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Abstract

Scaling neural network models has delivered dramatic
quality gains across ML problems. However, this scaling
also increased the reliance on efficient distributed training
techniques. Accordingly, like other distributed computing
scenarios, it is important to understand how compute and
communication will scale relative to one another as models
scale and hardware evolves? A careful study which answers
this question can better guide the design of future systems
which can efficiently train future large models.

Accordingly, we comprehensively analyze compute vs.
communication (Comp-vs.-Comm) scaling for future Trans-
former models on future hardware, across multiple axes
(algorithmic, empirical, hardware evolution). First, our al-
gorithmic analysis shows that compute generally enjoys an
edge over communication as models scale. However, these
trends are being stressed since device memory capacity scales
much slower than model size. We quantify this edge by
empirically studying how Comp-vs.-Comm scales for future
models on future hardware. To avoid profiling numerous
Transformer models across many setups, we extract execution
regions and project costs using operator models. This allows
a spectrum (hundreds) of future model/hardware scenarios
to be accurately studied (< 15% error) and reduces profiling
costs by 2100x. Our experiments show that communication
will be a significant portion (40-75%) of runtime as models
and hardware evolve. Moreover, communication that is often
hidden by overlapped computation in today’s models can-
not be hidden in future, larger models. Overall, this work
highlights communication’s increasingly large role as models
scale, discusses promising techniques to potentially tackle
communication, and discusses how our analysis influences
their potential improvements.

1. Introduction

In recent years, machine learning (ML) and deep neural
networks (DNNs) have transformed society, including signif-
icant improvements in accuracy on tasks including speech
recognition [77], image classification [28, 35, 38, 66, 71,
72], machine translation [27], autonomous agents [39], and
language processing [12, 18, 53]. This transformative effect
has been enabled by a virtuous synergy of (1) more efficient
hardware, (2) larger datasets, and (3) algorithmic advances
(including exponential model size growth) that further
benefit from more efficient hardware and larger datasets.
However, models are scaling much more rapidly (1000x)
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Figure 1: Overview of Comp-vs.-Comm analysis.

than per-GPU memory scaling (5x) [56]. This, along with
the increasing computational demands as models scale,
has increased the reliance on distributed training: multiple
accelerators (e.g., GPUs) harness their collective memory
capacities and compute capabilities to collaboratively train
a DNN. Consequently, it is important to understand how
compute and communication in distributed training will scale
relative to one another as DNNs scale and hardware evolves.

This work performs this analysis, which we term
Comp-vs.-Comm, to better guide the design of future
systems to more efficiently train future large models. We
perform a comprehensive multi-axial (algorithmic, empirical,
hardware evolution) Comp-vs.-Comm analysis for future
Transformer models on future hardware. Although many
different DNN models are currently used, Transformers have
arisen to be a candidate general purpose architecture [11]
capable of tackling multiple tasks across different modalities
(e.g., text, vision, audio). Furthermore, Transformers have
shown considerable strides in artificial general intelligence.
For example, recently researchers trained a single 1.2B
Transformer to perform hundreds of robotics, simulated
environments, and vision and language tasks [59]. Thus,
given their ubiquity, growing importance, and capabilities,
we focus on Transformers.

Figure 1 summarizes our approach. We first perform
an algorithmic analysis of compute and communication
operations in Transformer models. This analysis provides a
system-agnostic view of Comp-vs.-Comm scaling, which is
important given the wide variety of system/infrastructure
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capabilities, ranging from standalone accelerators to accel-
erator clusters with state-of-art interconnects. Moreover,
this analysis provides a strong foundation to empirically
study Comp-vs.-Comm without significant overhead. Our
algorithmic analysis shows that the complexity of compute
operations is often higher than communication volume (data
size). We call this compute’s edge over communication.
A compute-dominated execution profile is often a positive
edge because (a) traditionally, and especially for accelerators,
compute (FLOPS) scaling has received considerably more
attention than communication (bandwidth) scaling, and (b)
often algorithmic/system optimizations are employed to
overlap communication with useful compute. Thus, com-
pute’s edge also helps hide communication costs. Compute
enjoys this edge for both serialized and overlapped compute
and communication scenarios — both of which occur in
distributed training. However, model scaling and memory
capacity trends are stressing this edge.

To understand how compute’s edge may be impacted by
future models and future hardware, we empirically study
Comp-vs.-Comm scaling. This approach has several chal-
lenges, including requiring studying many model/hardware
evolution scenarios, each of which incurs significant profil-
ing costs. Our empirical strategy addresses these challenges
by (a) designing controlled experiments (guided by our
algorithmic analysis), (b) executing only certain regions-
of-interest (ROIs) to reduce profiling costs, and (c) using
operator-level models for training operations, which we
show accurately capture runtime trends for varying hyper-
parameters. These enable us to study hundreds of future
models/hardware scenarios at 2100 x lower profiling costs.
Further, given the generality of our empirical strategy we
discuss how to apply Comp-vs.-Comm scaling analysis to
future Transformer models.

Our empirical strategy-driven experiments back-up the
conclusions from our algorithmic analysis. Specifically, we
find that the compute’s edge over communication is stressed:
up to 50% of a future Transformer’s training time will be
spent communicating data. Furthermore, communication
that is overlapped or hidden today can exceed the compute
time in future models, further increasing communication’s
proportion. Moreover, if past hardware evolution trends
on scaling of compute capability vis-a-vis communication
bandwidth continue, communication will become an even
bigger bottleneck (> 75% of training execution) on future
systems. We make the following contributions:

e As models scale and training becomes increasingly
distributed, a careful understanding of compute vs.
communication scaling is paramount to effectively
designing future systems. Accordingly, we provide
a comprehensive multi-axial analysis (algorithmic,
empirical, hardware evolution) of Comp-vs.-Comm
scaling for future Transformers on future hardware.

e Using algorithmic/system-agnostic analysis we show
that while compute has had an edge over communi-
cation (both in serialized and overlapped scenarios),
models are scaling faster than memory capacity -
stressing this edge.
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Figure 2: Distributed Transformer Components.

e We devise a strategy for a practical empirical
Comp-vs.-Comm study for future models. It extracts
execution ROIs and accurately (<15% error) projects
future models’ operation times to reduce profiling
costs: 2100 faster than executing the models.

e Our experiments demonstrate how communication
will play an increasingly large role as models scale:
up to 50% of training time will be spent on commu-
nication. Furthermore, if past compute vs. network
scaling trends continue, communication can end up
being the critical bottleneck in distributed training:
up to 75% of training time will be spent on communi-
cation and some previously hidden communication
costs will be exposed.

e We discuss techniques and technologies that tackle
communication and how our analysis influences
their improvements.

