
Re-Cinematography:
Improving the Camera Dynamics of Casual Video

Michael L. Gleicher
Department of Computer Sciences
University of Wisconsin-Madison

gleicher@cs.wisc.edu

Feng Liu
Department of Computer Sciences
University of Wisconsin-Madison

fliu@cs.wisc.edu

ABSTRACT
This paper presents an approach to post-processing casu-
ally captured videos to improve apparent camera movement.
Re-cinematography transforms each frame of a video such
that the video better follows cinematic conventions. The
approach breaks videos into shorter segments. For segments
of the source video where the camera is relatively static,
re-cinematography uses image stabilization to make the re-
sult look locked-down. For segments with camera motions,
camera paths are keyframed automatically and interpolated
with matrix logarithms to give velocity-profiled movements
that appear intentional and directed. The approach auto-
matically balances the tradeoff between motion smoothness
and distortion to the original imagery. Results from our
prototype show improvements to poor quality home videos.

Categories and Subject Descriptors
H.5.1 [Information Presentation]: Multimedia—Video

General Terms: Design, Experimentation, Human Factors

Keywords: image stabilization, casual video, cinematography

1. INTRODUCTION
The increasing availability of video capture devices means

that one is always on hand to capture an interesting moment.
It also leads to a growing amount of video that is created
without the planning and artistry required to make good
video: when a baby takes his first steps, a proud parent is
lucky to remember to take off the lens cap, never mind set up
a fluid-head tripod or remember what they learned in film
school. Such casually captured videos often record precious
memories but are also difficult to watch. Our goal is to
create tools that can post-process these videos to improve
them. In this paper we introduce Re-Cinematography, an
approach that processes recorded video clips to improve one
aspect of their quality: the apparent camera movements.

Casual video is often made with unplanned and poorly
executed camera motions. The best known problem is shak-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Ausburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

iness from a hand-held camera. These undesirable high-
frequency movements can be removed by image stabiliza-
tion. Image stabilization adjusts each frame to change the
apparent movement between frames. These transformations
typically damage the individual frames through distortions,
lost portions of the frame, and loss of detail. Removing
unwanted shakiness usually makes this an acceptable trade-
off. Almost all video cameras implement some image stabi-
lization, and widely available software solutions can provide
even more aggressive stabilization (i.e. larger changes).

Re-Cinematography extends image stabilization, adjust-
ing video frames so that the resulting apparent camera mo-
tion follows cinematic conventions. Rather than simply re-
moving high frequencies, the video is adjusted such that it
appears as if the camera were on a properly damped tri-
pod: either holding still, or moving with directed, velocity-
profiled movements. Like stabilization, transforming the
frames involves tradeoffs between image and motion qual-
ity. Re-Cinematography considers these tradeoffs explicitly.

1.1 Overview
Consider a video clip of a skier (Fig 1) taken with a hand-

held digital camera panning to follow the skier. Unlike a
video made by a professional (with considerable camera ex-
perience and a fluid-head tripod), this casual video has small
jitters (from being hand-held) and does not have a fluid,
goal-directed motion. Image stabilization (including what
is built into the camera) addresses the former problem; Re-
cinematography addresses both.

Re-cinematography can automatically turn this video clip
into a pan, similar to what one would obtain using a good
tripod. Conceptually, the method uses inter-frame motion
estimation to build an image mosaic that completely sta-
bilizes the camera movement to create a panoramic image,
and then animates a virtual camera that views this mosaic.
In practice, an implementation need not form the panoramic
image (except to create diagrams like Fig 1). More dramatic
examples of the contrast between image stabilization (that
reduces jitter) and re-cinematography (that creates directed
motions) are given in §5.1, e.g. Fig 9.

Re-cinematography avoids the limitations of image mo-
saicing by breaking video into a series of shorter segments,
and choosing appropriate virtual camera motions for each.
These motions are created automatically for each video seg-
ment based on the observed camera motions; nearly static
source video results in no motion, while larger camera move-
ments are replaced with goal-directed, velocity-profiled paths.
The motions are created by automatically keyframing the
camera paths. Problems in direct paths are addressed by

Figure 1: Schematic of the Re-cinematography process. Conceptually, an image mosaic is constructed for the video clip and a virtual
camera viewing this mosaic is keyframed. Yellow denotes the source camera path, magenta (dark) the keyframed virtual camera.

inserting keyframes. For example, our approach uses mo-
tion salience to determine what is likely to be important
to the viewer and insures that these objects stay on screen.
Other constraints include limitations on the scene analysis
and amount of distortion introduced by the transformations.

Re-cinematography is a novel approach to improving the
apparent camera motion in casual videos. Specific contribu-
tions include:

• A local mosaic approach that allows mosaic-based tech-
niques to be applied to a wider range of video content.

