TLBs, wasting bandwidth.

Accordingly we redesigned the GPU TLB coalescer to
coalesce address translation requests if they fall within the
same larger (e.g. 2MB) region. On request return, if the page
size is found to be less than that size, stalled requests to other
pages are issued. This reduces redundant translation queries for
identical pages, minimizing contention and improving memory
throughput to 302 GB/s.

On a last-level TLB miss, the system performs a page
table walk, which incurs multiple expensive memory accesses
due to the hierarchical page table structure. To reduce this
overhead, modern GPUs utilize a page walk cache (PWC) to
store frequently used page table entries and reduce redundant
memory accesses [11]. Accordingly, we added a PWC (de-
fault: 64-entries) to the GPU page table walker to improve
translation latency. This improved memory bandwidth to 341
GB/s. We also increased the bandwidth of the interconnect
network to better resemble real GPUs. This improved the
memory bandwidth to 583 GB/s, significantly narrowing the
gap between simulation and real hardware.

III. CONCLUSION

As hardware advances, simulator accuracy must evolve
accordingly. One well known issue with gem5 is its MMU
support. Accordingly, this work demonstrates how to reduce
this deficit in gem5’s GPU model through four optimizations:
a more accurate HBM memory controller, enhanced TLB
coalescing for large pages, a page walk cache, and increased
network bandwidth. These improvements collectively achieve
a 583 GB/s bandwidth (3.8×baseline), significantly narrowing
the gap to real hardware. We are pushing all of these en-
hancements to the public gem5 repository. However, additional
bottlenecks remain, which we are examining in ongoing work.
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