Overall, our work highlights communication’s increasingly
large role as Transformer models scale.

2. Background and Motivation

This section summarizes Transformers [73], their distributed
training, and the need for a Comp-vs.-Comm scaling study.

2.1. Transformers: Building Blocks of Future
Models

Transformers [73] have become a popular general-
purpose architecture for a wide range of tasks/domains.
Recent work has shown that many different modalities
are using Transformers as their base model (e.g., 41%
of text, 22% of image) [11]. The basic building block of
these Transformers is an encoder or decoder which are
repeated multiple times. As shown in Figure 2a, each block
contains an attention layer and a fully connected (FC)
layer, both of which are followed by a residual connection
and layer normalization. These layers manifest as matrix
multiplication operations (GEMMs) followed by a few
element-wise operations, which are often fused [20, 23,
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69, 75] with the GEMMs. The encoder and decoder blocks
are similar, except the decoder’s attention GEMM input
is masked, which causes different computational inference
behavior but does not affect training (our focus).

The evolution of Transformer models has largely fo-
cused on changing Transformer block type (encoder vs. de-
coder), increasing the number of Transformer blocks, and/or
increasing layer widths. This is true for all Transformer
models; starting with BERT [18] (0.3 billion parameters), to
its most recent successor, MT-NLG (540 billion parameters),
and many others in between [12, 17, 36, 41, 53, 65, 70, 78].
Thus, while Transformer models have become larger with
different hyperparameters, their fundamental computational
components are largely the same. Therefore, we use BERT
as our baseline and change its hyperparameters to study
larger Transformer models. However, our methodology can
be extended to other DNNs (see Section 6, Other DNNS).

2.2. Distributed Training for Large Scale Training

Most Transformer models employ distributed techniques
and use multiple accelerators (e.g., GPUs) collaboratively
to train. Distributing training is often necessary since the
model’s memory capacity requirements are too large for one
device. The aggregate computational capacity of multiple
devices also accelerates training by operating on large input
datasets in parallel. Thus, since Transformers and their
datasets (usually large corpuses of unlabeled text) have
increased several orders of magnitude in size (Section 3.5),
distributed techniques have not only become de facto but
also require increasingly larger numbers of devices. This
scale will only increase for future models (Section 4.3.2).
However, our analysis is also applicable to fine-tuning and
inference (see Section 6, Fine-tuning & Inference).

2.3. Distributed Training Techniques and Associ-
ated Communication

All distributed training techniques have associated
communication between devices to transfer (e.g., in pipeline
parallelism [31]), reduce (e.g., in tensor [65] and data paral-
lelism), aggregate (e.g., in ZeRO-based optimizations [56]),
or exchange (e.g., in expert parallelism [33]) information.
These communication patterns are handled by collectives
such as all-reduce, all-gather, all-to-all. We focus on all-
reduce, the collective used in two of the most effective
and widely adopted distributed techniques (Section 3.1):
data and tensor parallelism. We discuss the communication
impact of other techniques in Section 6, Beyond DP & TP.

2.3.1. All-reduce Communication Flavors. Figure 2b
shows how the all-reduce (AR) collective reduces data
generated by all participating devices and broadcasts the
reduced data to them. AR has different implementations
optimized for different system topologies. While the AR
collective remains the same, involving both communication
and compute (e.g., element-wise summation), in both data
parallelism (DP) and tensor parallelism (TP) setups its usage
and thus its impact on the overall training behavior differs.

2.3.2. Data Parallelism (DP) & Slack Advantage.
DP effectively increases the training input batch size by
duplicating the model on all devices, with each operating
on a disjoint set of inputs. To keep the model copies in
sync, the devices all-reduce their weight gradients during
the backward training pass. This all-reduce of gradients
from one layer can happen asynchronously with the gra-
dient calculation of another layer (Figure 3(a)). Thus, the
associated communication can potentially be overlapped
and hidden by computations. However, complete overlap
is only possible if the execution of computations equals
or exceeds that of communication. We call this difference
in overlapped compute and communication executions of
each layer compute’s slack advantage (Figure 3(a)).

2.3.3. Tensor/Horizontal Parallel (TP) & Amdahl’s
Law Edge. TP effectively increases the memory capacity
available to a model by splitting it across devices (illustrated
in Figure 4). It splits a model layer across devices such
that each device holds and thus operates on a subset
of layer parameters. This slicing causes each device to
generate only a partial layer activation (and error) dur-
ing training’s forward (and backward) passes (light blue
matrices in Figure 4(b)), which require an all-reduce to
generate the final layer output (deep blue matrices in
Figure 4(b)). Furthermore, a layer’s forward and backward
executions are dependent on another layer’s all-reduce of
activations and errors. Thus, unlike DP, in TP compute and
communication are not asynchronous and communication
is on the critical path of model execution (Figure 3(b)). We
call the difference in compute and serialized communication
executions compute’s Amdahl’s Law edge (Figure 3(b)).

2.4. Why Study Evolution of Compute vs. Com-
munication Scaling

Although communication is necessary for distributed
training, it may limit throughput scaling with increasing
device count and cause compute resources to be idle when
communication is on the critical path. Further, unlike a
system’s compute throughput, which accelerator designers
have heavily focused on, network bandwidth has not
scaled as much (e.g., 12X compute improvement versus
2x network bandwidth improvement [34]). If compute con-
tinues to scale more rapidly, when coupled with increasing
communication volume, training future large-scale models
on future systems will be inefficient. Thus, it is important
to understand how Comp-vs.-Comm scale relative to one
another as models scale and hardware evolves. To address
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Figure 4: Layer operations (a) original, or w/ DP (b) w/ TP.

this we perform a multi-axial (algorithmic, empirical, hard-
ware evolution) analysis of Comp-vs.-Comm scaling which
will both inform and guide future system design to better
support large-scale training of future models.

3. Comp-vs.-Comm: Algorithmic Analysis

An algorithmic analysis of compute and communication
is important because it provides a strong foundation to draw
meaningful conclusions about future models. Moreover, as
we demonstrate (Section 4), it helps to create an empirical
strategy to study model scaling on future hardware using
existing hardware. Additionally, and equally importantly,
it provides a system and infrastructure agnostic view of
Comp-vs.-Comm scaling — ensuring that the takeaways are
relevant regardless of studied system.

