Implementing Support for Extensible Power
Modeling in gem>S

Alex Smith, Matthew D. Sinclair
University of Wisconsin-Madison
adsmith@cs.wisc.edu sinclair@cs.wisc.edu

I. INTRODUCTION

Power consumption has increasingly become a first-class
design constraint [1] to satisfy requirements for scientific
workloads and other widely used workloads, such as machine
learning. To meet performance and power requirements, sys-
tem designers often use architectural simulators, such as gem5,
to model component and system-level behavior. However, per-
formance and power modeling tools are often isolated and do
not make it accessible to integrate with one another for rapid
performance and power system co-design. Although studies
have previously explored power modeling with gem5 and
validation on real hardware [2], there are several flaws with
this approach. First, power models are sometimes not open
source, making it difficult to apply them to different simulated
systems. The current interface for implementing power models
in gem5 also relies on hard-coded strings provided by the
user to model dynamic and static power. This makes defining
power models for components cumbersome and restrictive,
as gem5’s MathExpr string formula parser has support for
limited mathematical operations. Third, previous works only
implement one form of power model for one component.
This unnecessarily limits users from combining other power
models, which may model certain system components with
higher accuracy. Instead, we posit that decoupling how power
models are integrated with simulators from the design of power
models themselves will enable better power modeling in sim-
ulators. Accordingly, we extend our prior work on designing
and implementing an extensible, generalizable power modeling
interface [3] by integrating support for McPAT [4] into it and
validating it emits correct power values.

II. IMPLEMENTATION AND METHODOLOGY

Our implementation introduces a new SimObject class
which accepts a Python function instead of a string equation
to model power consumption. This enables users to define a
power model with more flexible, customized behavior than
the current MathExpr APIL For example, MathExpr does
not support nesting functions and only supports operations
that can be expressed in a string. This interface enables users
to integrate any power model which best suits their needs,
including pre-existing power models or power models they
have created.

Methodology: To demonstrate this flexibility, we implemented
MCcPAT into this interface for the in-order TimingSimple and
Minor CPUs and the out-of-order (O3) CPU, each with private
L1 data and instruction caches and a shared L2 cache. Next, to

Runtime Dynamic Power of Benchmarks

(Benchmark, Simulator, CPU Type)

Fig. 1: Power modeling results. Each tick is in the form of
(Benchmark, Simulator, CPU Type)

validate our implementation, we selected a handful of acces-
sible benchmarks including Hello World, IAX, SAX, IAXPY,
SAXPY, and DAXPY. For each benchmark, we validated their
new gem5 power results against those from MCcPAT for all
3 CPUs. Although these benchmarks have natural regions of
interest (ROIs), we model the power for the entire program
due to issues with m5ops improperly resetting statistics.
Results: Figure 1 shows our implemented gem5 MCcPAT
support has nearly identical power consumption to standalone
MCcPAT. Although most results follow expected patterns (e.g.,
SAX consumes less energy than SAXPY), several do not. For
example, DAXPY does not always consume more energy than
SAXPY, despite the increased precision in DAXPY, because
MCcPAT does not properly model the difference between single
and double precision operations. Similarly, some instructions
are categorized as vector instructions, which McPAT does
not support — causing instances such as IAXPY to report
less power than IAX under Timing. Nevertheless, since our
integrated support mirrors that of McPAT, these issues are not
specific to our integration.

III. CONCLUSION AND FUTURE WORK

To overcome the limitations of gem5’s current power mod-
eling API, we implemented a new power modeling interface
in gem5. To demonstrate the potential of our approach, we
implemented and are releasing this support, which we vali-
dated against the standalone tool. Thus, this support makes co-
designing early-stage designs for both performance and power
more practical for gem5’s users, and makes power models
accessible to computer architecture researchers. Moving for-
ward, we are extending this support to model power [5], [6]
for gem5’s GPU models [7]-[10].



ACKNOWLEDGMENTS

This work is supported in by the Semiconductor Research
Corporation grant 3151.001, National Science Foundation
grant ENS-1925485, and by the DOE’s Office of Science,
Office of Advanced Scientific Computing Research through
EXPRESS: 2023 Exploratory Research for Extreme Scale
Science.

[1]
[2]

[4]

[5]

[7]

[10]

REFERENCES

T. Mudge, “Power: A First-class Architectural Design Constraint,”
Computer, vol. 34, no. 4, pp. 52-58, 2001.

B. K. Reddy, M. J. Walker, D. Balsamo, S. Diestelhorst, B. M. Al-
Hashimi, and G. V. Merrett, “Empirical CPU Power Modelling and
Estimation in the gem5 Simulator,” in 27th International Symposium
on Power and Timing Modeling, Optimization and Simulation, ser.
PATMOS, 2017, pp. 1-8.

A. Smith, B. Bruce, J. Lowe-Power, and M. D. Sinclair, “Designing
Generalizable Power Models For Open-Source Architecture Simulators,”
in 3rd Open-Source Computer Architecture Research Workshop, ser.
OSCAR, 2024.

S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi, “McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore and Manycore Architectures,” in
Proceedings of the 42nd annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO, 2009, pp. 469—480.

V. Kandiah, S. Peverelle, M. Khairy, A. Manjunath, J. Pan, T. G. Rogers,
T. M. Aamodt, and N. Hardavellas, “AccelWattch: A Power Modeling
Framework for Modern GPUs,” in Proceedings of the 54th IEEE/ACM
International Symposium on Microarchitecture, ser. MICRO, October
2021.

P. Delestrac, J. Miquel, D. Bhattacharjee, D. Moolchandani, F. Catthoor,
L. Torres, and D. Novo, “Analyzing GPU Energy Consumption in Data
Movement and Storage,” in IEEE 35th International Conference on
Application-specific Systems, Architectures and Processors, ser. ASAP.
IEEE, 2024, pp. 143-151.

A. Gutierrez, B. M. Beckmann, A. Dutu, J. Gross, M. LeBeane,
J. Kalamatianos, O. Kayiran, M. Poremba, B. Potter, S. Puthoor, M. D.
Sinclair, M. Wyse, J. Yin, X. Zhang, A. Jain, and T. Rogers, “Lost in
Abstraction: Pitfalls of Analyzing GPUs at the Intermediate Language
Level,” in 2018 IEEE International Symposium on High Performance
Computer Architecture, ser. HPCA, Feb 2018, pp. 608-619.

V. Ramadas, D. Kouchekinia, N. Osuji, and M. D. Sinclair, “Closing
the Gap: Improving the Accuracy of gem5’s GPU Models,” in 5th gem5
Users’ Workshop, June 2023.

V. Ramadas, M. Poremba, B. M. Beckmann, and M. D. Sinclair,
“Simulation Support for Fast and Accurate Large-Scale GPGPU and
Accelerator Workloads,” in 3rd Open-Source Computer Architecture
Research Workshop, ser. OSCAR, 2024.

K. Roarty and M. D. Sinclair, “Modeling Modern GPU Applications in
gem5,” in 3rd gem5 Users’ Workshop, June 2020.