• A model for creating camera motions directly as 2D
transformations that map cinematographic ideals onto
implementable mathematical foundations such as ma-
trix exponential interpolation.

• An approach that explicitly considers the tradeoffs in
video motion alteration.

• Methods that plan new virtual camera motions that
optimize the tradeoff between motion quality and im-
age quality.

• Methods that use motion salience to avoid trimming
important aspects of the video.

1.2 Good Video
Re-cinematography aims to create good apparent camera

motions, not simply remove shakiness. Cinematography is
the art of choosing what the viewer in a film or video sees
through camera positioning and movement. Good video uses
the control of viewpoint effectively. Guidelines and conven-
tions developed over the past century suggest what camera
work is effective. Skilled filmmakers may bend these rules
to achieve a desired effect, but this is different than a causal
videographer ignoring the rules.

Literature on film helps indirectly. General books on the
film arts (such as [6]), or more specifically about cinematog-
raphy (such as [22] or [2]), discuss cinematography and the
aesthetic considerations of camera movement. Texts such as
[5] and [7] give more technical discussion and a relationship
to low-level perceptual issues. These latter discussions are
more readily translated into computational frameworks.

To borrow terminology from [7], camera movements should
be motivated and intentional. If the filmmaker exerts con-
trol over the viewer’s viewpoint they should have a reason
so the viewer can more easily follow. This suggests that
small adjustments should be avoided, i.e. that the camera
is “locked down” unless it makes a significant movement.
When there are movements, they should be goal-directed
(since they have an intent), rather than wandering.

To create these carefully planned camera motions, film-
makers usually use camera supports. A good support, like
a fluid-head tripod, not only makes sure that non-moving
shots are stable, but also helps insure that motions have con-
tinuity in velocity and direction. See Brown [7] for an array

of supports used by filmmakers to create camera movements.
For casual videography the guidelines still apply. Web ref-
erences for videography tips have a consistent message: use
a tripod (the most common kind of support).

For re-cinematography, we translate these guidelines into
more specific, implementable goals. Small movements are
better replaced with a static camera. Larger movements
should follow directed paths and move with velocity-profiled
paths between goals. By velocity-profiled, we mean that it
moves with a constant velocity, except possibly for an ini-
tial acceleration or deceleration (§3.4). Re-cinematography
achieves these goals by estimating the camera motion in the
source video and adjusting it. Other details of cinematogra-
phy, such as size constancy and leading, are also considered
in our algorithm design.

Without an understanding of the motivation for the orig-
inal camera motion, re-cinematography relies on the source
movement as a basis for a new one, effectively predicting
what the movement might have been if the videographer
had a properly damped camera support. This reliance on
the source motion is convenient as practical considerations
limit how far re-cinematography can deviate from it.

2. RELATED WORK
The use of 2D image transformations to change apparent

camera motion has a long tradition. Lab shots that moved
the film during optical printing [6] evolved into the com-
plex effects used in animation where flying is simulated by
moving the animation camera over a panoramic background
[21]. Re-cinematography is inspired by [36] that introduced
the camera-over-panorama idea in computer graphics. Un-
like their work, we use real video rather than 3D models, a
full projective transformation, and do not build or distort
panoramas.

Image or video stabilization, of which re-cinematography
is a generalization, uses image movement to change appar-
ent camera motions. The methods are ubiquitous and im-
plemented in almost all consumer video cameras, and the
literature on the subject is too vast to survey here. Image
stabilization comprises three main components: motion esti-
mation, motion smoothing and image production. Our inno-
vation is in the second step. Prior work on motion smoothing
falls into three categories: causal (or online) low-pass filters
(c.f. [24]), general low-pass filters (c.f. [27] and [11]), and
mosaic-based approaches.

Mosaic-based video stabilization is impractical for cleanup
of general casual videos [27]. Our approach reaps its bene-
fits by applying it when it can stabilize a shot and extending
it to create good camera movements. Other applications of
mosaicing have inspired us. For example, Irani et al. [19]
provide numerous applications. They introduce “dynamic
mosaics” that include some of the original camera motion.
Proscenium [3] uses mosaic-based stabilization to provide a

video editing tool. Salient Stills [33] creates single frame
summaries of video clips. Irani and Anandan [18] use mo-
saics to summarize videos for indexing. Dony et. al [12] use
mosaics to create storyboards. We adopt their approach of
breaking video into shorter segments to avoid the limits of
mosaicing.