3.1. Distributed Techniques Studied

Although there are other distributed techniques and
technique combinations, we study Transformers in the most
commonly used data parallel (DP) and tensor parallel (TP)
setups [15, 65]. DP and TP are imperative to divide and
conquer large datasets and models, respectively. Further-
more, DP and TP are heavily supported in popular DNN
frameworks such as TensorFlow and PyTorch.

3.2. Important Hyperparameters

The size, and thus cost, of model components is dictated
by a model’s hyperparameters [51]. As shown in Figure 4(a),
the key hyperparameters that impact the size of weights,
and activations in Transformers are: layer width or hidden
dimension (H), input batch size (B), and input sequence
length (SL). Although other hyperparameters are tuned
during training (e.g., layer count, learning rate), they do
not directly impact the size of operations.

Distributed setups can also impact the size of operations.
In DP, since the model is replicated, operation size is
unaffected. Conversely, as shown in Figure 4(b)’s dotted
box, TP slices the operations. Hence, the number of devices
a model is split across, the TP degree,! also impacts
operation size. Thus, we use H, B, SL and TP to analyze
Comp-vs.-Comm in an algorithmic and hardware-agnostic
manner (Section 3.3).

1. We use TP to refer to both tensor parallelism and its degree.
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3.3. Amdahl’s Law Edge for Compute

As described in Sections 2.3.2 and 2.3.3, a distributed
setup with DP and TP introduces communication in the
form of all-reduce. Here we consider the TP-related com-
munication that all-reduces partial activations. As shown
in Figure 5(b), this communication, hereafter referred to as
serialized communication, is on the critical path of model
execution. To assess compute’s relative edge or Amdahl’s
Law edge (Section 2.3.3), we find the relative contribution
of all compute and serialized communication operations in
a Transformer block. Since a model consists of multiple
Transformer blocks of the same size, studying compute
and communication within a single block is sufficient to
characterize this for an entire model. For compute, this
includes matrix multiplications (GEMMs) which represent
Transformer’s key layers (attention and FC, Section 2.1) and
other element-wise and reduction operations that constitute
the remaining activation functions and normalization layers.
However, modern Transformer implementations usually
fuse [20, 23, 69, 75] non-GEMM operations with the
preceding GEMM to increase on-chip data reuse.

Thus, our algorithmic analysis only considers the dom-
inant GEMMs for compute. Since GEMMs are usually
compute-bound, we evaluate their algorithmic cost as the
number of operations (multiplies and adds) they perform:
2-M-N -K (where M, N, and K are matrix dimensions
and are derived from model hyperparameters, as shown in
Figure 4). In a Transformer block, there are three key sets
of GEMMs [51], with computational complexities (with TP)
shown in Equations 1- 4 (and in @ in Figure 5(b)).

FC GEMM Ops. =2 - (4- H - H/TP - SL - B)

1

= O(H? - SL - B/TP) M

Attention GEMM Ops. =2 - (H/TP - SL - SL - B) @
= O(H - SL? - BITP)

Linear GEMM Ops. =3-2- (H/TP-H - SL - B) )

= O(H? - SL - BITP)
Total Comp. Ops. = O(H - SL - B/TP - (H + SL)) (4)



5409+ . Hidden dimension (H)

Sequence length (SL)

o i
41024 | -e-H*sL ' i
'_E“ 256 | —+—H*H ---- Memory Capacity i
i
= o H
£ Model evolution i
® 16 i
S a4l e i
T 4| e e
[, J EURPPPPRELLL LS
1
Projections
BERT 5 GPT-2 [Mega.- | T-NLG | GPT-3 [MT-NLG| Palm [Future-1fFuture-
2018 | 2019 | 2019 LM 2020 | 2020 | 2021 | 2022 202x | 202y
2019

Figure 6: Model and device memory capacity trends.

For serialized communication, we consider the total
bytes of data that are all-reduced. In TP, layers’ output
activations and errors are all-reduced. Their sizes are a
multiple (depending on precision) of the GEMMs’ output
matrices sizes (i.e., M - N), and can also be represented
in terms of the hyperparameters (see Figure 4). In a
Transformer block, there are four serialized all-reduce
operations, all with complexity shown in Equation 5 (and
in @ in Figure 5(b)).

Total Comm. Bytes = (precision/8) - (H - SL - B)

— O(H-SL-B) ®

Using Equations 4 and 5, we find the ratio between the
number of compute operations and communicated bytes in
Equation 6. This represents the complexity of Amdahl’s
Law edge that compute has over communication (@ in
Figure 5(b)).

Amdahl’s law edge = O((H? - SL - BITP)+
(H-SL? - BITP))/O(H - SL-B)  (6)
= O((H + SL)/TP)

This complexity has two implications. First, given the
values of these hyperparameters in state-of-the-art Trans-
formers (Section 3.5), with (H + SL) being always greater
than TP, compute (ops) enjoys an algorithmic edge over
communication (bytes). Second, this edge can decrease if
the required 7P degree increases more than the increase
in (H 4 SL) between Transformer models, resulting in an
overall increase in communication proportion.

3.4. Slack Advantage for Compute

Similar to our serialized communication analysis, we
also study DP’s overlapped communication that all-reduces
partial gradients in backprop, as illustrated in Figure 5(a).
We algorithmically analyze the relative cost of compute
and overlapped communication and assess compute’s ability
to hide communication (Section 2.3.2). Unlike serialized
communication, analyzing overlapped communication per
Transformer layer is sufficient. Unlike TP, gradient com-
munication occurs only in backpropagation, is done for
every layer, and is usually overlapped with gradient/error
calculating GEMMs. Thus, we can study the overlap efficacy
by analyzing the compute and communication at every
layer during backprop. For compute, we consider GEMMs
which calculate backprop weight gradient (WG) and error
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Figure 7: Algorithmic scaling of slack and edge.

(or input gradient); for communication we consider the
WG size that is all-reduced. Absolute values of compute
and communication can differ across layers: for example,
with 4x layer widths, the compute and communication
costs in FC layers are 4x those of attention. However, their
complexities with respect to hyperparameters are the same.
Thus, while Equations 7 and 8 derive these complexities
for the FC layer (D in Figure 5(b)) they also hold and
summarize algorithmic behavior for all Transformer layers.

