Toward Full-System Heterogeneous Simulation: Merging

gem5-SALAM with Mainline gem5

Akanksha Chaudhari Matthew D. Sinclair
{akankshac, sinclair}@cs.wisc.edu

1 Motivation

The slowdown of process technology-driven improvements (3, 15]
has accelerated the shift toward heterogeneous computing systems,
where conventional general-purpose cores are increasingly com-
bined with GPUs and specialized accelerators to continue scaling
performance and energy efficiency gains. However, as these systems
grow more diverse, architectural design and system-level optimiza-
tion become significantly complex. Fully leveraging the benefits
of such architectures demands rigorous early-stage exploration us-
ing validated, cycle-level, full-system simulation frameworks that
capture both component behavior and cross-layer interactions.
The gemb5 simulator [2, 5] has provided this functionality for both
CPUs and GPUs [4, 8—-10]. However, accelerator modeling within
gem5 remains fragmented. Frameworks such as gem5-SALAM [12,
13] provide high-fidelity accelerator simulation atop gem5 v21.1,
but operate outside the mainline development and remain limited
to modeling accelerators in isolation. Consequently, they cannot
leverage improvements introduced in recent versions of gem5, nor
can mainline users test and validate their changes do not break
accelerator support. To bridge this gap, we are integrating and
merging SALAM’s accelerator modeling infrastructure into the
latest gem5 mainline, enabling tightly coupled simulation of accel-
erators alongside gem5’s existing CPU and GPU components within
a unified, full-system framework. This integration is critical for ad-
vancing early-stage architectural exploration, enabling researchers
to systematically evaluate design trade-offs, study cross-layer in-
teractions, and co-optimize compute, memory, and communication
components for emerging heterogeneous computing platforms.

2 Implementation & Methodology

To integrate gem5-SALAM into the gem5 mainline, we used three
key thrusts to make it fully compatible with gem5’s latest version
(develop branch, v24.1). First, we integrated key components from
gem5-SALAM into gem5 including: LLVMInterface (cycle-level dat-
apath simulation), CommInterface (exposing accelerators to the rest
of the system), as well as various memory organizations including
scratchpads, DMAs, and stream buffers, AccCluster (to group accel-
erators and private memories). We also extended gem5-SALAM’s
hardware generation scripts to automate generating source files
for functional units and instruction configuration objects based on
user-defined hardware profiles. Finally, we refactored the CACTI-
SALAM toolchain in Python to improve its compatibility with gem5,
modifying path handling, argument interfaces, and error handling
mechanisms, while enabling robust timing and energy estimation
for scratchpad memories using CACTI’s file-based configuration

’6th gem5 Users’ Workshop 2025, June 21-25, 2025, Tokyo, Japan
2025. ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

10000

>
\

——bfs ——t

Runtime (us)

—e—gemm —e=md_grid md_knn

—e—mergesort —<—nw spmy —B=stencilzd —e=stencil3d

o1 025 05 1 2 4 8 1 2
Frequency (GHz)

Figure 1: High frequency accelerator gem5 results.

methodology. Together, these changes provide native gem5 sup-
port for accelerator modeling with cycle-level timing, full-system
memory interaction, and scalable design space exploration.

Second, we refactored the integrated accelerator components
to comply with gem5’s evolution since 2021. This included adopt-
ing modern port binding APIs, replacing deprecated constructor
patterns, aligning port interfaces with gem5’s SimObject conven-
tions, updating accelerator latency modeling conventions, changing
address range specifications to follow gem5’s inclusive-exclusive se-
mantics, updating environment configurations and compiler issues,
and formalizing LLVM integration by extending scons.