Prior work uses knowledge of cinematography to plan cam-
era movements. These works inspired us by demonstrating
different domains and applications. Camera motion in 3D
environments has been considered by many; see [10] for a
survey. Virtual videography [16] determines virtual camera
movements given a static camera source video in the specific
case of a chalkboard lecture. We attempt to apply similar
reasoning to a very different class of source material. Video
retargeting [25] also considers choosing new camera move-
ments for existing video. However it considers transforming
feature films, not casual video, and therefore must assume
that the source camera motion is the intentional work of a
skilled filmmaker and should be preserved.

Re-cinematography does not consider editing: the result-
ing video clips are the same length as the source. Sev-
eral prior systems have considered automating the editing of
home video. Notable examples include Hitchcock [13] and
AVE [17]. Video editing involves selecting and assembling
clips of video, whereas re-cinematography aims to improve
the quality of the clips. The two approaches could comple-
ment one another nicely. For example, Hitchcock uses mo-
tion estimation to find bad camera motions that it discards.
Instead, it could use re-cinematography to repair them.

3. TECHNICAL FOUNDATIONS

3.1 Motion Estimation
This section reviews some of the basic mathematics of

image and video stabilization in order to clarify our notation.
Consider two images a and b from a video. The stabiliza-

tion transformation Sb(a) ∈ R2 → R2 maps the positions
of points in frame a to where they appear in frame b, if
those points were in the same position in the world. If we
apply Sb(a) to the image of frame a, the result would be the
view of the world of a taken from the viewpoint of b. Were
we to apply the corresponding transform to each frame of
the video, the result would be a video taken from the sin-
gle viewpoint of b. There would be no camera motion, the
images have been stabilized.

An image created by combining a collection of images all
transformed to a common coordinate system is called a mo-
saic. We refer to the common image as the base frame.

For arbitrary scenes and arbitrary camera movements, the
stabilization transformation can be complex. However, in
two important cases, the transformation will be a 2D pro-
jection: if the world is a single plane or the camera rotates
around its optical center [31]. A 2D projection

x′ =
s1x + s2y + s3

s7x + s8y + 1
, y′ =

s4x + s5y + s6

s7x + s8y + 1

is an 8 parameter transformation that can be expressed as a
linear transformation in homogeneous coordinates, i.e. a 3x3
matrix. A planar projective transformation is also known as
a homography.

In the event that the restrictions to camera rotation or
a flat world do not apply, a 2D projection is only an ap-
proximation to the real stabilization transformation. This

Figure 2: Identical camera rotations can lead to very different
motions on the base plane. The movements are identical in local
coordinates. To measure the local transformation, we measure
the distance moved by each corner of the identity image. This
would be the same for both cameras to the left.

simplified model is preferred because it is mathematically
convenient (matrix operations allow for manipulation), has
proven to be a reasonable approximation to many real situ-
ations, and a plethora of techniques exist for motion estima-
tion (that is, estimating Sb(a) from the images it relates).
Historically, all image stabilization methods (with the no-
table exception of [8]) use either homographies, or a more
restricted class of transformations that are a subset of them.

Motion estimation typically performs best between simi-
lar images. Most compute transformations between adjacent
video frames, i.e. Si(i + 1), and determine other transfor-
mations between other pairs by composition,

Sb(a) = if (a > b)

a−1Y

i=b

Si(i + 1), if (a < b)

a+1Y

i=b

S−1
i−1(i). (1)

Motion estimation is common to a number of image, video,
and vision applications and has been studied extensively.
Szeliski’s recent survey [32] is encyclopedic and insightful.
Our implementation is a variant of the feature-based ap-
proaches he describes. Specifically, we use SIFT [26] to iden-
tify points and associate them with descriptors, and then
match these descriptors between frames. SIFT seems to be
robust against lighting changes, blurring, and compression
artifacts.

The parameters of the homographies are difficult to inter-
pret directly [14]. A four-point representation, which mea-
sures the displacement of the four corners of the source im-
age, gives more meaningful metrics in units of pixels. Mak-
ing these measurements in local coordinates (Fig. 2), i.e.
between pairs of frames, avoids issues from the non-linearity
and scene dependence of the transformations.

The sum of the corner vectors (the arrows in Fig 2) gives a
measurement of apparent camera movement, while the sum
of their magnitudes measures the amount of change between
frames (including zoom). The motion measurements are
added over a duration of video to form a path, the ratio
of arc-length to the net displacement of this path estimates
its “curviness.”

3.2 Local Mosaics
Mosaic image stabilization is attractive because it gives

the appearance of a locked down camera. Unfortunately, it
is impractical for longer videos and complex motions [27] for
a number of reasons. Therefore, we limit our use of mosaics
to short durations of video. We call this a local mosaic as
we consider a mosaic around the locality of a given frame.