FC WG + Error GEMM Ops. = 4 - (4 - H - H/TP - SL - B)
= O(H? - SL - BITP)

™)

Comm. bytes = (precision/8) - (4 - H - HITP) ®
= O(H?/TP)

Slack advantage = O(H? - SL - B/TP)/O(H?/TP) ©)

= O(SL - B)

Equation 9 (@ in Figure 5(b)) uses Equations 7 and 8 to
find the ratio between the number of GEMM operations and
total bytes communicated or all-reduced, and the complexity
of compute’s slack (i.e., ability to hide communication). This
SL-B factor provides compute operations additional slack to
hide the cost of bytes communicated. However, decreasing
the input size (SL- B) can decrease the slack and potentially
expose communication costs.

3.5. Model Scaling Stresses Compute Edge/Slack

Our analysis in Sections 3.4 and 3.3 show that, algo-
rithmically, compute has both an Amdahl’s Law edge over
serialized communication and slack to hide the overlapped
communication. However, the extent of this edge and slack
varies depending on the hyperparameters: the edge grows
as H or SL increases but decreases if TP increases. Similarly,
slack grows with increasing B or SL. In recent years H
and SL have increased considerably across Transformer
models [12, 15, 18, 44, 53, 54, 65, 68].2 As shown in
Figure 6, these trends are expected to continue since larger

2. Although recent work has improved accuracy by increasing training
token count instead of model size [30], scaling H is still the most widely
used technique to improve model quality. Further, our empirical analysis
shows that compute throughput scale faster than network bandwidth —
thus increasing communication even for a fixed H.



H and SL are strongly correlated with improved model
quality [54]. However, model parameters scale quadratically
with H and activations scale linearly with both H and
SL - thus increasing Transformers’ memory requirements.
Figure 6 uses H - H and H - SL values to show memory
requirement scaling for parameters and activations. These
results show that if the trend of linear scaling of device
memory capacity continues, the gap between available de-
vice memory capacity and models’ future memory demand
will increase. Consequently, using smaller B’s to reduce ac-
tivation sizes, and larger TP slicing to distribute parameters
have become imperative to limit memory pressure (detailed
in Section 4.3.2 and Figure 9(b)). If this trend in B and
TP exceeds the corresponding increase in H and SL, the
resulting algorithmic edge ratios (i.e., (H+SL)/TP) and slack
(i.e., SL-B) can decrease, exposing additional communication
on the critical path. We show this scaling in Figure 7,
which plots compute’s algorithmic slack and edge over
communication for all studied Transformers, normalized
to that of BERT’s. Due to a considerable decrease in B
(=1), compute’s slack has reduced by ~75%. Similarly, if
TP is scaled to fit these models (details in Section 4.3.2)
compute’s edge can decrease by ~80%. The SL - B values
for futuristic models increase as we project larger SLs for
them while B remains at the minimum of one. In reality,
SL scaling is also often limited by memory capacity and
will result in the slack being constant. Consequently, model
scaling and memory capacity trends are stressing compute’s
algorithmic edge over communication.

This algorithmic analysis also does not account for
the cost of executing an operation or communicating
a byte. Thus, an individual Transformer’s compute ops
to communication bytes ratio does not directly translate
to execution time ratio, and compute may actually have
no/smaller edge and slack (explored further in Section 4).
Nevertheless, our algorithmic analysis provides insights on
how evolving Transformers affect edge and slack.

4. Comp-vs.-Comm: Empirical Analysis

Thus far our analysis has shown that compute enjoys an
algorithmic edge over communication, but this edge is being
stressed as models evolve (Section 3). We next use empirical
analysis to quantify this edge. Since an exhaustive empirical
study can be expensive, we propose a strategy based on our
algorithmic analysis that uses existing hardware to project
Comp-vs.-Comm for any future model on future hardware.

4.1. Empirical Analysis Challenges

An empirical analysis must be designed carefully be-
cause model evolution can cause an explosion of sce-
narios (hyperparameters) to consider and, consequently,
experiments to run. This is further exacerbated when
considering hardware evolution due to many hardware
parameters. Thus, it is important to carefully identify
variables of interest when designing experiments to study
both model and hardware evolution. Moreover, even with
a disciplined exploration of the hyperparameters and hard-
ware parameters, profiling costs can still be very high,
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especially in scenarios requiring entire training iterations
to be profiled. Thus, careful examination of the variable
space, close attention to controlling profiling overheads,
and high-fidelity model and hardware evolution designs are
paramount to empirically study Comp-vs.-Comm scaling
for future models and hardware.

4.2. Proposed Empirical Strategy

Next, we discuss the components (Figure 8) of our em-
pirical strategy to overcome the aforementioned challenges.

4.2.1. High-fidelity Model Evolution. (Step D)

To effectively study Comp-vs.-Comm scaling for future
models, we must carefully consider model evolution. Sec-
tion 3.5 demonstrated that historically models have scaled
both the hidden dimension (H) and sequence length (SL)
to improve accuracy. Other hyperparameters (batch-size B
and degree of tensor-parallelism, 7P) depend on a system’s
resources (e.g., compute and memory capacity). A naive
but exhaustive exploration of such a hyperparameter space
will help faithfully study model evolution. However, even
after excluding unrealistic configurations (e.g., large H and
large B with a small TP), it would require running an
impractically large number of experiments.

We overcome this challenge by anchoring on our algo-
rithmic analysis. Specifically, we use the Comp-vs.-Comm
scaling ratios identified in Section 3 to design controlled
experiments. For scenarios where communication is over-
lapped with computation (e.g., DP), since algorithmically the
Comp-vs.-Comm ratio is O(SL - B), we focus on sweeping
SL - B for different H values to study how compute’s slack
advantage scales for future models. However, this still
requires several different (from H, and SL - B) iterations to
be profiled. Furthermore, for serialized communication (e.g.,
TP), since the ratio of Comp-vs.-Comm is O((H + SL)/TP),
we can only factor out B. We identify additional strategies
to tame this exploration (Section 4.2.2).