Finally, we validated our integration using gem5’s pre-commit

checks and regression test suite to ensure gem5’s functionality re-
mained intact. To verify the integrated framework’s correctness,
we adapted gem5-SALAM’s system validation tests to run within
the unified setup and cross-validated simulation outputs against
those produced by the original gem5-SALAM baseline. These com-
parisons helped confirm functional equivalence.
Preliminary Results: To demonstrate the value of our changes,
we conducted preliminary experiments to evaluate the integrated
support for a variety of high frequency accelerators running up
to 20 GHz [11]. Although traditionally accelerators are not run
at such frequencies, recent work indicated they may be strong
candidates for high frequencies [1, 6, 7, 14]. Figure 1 shows our
results when sweeping frequencies from 0.1-20 GHz (some bars
are incomplete because the accelerator currently cannot run at
those frequencies). Configured to use a local scratchpad to elimi-
nate external memory bottlenecks, the accelerators often exhibit
progressively reduced runtimes as frequency increases, especially
near 20 GHz. These findings establish an upper bound on achiev-
able speedup in compute-bound scenarios for accelerator design
studies targeting extreme frequency scaling.

3 Conclusion & Future Work

Future systems will be even more heterogeneous, combining CPUs,
GPUs, and myriad accelerators to improve overall system efficiency.
Simulation tools must keep pace and enable early-stage co-design
for these systems. By integrating gem5-SALAM into gem5’s main-
line and open-sourcing this support (ongoing), our work facilitates

https://doi.org/XXXXXXX.XXXXXXX

’6th gem5 Users’ Workshop 2025’, June 21-25, 2025, Tokyo, Japan

system-level studies on task placement, scheduling, memory hi-
erarchy design, and interconnect behavior. Our high-frequency
accelerator study highlights gem5’s potential for early-stage explo-
ration. We are also working on extending our support beyond ARM
to other gem5-supported ISAs to further broaden its applicability
to emerging accelerator-rich platforms.

Acknowledgments

This work is supported in part by the Semiconductor Research
Corporation and by the DOE’s Office of Science, Office of Advanced
Scientific Computing Research through EXPRESS: 2023 Exploratory
Research for Extreme Scale Science.

References

[1] James Ang, Andrew A. Chien, Simon David Hammond, Adolfy Hoisie, Ian Karlin,
Scott Pakin, John Shalf, and Jeffrey S. Vetter. 2022. Reimagining Codesign for
Advanced Scientific Computing: Report for the ASCR Workshop on Reimagining
Codesign. DOE ASCR Workshop on Reimagining Codesign (4 2022), 77 pages.
https://doi.org/10.2172/1822199

[2] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. 2011. The gem5 simulator. ACM SIGARCH Computer
Architecture News 39, 2 (2011), 1-7.

[3] Daniel S. Green. 2018. Heterogeneous Integration at DARPA: Pathfinding and
Progress in Assembly Approaches. Technical Report. DARPA.

[4] Anthony Gutierrez, Bradford M. Beckmann, Alexandru Dutu, Joseph Gross,

Michael LeBeane, John Kalamatianos, Onur Kayiran, Matthew Poremba, Brandon

Potter, Sooraj Puthoor, Matthew D. Sinclair, Michael Wyse, Jieming Yin, Xianwei

Zhang, Akshay Jain, and Timothy Rogers. 2018. Lost in Abstraction: Pitfalls

of Analyzing GPUs at the Intermediate Language Level. In IEEE International

Symposium on High Performance Computer Architecture (HPCA). IEEE Computer

Society, Washington, DC, USA, 608-619.

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico

Amslinger, Matteo Andreozzi, Adria Armejach, Nils Asmussen, Srikant Bharad-

wayj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho,

Jeronimo Castrillon, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst,

Wendy Elsasser, Marjan Fariborz, Amin Farmahini-Farahani, Pouya Fotouhi,

Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus Hanind-

hito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian

Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang,

Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza

Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian

Menard, Andrea Mondelli, Tiago Miick, Omar Naji, Krishnendra Nathella, Hoa

Nguyen, Nikos Nikoleris, Lena E. Olson, Marc Orr, Binh Pham, Pablo Prieto,

Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain,

Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini,

Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang, Norbert Wehn,

Christian Weis, David A. Wood, Hongil Yoon, and Eder F. Zulian. 2020. The gem5

Simulator: Version 20.0+. arXiv:2007.03152 [cs.AR]

