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1 Motivation

The slowdown of process technology-driven improvements (3, 15]
has accelerated the shift toward heterogeneous computing systems,
where conventional general-purpose cores are increasingly com-
bined with GPUs and specialized accelerators to continue scaling
performance and energy efficiency gains. However, as these systems
grow more diverse, architectural design and system-level optimiza-
tion become significantly complex. Fully leveraging the benefits
of such architectures demands rigorous early-stage exploration us-
ing validated, cycle-level, full-system simulation frameworks that
capture both component behavior and cross-layer interactions.
The gemb5 simulator [2, 5] has provided this functionality for both
CPUs and GPUs [4, 8—-10]. However, accelerator modeling within
gem5 remains fragmented. Frameworks such as gem5-SALAM [12,
13] provide high-fidelity accelerator simulation atop gem5 v21.1,
but operate outside the mainline development and remain limited
to modeling accelerators in isolation. Consequently, they cannot
leverage improvements introduced in recent versions of gem5, nor
can mainline users test and validate their changes do not break
accelerator support. To bridge this gap, we are integrating and
merging SALAM’s accelerator modeling infrastructure into the
latest gem5 mainline, enabling tightly coupled simulation of accel-
erators alongside gem5’s existing CPU and GPU components within
a unified, full-system framework. This integration is critical for ad-
vancing early-stage architectural exploration, enabling researchers
to systematically evaluate design trade-offs, study cross-layer in-
teractions, and co-optimize compute, memory, and communication
components for emerging heterogeneous computing platforms.

2 Implementation & Methodology

To integrate gem5-SALAM into the gem5 mainline, we used three
key thrusts to make it fully compatible with gem5’s latest version
(develop branch, v24.1). First, we integrated key components from
gem5-SALAM into gem5 including: LLVMInterface (cycle-level dat-
apath simulation), CommInterface (exposing accelerators to the rest
of the system), as well as various memory organizations including
scratchpads, DMAs, and stream buffers, AccCluster (to group accel-
erators and private memories). We also extended gem5-SALAM’s
hardware generation scripts to automate generating source files
for functional units and instruction configuration objects based on
user-defined hardware profiles. Finally, we refactored the CACTI-
SALAM toolchain in Python to improve its compatibility with gem5,
modifying path handling, argument interfaces, and error handling
mechanisms, while enabling robust timing and energy estimation
for scratchpad memories using CACTI’s file-based configuration
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Figure 1: High frequency accelerator gem5 results.

methodology. Together, these changes provide native gem5 sup-
port for accelerator modeling with cycle-level timing, full-system
memory interaction, and scalable design space exploration.

Second, we refactored the integrated accelerator components
to comply with gem5’s evolution since 2021. This included adopt-
ing modern port binding APIs, replacing deprecated constructor
patterns, aligning port interfaces with gem5’s SimObject conven-
tions, updating accelerator latency modeling conventions, changing
address range specifications to follow gem5’s inclusive-exclusive se-
mantics, updating environment configurations and compiler issues,
and formalizing LLVM integration by extending scons.

Finally, we validated our integration using gem5’s pre-commit

checks and regression test suite to ensure gem5’s functionality re-
mained intact. To verify the integrated framework’s correctness,
we adapted gem5-SALAM’s system validation tests to run within
the unified setup and cross-validated simulation outputs against
those produced by the original gem5-SALAM baseline. These com-
parisons helped confirm functional equivalence.
Preliminary Results: To demonstrate the value of our changes,
we conducted preliminary experiments to evaluate the integrated
support for a variety of high frequency accelerators running up
to 20 GHz [11]. Although traditionally accelerators are not run
at such frequencies, recent work indicated they may be strong
candidates for high frequencies [1, 6, 7, 14]. Figure 1 shows our
results when sweeping frequencies from 0.1-20 GHz (some bars
are incomplete because the accelerator currently cannot run at
those frequencies). Configured to use a local scratchpad to elimi-
nate external memory bottlenecks, the accelerators often exhibit
progressively reduced runtimes as frequency increases, especially
near 20 GHz. These findings establish an upper bound on achiev-
able speedup in compute-bound scenarios for accelerator design
studies targeting extreme frequency scaling.

3 Conclusion & Future Work

Future systems will be even more heterogeneous, combining CPUs,
GPUs, and myriad accelerators to improve overall system efficiency.
Simulation tools must keep pace and enable early-stage co-design
for these systems. By integrating gem5-SALAM into gem5’s main-
line and open-sourcing this support (ongoing), our work facilitates
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system-level studies on task placement, scheduling, memory hi-
erarchy design, and interconnect behavior. Our high-frequency
accelerator study highlights gem5’s potential for early-stage explo-
ration. We are also working on extending our support beyond ARM
to other gem5-supported ISAs to further broaden its applicability
to emerging accelerator-rich platforms.
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