4.2.2. Taming Ground-truth Cost (Step. )

Although algorithmic analysis helps prune the search
space, further solutions are needed to reduce profiling costs.
Accordingly, similar to prior work [52] we use application
understanding to identify and study only specific fractions
of executions where possible. When entire iteration times
are required, we rely on high-fidelity operator-level models



Parameter / Setup Value
H 1K, 2K, 4K, 8K, 16K, 32K, 64K
{B}, {SL} {1,4}, {1K, 2K, 4K, 8K}
{TP degree}, {DP degree} | {4, 8, 16, 32, 64, 128, 256}, {Any}

TABLE 1: Parameters and setup of models studied.

to project the runtime of different Transformer configura-
tions without actually running them. We further explain
these strategies below.

Region of Interest (ROI) Extraction (Step ): As dis-
cussed in Section 3.4, to study overlapped Comp-vs.-Comm
(e.g., in DP) it suffices to extract the specific compute (e.g.,
GEMMs) and communication fractions (e.g., All-reduce)
which will manifest for future models and profile the exe-
cution of only these regions in hardware. These controlled
experiments help us study how compute’s slack, to hide
communication, will evolve as models scale and hardware
evolves, and avoids the cost of running the entire training
iteration for all configurations of interest.

Operator-level Models (Step ): For serialized
Comp-vs.-Comm (e.g., in TP), executing ROI regions is
insufficient. To quantify how much Amdahl’s Law edge
compute enjoys over communication, it is necessary to
study entire training iterations. However, we observe that
building high-fidelity operator-level models and combining
their results can help us project entire network behavior.
Specifically, for every operator in the Transformer layer’s ex-
ecution that repeats during a training iteration (e.g., GEMMs
and layer-normalization), we use algorithmic analysis to
identify hyperparameters that affect its execution time.
Given the operator’s execution time for a hyperparameter
configuration, we can project the execution time for any
different set of hyperparameter values. Thus, these operator-
level models project Transformer behavior for a wide variety
of hyperparameter values without significant profiling costs.
Moreover, our evaluation (Section 4.3.8) shows that these
operator-level models are reliable and accurately capture
the behavior of operations with changing hyperparameters.

4.2.3. High-fidelity Hardware Evolution (Step. ®)
Similar to model evolution, a disciplined hardware
parameter search space is equally important. Accordingly,
we identified the key drivers important to Comp-vs.-Comm
scaling: compute throughput (FLOPS), network bandwidth,
and memory bandwidth. Of these, we focus on the first two
factors. Although communication performance is impacted
by all three factors, efficient communication primitive (e.g.,
all-reduce) implementations are pipelined. Thus, they can
overlap memory accesses with network transfers — and since
network transfers usually dominate, memory bandwidth
has a relatively smaller impact. Moreover, while compute
operations depend on both compute FLOPS and memory
bandwidth, key Transformer operations (e.g., GEMMs) are
often compute-bound (e.g., Gshard reports >85% peak
FLOPS utilization [37]) and have low memory bandwidth
utilization [51]. Thus, we focus on compute FLOPS and
network bandwidth, specifically on their relative scaling
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Figure 9: System: (a) 4-GPU node (b) TP scaling with model
size.

ratios based on historical data for GPUs from different
vendors (discussed in Section 4.3.6).

4.2.4. Benefits Compared to Exhaustive Profiling. Our
empirical strategy reduces execution and profiling costs
(Section 4.3.8) of Comp-vs.-Comm analysis for future mod-
els on future hardware. First, our algorithmic analysis helps
identify a subset of hyperparameters to sweep, limiting the
combinations to consider (SL - B rather than individually
sweeping SL and B). Second, the operator-level models
enable projection of iteration times for many (196) different
configurations using the execution and profiling of a single
iteration. Finally, focusing on specific ROIs avoids executing
end-to-end iterations for overlapped communication.

4.3. Observations from Experimental Analysis

4.3.1. System Setup. We run experiments based on our
empirical strategy using a system with an AMD Ryzen™
Threadripper™ CPU and four AMD Instinct™ MI210 ac-
celerators (GPUs) [8] (Figure 9(a)), each with 64GB HBM.
The GPUs are fully connected using AMD Infinity Fabric™
links with bidirectional link bandwidth of 100GB/s. These
links form multiple rings, providing a peak ring all-reduce
bandwidth of 150GB/s. We also calibrated our system’s
performance and found it was similar to prior work using
other commercial systems [32]. Finally, our software stack
uses AMD’s open source ROCm™ version 5.2 [6] with
PyTorch v1.7, the rocBLAS [5] BLAS library, and the
RCCL [3] communication collectives library.

4.3.2. Models & Cluster Setup. To study a range of
Transformers (Figure 6) we evaluate the hyperparameter
combinations and distributed setups listed in Table 1.
Model Setup (H, B, SL): Scaling Transformers typically
involves scaling H and SL [54]. Thus, for H we examine
power-of-two values up to 16K and for SL up to 2K, as
they represent a wide spectrum of modern Transformers.
Additionally, to project future model behavior we scale
H to 32K (Future-1 with 1 trillion parameters) and 64K
(Future-2 with ten trillion parameters) with SLs of 4K and
8K, respectively. For B, we consider small values of one and
four. Smaller Bs (and larger TPs discussed in Section 3.5)
are required to bridge the large gap between required
and available memory capacity (Section 3.5). In fact, most
modern larger models (e.g., MT-NLG [68] and PALM [15])
already use the smallest B of one.
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time.

Training Cluster Setup (TP degree, DP degree): We
study a range of TP and DP degrees:

TP degree: We determine the appropriate TP range based
on modern Transformer setups. We start with one of
the largest, 3.9B parameters, Megatron-LM models (Mega.-
LM_BERT), the first publicly known Transformer to use
tensor-parallelism with 7P of eight. To estimate the TP for
a future Transformer, we consider device memory capacity
and model size. Assuming a capacity of eight devices
(=base_TP) is required for Mega.-LM_BERT, we estimate
a larger model’s TP by scaling up base_TP by the ratio
(p) of its model size compared to that of Mega.-LM_BERT.
To account for potential device memory capacity increases
in the same time period, we divide the projected TP by
the memory capacity scaling ratio (s) in that time period.
Thus, the required TP degree is base_TP * (p/s). Figure 9(b)
shows the scaling of Transformers, and device memory
capacities, as well as the resulting scaling of TP (p/s)
required to fit the Transformers, all normalized to Mega.-
LM_BERT. Since memory scaling (16GB [2] to 64GB [8])
has not been proportional to Transformer model scaling
(8.3B [65] to 540B [15]), TP needs to be scaled by 40-60x,
leading to a required TP degree of (x8) ~250-550. Although
TP has increased over the last few years as models scale,
considerable innovations in interconnect technology will be
necessary to realize such large TPs. Furthermore, pipeline
parallelism can also be relied on to limit 7P. Consequently,
we study a range of TP values up until 256.