[6] Dongmoon Min, Ilkwon Byun, Gyu-Hyeon Lee, Seongmin Na, and Jangwoo
Kim. 2020. CryoCache: A Fast, Large, and Cost-Effective Cache Architecture for
Cryogenic Computing. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(Lausanne, Switzerland) (ASPLOS). Association for Computing Machinery, New
York, NY, USA, 449-464. https://doi.org/10.1145/3373376.3378513

[7] Kunal Pai, Anusheel Nand, and Jason Lowe-Power. 2024. Potential and Limitation
of High-Frequency Cores and Caches. arXiv:2408.03308 [cs.AR] https://arxiv.
org/abs/2408.03308

[8] Vishnu Ramadas, Matthew Poremba, Bradford M. Beckmann, and M. D. Sinclair.

2023. Improving gem5’s GPU FS Support. In The 5th gem5 Users” Workshop.

4 pages.

Vishnu Ramadas, Matthew Poremba, Bradford M. Beckmann, and M. D. Sinclair.

2024. Simulation Support for Fast and Accurate Large-Scale GPGPU and Accel-

erator Workloads. In 3rd Open-Source Computer Architecture Research Workshop

(OSCAR). 4 pages.

[10] Vishnu Ramadas and M. D. Sinclair. 2024. Simulating Machine Learning Models

at Scale. In SRC TECHCON. 7 pages.

Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David

Brooks. 2014. MachSuite: Benchmarks for accelerator design and customized

architectures. In 2014 IEEE International Symposium on Workload Characterization

(IISWC). 110-119. https://doi.org/10.1109/IISWC.2014.6983050

&

[9

=

[11

Akanksha Chaudhari Matthew D. Sinclair
{akankshac, sinclair@cs.wisc.edu

[12] Samuel Rogers, Joshua Slycord, Mohammadreza Baharani, and Hamed Tabkhi.
2020. gem5-SALAM: A System Architecture for LLVM-based Accelerator Mod-
eling. In 53rd Annual IEEE/ACM International Symposium on Microarchitecture.
471-482. https://doi.org/10.1109/MICR0O50266.2020.00047

Zephaniah Spencer, Samuel Rogers, Joshua Slycord, and Hamed Tabkhi. 2024.
Expanding Hardware Accelerator System Design Space Exploration with gem5-
SALAMv2. Journal of Systems Architecture 154 (2024), 103211. https://doi.org/
10.1016/j.sysarc.2024.103211

Swamit S. Tannu, Poulami Das, Michael L. Lewis, Robert Krick, Douglas M.
Carmean, and Moinuddin K. Qureshi. 2019. A case for superconducting accel-
erators. In Proceedings of the 16th ACM International Conference on Computing
Frontiers (Alghero, Italy) (CF ’19). Association for Computing Machinery, New
York, NY, USA, 67-75. https://doi.org/10.1145/3310273.3321561

Thomas N. Theis and H.-S. Philip Wong. 2017. The End of Moore’s Law: A New
Beginning for Information Technology. Computing in Science & Engineering 19,
2 (2017), 41-50. https://doi.org/10.1109/MCSE.2017.29

(13

(14

[15

https://doi.org/10.2172/1822199
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/3373376.3378513
https://arxiv.org/abs/2408.03308
https://arxiv.org/abs/2408.03308
https://arxiv.org/abs/2408.03308
https://doi.org/10.1109/IISWC.2014.6983050
https://doi.org/10.1109/MICRO50266.2020.00047
https://doi.org/10.1016/j.sysarc.2024.103211
https://doi.org/10.1016/j.sysarc.2024.103211
https://doi.org/10.1145/3310273.3321561
https://doi.org/10.1109/MCSE.2017.29

	1 Motivation
	2 Implementation & Methodology
	3 Conclusion & Future Work
	References