DP degree: Our data-parallel empirical analysis is largely
agnostic to DP degree. Unlike TP, compute FLOPS and
overall communication size are not dictated by DP degree.
Furthermore, while we use a four-GPU (N = 4) setup, it also
provides us with a reasonable, albeit conservative, estimate
of communication time on larger setups because (ring)
all-reduce traffic scaling is small at large device counts,
which scales with (N — 1)/N ~1 for large N). However,
increasing device count also increases synchronization cost
between devices, causing the actual communication time to
be slightly higher. Furthermore, DP training is usually setup
on large-scale multi-node, often heterogeneous, systems
with slower inter-node links. Since we did not have access
to any of these machines, we instead optimistically estimate
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the communication times using intra-node links and discuss
the implications of this in Section 4.3.7.

4.3.3. Profiling Setup. For the overlapped communication
analysis, as discussed in Section 4.2.2 we extract relevant re-
gions from training iteration (compute and communication
operations) and execute only these relevant regions for all
possible hyperparameter combinations under consideration
(Table 1). Although in reality they execute concurrently, we
execute and study them in isolation to avoid interference
slowdowns from shared resources and to understand their
optimal characteristics in isolation. For serialized communi-
cation analysis, we first profile BERT [18] training iterations
on a single GPU as a baseline. Next, we employ our operator-
level models (Section 4.2.2) to project training runtime for
hundreds of Transformer configurations. Finally, we use
rocProf [4] to measure GPU kernel execution times.

4.3.4. Amdahl’s Law Edge Analysis. Using our empirical
strategy (Section 4.2), hyperparameter trends (Section 3.5),
and estimated TP values (Section 4.3.2), we project the
proportion of serialized communication as compared to
compute. Figure 10 shows the fraction of Transformer train-
ing time spent on communication for a subset of varying
H, SL, and TP values. It includes a medium Transformer
(~T-NLG [44]), one of today’s largest Transformer models
(~PALM [15]), and a futuristic Transformer (Future-2). For
a fixed H and SL- B (a line), the communication proportion
increases with increasing TP. Conversely, with fixed 7P it
decreases with either an increasing H or SL. These trends
mirror our algorithmic takeaways (Section 3.3). Furthermore,
the communication fraction is considerable and increases
as models scale. Models of different sizes require different
TP values to train (discussed in Section 4.3.2). While a
TP degree of 16 can potentially suffice for a model with
H = 4K (e.g., T-NLG), it has to be scaled for larger
models (e.g., TP of 64 for H of 16K). These parameter
combinations are highlighted in blue in Figure 10 and show
that communication increases to a considerable 50% of
the execution time for a model with H = 64K (Future-2).
This trend also correlates with our algorithmic takeaways
(Section 3.3): with SL constant, and similar scaling of H
and TP, the denominator of (H + SL)/TP scales much more,
causing compute’s Amdahl’s Law edge to decrease.
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Figure 13: Impact of hardware evolution on fraction of
serialized communication time.

4.3.5. Slack Advantage Analysis. We estimate the frac-
tion of time that communication is overlapped with compute
using our empirical strategy (Section 4.2) and hyperparam-
eter trends (Section 3.5). This helps estimate both how well
compute’s slack advantage can hide communication costs
and how this slack scales. Moreover, these estimates hold
irrespective of the degree of DP. Figure 11 shows that the
overlapped time decreases as the product of SL and B (SL-B
in Figure 11) increases, similar to our algorithmic takeaway
in Section 3.4. Additionally, the overlap percentage is
higher at smaller H, causing smaller remaining slack. Our
algorithmic analysis did not account for this since it is
an artifact of hardware execution. Additionally smaller H,
and thus smaller communication sizes do not fully use the
network bandwidth capacity of devices that larger sizes
can. This results in a sub-linear increase in communication
costs until the network bandwidth saturates. Conversely,
compute operations are large enough to saturate compute
FLOPS. Thus, the slower communication at smaller sizes
creates a larger overlap and leaves less compute slack.

Furthermore, the communication overlap percentages
are very high, ranging from 17% to 140% for the range
of H,SL, and B values, with a fixed TP degree of 16 and
irrespective of the DP degree. In particular, the highlighted
blue region shows that for the common SL - B value
of 4K, across a range of models, communication forms
20-55% of compute time, leaving smaller compute slack.
Moreover, this percentage is likely to be much higher as this
communication usually occurs in large multi-node setups
with slower network links than the high-bandwidth intra-
node links we study.

4.3.6. Future Hardware Analysis. Thus far we have
estimated the Comp-vs.-Comm costs while training Trans-
formers on current systems. However, evolving hardware
can change these estimates and shift application bottlenecks.
Thus, we next estimate the Comp-vs.-Comm costs for future
systems, using past hardware trends to help inform future
system design. First we estimate the relative scaling of
compute FLOPS versus network bandwidth, which we call
flop-vs.-bw. This value varies across GPU generations as
well as vendors. Between 2018 and 2020, compute FLOPS
scaled by ~5x [46, 48] and ~7x [2, 7], while corresponding
network bandwidth scaled only by ~2x [46, 48] and
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Figure 14: Overall Comp-vs.-Comm Case Study. Setup:
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~1.7% [2, 7], respectively. This implies that compute FLOPS
have scaled relatively more than network bandwidth: by
~ 2 — 4x. We use these relative flop-vs.-bw ratios to scale
the compute time estimated in Sections 4.3.4 and 4.3.5 and
project its resulting slack advantage and Amdahl’s Law
edge over communication. Reducing precision can further
disproportionately scale compute FLOPS more than network,
causing this ratio to be much higher (discussed further in
Section 6, Number-formats).

Figure 13 shows that, with 2x and 4x flop-vs.-bw scal-
ing, serialized communication starts to dominate training
execution. The range increases from 20-50% to 30-65%
and 40-75%, respectively, for the configurations in Sec-
tion 4.3.4. Similarly, compute acceleration also reduces, or
even eliminates, compute’s slack to overlap communication.
Figure 12 shows that the overlapped communication is 50-
100% and 80-210% of compute time with 2x and 4x flop-
vs.-bw scaling, and communication is exposed (i.e., on the
critical path) in many cases (when >= 100%). Furthermore,
these communication percentages will increase in inter-node
setups (discussed in Section 4.3.7). Thus, if similar trends in
hardware evolution continue, communication will become
a critical bottleneck in training Transformers.

4.3.7. End-to-end Comp-vs.-Comm Case Study: Com-
bining Serialized & Overlapped Communication.
Figure 14 shows the combined impact of both TP and
DP for a large futuristic Transformer model. 47% of time
is spent on serialized communication while 9% is spent on
overlapped communication. Since the latter is completely
hidden by independent (backprop GEMM) computations,
47% of the overall communication is on the critical path.

Lower inter-node communication bandwidth and inter-
ference slowdown also affect overlapped communication
(~8x [57]). The former is pertinent since portions of DP’s
overlapped communication may be sent over inter-node
links. The latter is pertinent since communication can
potentially slow down due to interference during its con-
current execution with compute [57]. The third scenario in
Figure 14 shows their impact — DP-directed communication
is no longer completely hidden. Thus, with TP-directed
communication serialized and DP-directed communication
only partially overlapped, total communication will become
a larger bottleneck for future Transformer training.

4.3.8. Evaluating Operator-level Model. Hardware ex-
ecution of all models and system setups can provide a
more accurate Comp-vs.-Comm analysis. Although ROI
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Figure 15: Effectiveness of Operator-level modeling.

extraction makes this possible for the overlapped com-
munication study in DP, measuring the end-to-end model
breakdown in order to evaluate serialized communication
for all configurations is impractical. Thus, to study the end-
to-end breakdown of a future model’s training execution
we project the runtime of all its individual components
using our operator model (Section 4.2.2). Here we evaluate
the approach’s effectiveness and benefits:

Accuracy: To evaluate the operator-level model’s effec-
tiveness, we compare the projected runtimes of operations
and communication against those measured on hardware
while sweeping hyperparameters and data size, respectively.
Figure 15 shows this comparison for three operators which
cover a spectrum of Transformer hardware characteris-
tics: compute-bound GEMMs, memory-bandwidth bound
LayerNorm, and the all-reduce communication collective.
For GEMM and LayerNorm, we show the projected and
measured execution times for different hyperparameter (H,
SL) values. For all-reduce, we compare them for a range of
array sizes. These results are normalized by the measured
execution time of the operation (or communication) using
the base hyperparameter (or array size) used for projections.

Figure 15(a) shows how linearly scaling Transformer
GEMMSs’ runtimes with SL accurately captures their hard-
ware behavior as SL varies. Similarly, scaling GEMM’s
runtime quadratically with the H (layer width) captures
hardware trends with increasing H. However, individual
errors in projecting GEMM runtimes are not negligible
as operator efficiency changes with input size. Generally,
GEMM efficiency improves as input sizes increase, causing
runtime scaling ratios to be smaller than the ratios of
input sizes. This pattern continues until GEMMs achieve
near-peak efficiency, after which runtime scaling becomes
analogous to input size scaling. Thus, errors with projecting
future GEMM runtimes using a small operation size as the
baseline can be large. Although we use BERT as the baseline
model, its GEMMs do not achieve peak efficiency. This
results in the projected GEMM runtimes for future models
to be higher, as demonstrated in Figure 15(a). Although the
smaller-than-projected GEMM runtimes suggest that the
proportion of TP-related communication for larger models
is slightly higher, it does not alter our main insights. For
example, while the error may improve by using a larger
baseline model, and thus operation sizes, Figure 15’s trends
and our key takeaways will still hold. Overall, across all

studied GEMMs, the model projects runtime with an error
of ~ 15%. Similarly, Figure 15(b) shows we accurately model
LayerNorm’s runtime, which is linear with both SL and H:
~ 7% geomean error. Finally, Figure 15(c) shows our model
accurately models all-reduce trends as data size varies:
~ 11% geomean error. Although efficiency also impacts the
projections of these operators (e.g., due to better memory
and network bandwidth utilization), its impact is small since
they are usually close to saturation in the baseline models.
Profiling Speedups: Finally, exhaustively studying hun-
dreds of configurations (parameter combinations from
Table 1) without actually executing them saves consid-
erable profiling time and effort. Specifically, our strategy
avoids executing ~198 different Transformers (some very
expensive), reducing profiling costs by three orders of
magnitude (2100 %) compared to serialized Comp-vs.-Comm
for the 198 configurations. We also avoid executing end-
to-end iterations, specifically the forward propagation, to
estimate the overlapped Comp-vs.-Comm costs. This speeds
up profiling by 1.5x.

5. ML/System Evolution Recommendations

Our Comp-vs.-Comm analysis demonstrates that com-
munication is starting to become a considerable bottleneck
for distributed training. Here we discuss some promising
techniques that stand to tackle this challenge and also
discuss how our analysis influences their potential improve-
ments.

System-aware ML Evolution: Design of novel DNNs is
often influenced by constraints of underlying hardware and
vice-versa (e.g., number formats in ML).

Comp-vs.-Comm influence: Our analysis shows that stressing
certain hyper-parameters more than others (e.g., scale
SL more than H) stands to strengthen compute vis-a-vis
communication. This is so, as first, scaling SL improves both
the edge and the slack compute has over communication
(Section 3). While scaling H helps increase compute’s edge,
it stresses memory capacity (for parameters) quadratically.
As such, model evolution which scales SL more than H is
likely to have a lower communication fraction than vice-
a-versa. Note, existing works which scale SL have shown
interesting results [13, 14].

Communication Offloads/Fusion: Some techniques of-
fload communication from an accelerator (e.g., GPU) to a
co-processor (e.g., ASIC, FPGA, DPU) [9, 57] which are



specialized to accelerate communication. They can address
communication which can be overlapped with computation
(e.g., data parallelism). To tackle communication on critical
path, techniques that break communication abstractions
and optimize for pipelining/overlap of data generation and
communication can be employed [22, 32, 76].
Comp-vs.-Comm influence: Our analysis indicates that both
serialized and overlapped communication are important.
Consequently, a judicious combination of both offload and
fusion will be necessary for future Transformers.
Processing-in-memory (PIM): Several commercial realiza-
tions of Processing-in-memory (PIM), which push compute
units closer to memory, have recently emerged [63, 67].
Comp-vs.-Comm  influence: Lowering communication-
induced memory traffic can help improve efficiency.
This can be enabled by efficient support for in-memory
atomics with PIM which can lower memory traffic
required for the reduction computation in an all-reduce
primitive. This also stands to lower interference in memory
between communication and computation executing on
the accelerator.

Processing-in-network (PIN): Processing data during
traversal is also promising [61, 64]. Specifically, techniques
that enhance existing network switches to execute collec-
tives [25, 34, 40] halve the network’s transmitted bytes
compared to a bandwidth-optimal ring all-reduce [10].
This is because devices only send their copies of data
to the switches once and receive the reduced version
from the switches. Unlike in software-based ring/direct all-
reduce approaches where devices send and receive arrays
twice; for reduce-scatter and all-gather. However, PIN-based
techniques are limited to topologies with switches.
Comp-vs.-Comm influence: As switch-based collectives are
limited in their bandwidth benefit (~2x), our analysis
shows that judiciously combining them with fusion will
be necessary for future Transformers given the fraction of
execution time bottlenecked by communication.

6. Discussion

Beyond DP & TP: While we focus on DP and TP, commu-
nication from other distributed techniques can be folded
into our analysis. Mixture-of-experts (MoE) sparsely activate
parts of a network to reduce computational costs [21, 55].
Besides DP and TP, MoEs also deploy expert parallelism
with additional serialized all-to-all communication — which
can be incorporated into our serialized communication
analysis. Overall, due to this additional communication
and reduced computation, MoEs potentially increase the
fraction of communication even further. Pipeline Parallelism
(PP) partitions a model to assign a subset of layers to each
device such that devices execute their layers in a pipelined
manner [31]. We do not focus on PP as it adds pipeline
bubbles which either degrades efficiency or requires a large
number of micro-batches, which add memory pressure and
degrade model quality. Nevertheless, our overlapped commu-
nication methodology/analysis can be extended to include
the peer-to-peer communication of activations between
PP devices. Finally, the Fully Shared Data Parallel (FSDP)

technique combines DP’s and TP’s benefits by distributing
weights amongst DP devices and asynchronously gathering
them just before layer computation. This adds additional
overlapped communication in both forward and backward
execution passes, which we could extend our slack analysis
to examine.

Large/Other System Setups: LLM training usually uses
both DP and TP: TP is employed within nodes and DP
across nodes. Thus, DP-related communication occurs over
slower inter-node links (e.g., Ethernet). While our empirical
analysis focuses on intra-node setups with faster network
links, it can be extended to encompass other network
types. Nonetheless, our algorithmic analysis for identifying
slack remains applicable and can also be utilized to reduce
the time and effort needed for empirically estimating
slack/overlap in large clusters.

Finally, while our empirical analysis uses a single
GPU/hardware type, it can be extended to consider other
hardware types (e.g., accelerators or GPU systems from
other vendors). Recent work has shown that Transformers
operations runtime can be calculated using their sizes and
hardware specifications such as FLOPS, memory bandwidth,
and intra-node bandwidth (albeit with efficiency considera-
tions) [45]. Thus, our operator-level model could also be
enhanced to project runtimes for another device using the
ratios of the devices’ specifications.

Large System Memory: Techniques to place the model
state in system memory (CPU-attached DDR, NVMe mem-
ory) can help reduce accelerator memory pressure [49, 56,
60]. While this limits the required model-parallel (TP or
PP) degrees and inter-accelerator communication, it can
increase training time due to the limited compute capacity
of fewer devices. Nevertheless, our methodology can be
used to model communication for the resulting TP and be
extended to include additional overlapped communication
between CPU/NVMe and accelerator memory.

Number-formats: Number formats with lower number of
bits [43, 62] have both computational and communication
benefits during training. Our analysis and methodology,
although for state-of-art mixed-precision training, are
largely agnostic to the formats. Further, compute time can
potentially decrease more than communication at smaller
number formats. As such, the key takeaways of our analysis
will likely carry over to these alternate formats.

Fine-tuning & Inference: Our takeaways hold for fine-
tuning since it uses the same techniques and model as pre-
training. Conversely, inference has much smaller memory
requirements [24, 29] and thus can avoid distributed setups
and communication. If deployed in distributed setups [50,
55], our proposal and takeaways will continue to hold.
Other DNNs: While we focus on Transformers due to their
generality, our proposed methodology can be translated as
is and/or extended to other DNNs. Specifically, our insights
on ROI extraction and operator-level projections can be
easily translated to other models. Similarly, an algorithmic
analysis-based empirical strategy, as proposed by our work,
can be extended for other DNN.



7. Related work

DNN Characterization DNNs, especially Transformers,
are an important application domain that are driving system
optimizations. Consequently, there have been several works
on benchmarking and characterizing them [1, 26, 42, 58,
74, 79-81, 81]. However, unlike our work, these focus on
compute bottlenecks in single-device DNN executions and
thus do not characterize the communication costs that arise
in multi-device, distributed setups. Instead, we focus on
characterizing the relative cost of communication compared
to compute operations and show that more communication-
focused innovations will be needed in the future.
Studying & Accelerating Communication: Other works
study and/or optimize for communication in distributed
setups [16, 34, 51, 57, 76]. However, unlike our work they
do not examine how communication costs, and thus benefits
of their optimizations, evolve across different Transformers,
hardware capability, and different distributed techniques.
While some works [19, 47] examine the throughput impact
of sweeping a subset of hyperparameters, they either do
not include in-depth characterization that examines the
behavior or are on a single device.

8. Conclusion

Scaling of Transformers models and their datasets has
necessitated very large-scale distributed setups, which raises
the key question: how will compute vs. communication
(Comp-vs.-Comm) scale as models scale and hardware
evolves? We conduct a multi-axial (algorithmic, experimen-
tal, hardware evolution) analysis of Comp-vs.-Comm scaling
for Transformer models. Our system-agnostic, algorithmic
analysis highlights that while compute has enjoyed an edge
over communication, future model and hardware trends
are likely to make communication dominant soon. We also
empirically study Comp-vs.-Comm for future Transformer
models as hardware evolves. By extracting specific regions
of interest and modeling future operator runtimes, we en-
able the study of hundreds of future Transformers/hardware
scenarios with 2100 x less profiling costs. These experiments
validate that communication will play an increasingly large
role (40-75%) in a distributed training setup as models scale.
Overall, our multi-axial analysis shows the need for effective
scaling of communication capabilities, and we conclude with
a discussion of how our analysis influences some promising
techniques and technologies.
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