One limit of mosaics for longer video segments is error
accumulation in Eqn. 1. Even the best homography esti-

mation will have errors, due to either mis-registration or a
poor fit to the planar projective model. As the sequence
grows longer, small interframe errors are amplified as they
are added in Eqn. 1. Therefore, for each homography we
compute an unreliability score. The score is used in two
ways: first, homographies with very high scores are consid-
ered too unreliable to use. Second, the length of a local
mosaic is limited such that the sum of the unreliability is
below a threshold.

The unreliability score is computed by“triple-frame check-
ing.” Our system estimates both inter-frame homographies
Si(i+1) and homographies between spaced frames Si(i+2).
The checking score confirms that the result of two interframe
homographies is similar to the result of the wider spacing by
computing the difference matrix Si−1(i)Si(i + 1)S−1

i−1(i + 1)
and measuring the maximum displacement it makes to the
four corners of the frame. Unreliability scores are velocity
corrected based on the estimated velocities (magnitude of
corner arc-length (§3.1)) of a window of neighboring frames.
This correction is applied because errors in homographies
are less noticeable when they are small relative to the over-
all motion.

Our approach does not actually form the mosaic image.
This avoids issues in merging images. The transformations
Si(j) give us a common coordinate system, conceptually the
coordinate system of the local mosaic, for the duration of the
video. When the video is segmented into local mosaics, we
denote the base frame for a particular video frame as b(t).

3.3 Apparent Camera Motion
If we consider the mosaic to be the“world”, then the view-

point or camera is a transformation C that maps from the
mosaic to the video (i.e. the camera’s film plane). Assuming
a standard camera model, C is a homography [31].

To view a frame of a video from a particular camera C, the
video frame using the stabilization transformation is then
transformed to the screen by the camera:

M(t) = C(t)Sb(t)(t).

If M(t) is the identity matrix (I) the viewer sees exactly the
source video frame. If C(t) = I then the viewer is looking at
the “center” of the mosaic. The inverse of the camera trans-
form can be viewed as a quadrilateral on the base frame.
Intuitively, this is the part of the world the camera “sees.”

A video appears to have camera motion when static ob-
jects in the scene move. As the mosaic defines the static ob-
jects, the motion of C(t) creates a camera movement. Note
that if we are viewing the original video, M(t) = I, so that
C(t) = Sb(t)

−1(t). In this case, the virtual camera motion
is following the motion of the source video.

It is important to recognize that the result is M(t). The
intermediate transformations, C(t) and Sb(t)(t), might be
wild distortions, providing their composition produces a rea-
sonable transformation.

The problem of re-cinematography is to determine a good
C(t). Standard image stabilization chooses it to be a low-
pass filtered version of S−1(t) (although it is rarely imple-
mented this way). Mosaic-based stabilization chooses C(t)
to be constant.

3.4 Camera Motion
Rather than model the 3D geometry of the virtual cam-

era (as in [20]), we create camera motions directly in the

P
o

s
it

io
n

Time0

0

a 1-a 1

1

d(u) =

8
><
>:

u2

2a−2a2 u < a
a

2−2a
+ u−a

1−a
a ≤ u ≤ 1− a

1− (1−u)2

2a−2a2 u > 1− a

Figure 3: The ease curve accelerates with a constant accelera-
tion, maintains a constant velocity, then decelerates.

space of the homography matrices C(t). The desire to con-
trol apparent velocity profiles of a 3D camera (Fig. 2)
suggests a local linearization of the transformations using
an exponential map. The idea, introduced to the graphics
community by Alexa [1], takes the logarithm of the trans-
formation matrices before applying linear operations (such
as interpolation).

An intuition behind the use of the exponential map consid-
ers a camera moving with constant velocity. Between every
frame, the transformation in the camera’s local coordinate
system is the same, for example 1 degree to the right. The
inter-frame transform is applied by matrix multiplication, so
if A is the initial transformation and T is the transforma-
tion between steps, after n steps the transformation would
be ATn. To interpolate between transformations A and B
from t = 0 to 1 with a constant velocity (in terms of camera
rotation), we compute A(A−1B)t. Taking the logarithm of
this expression would allow it to be re-written as:

e(1−t) log A+t log B. (2)

In other words, constant-velocity interpolation of transfor-
mations can be achieved by linear interpolation of their log-
arithms. However, because A and B are matrices, multipli-
cation does not commute, and eAeB 6= eA+B [15], so this
is only an approximation. [23] shows that although inter-
polation of matrix logarithms is not constant velocity, the
non-constancy is small, bounded, and correctable if need
be. In practice, the effect is too small to be visible in re-
cinematography (except in numerical displays of the results
such as Fig. 7).

Abrupt accelerations and decelerations of the camera are
jarring to viewers. An instant acceleration to a constant
velocity creates a noticeable artifact. To avoid this, we use
an “ease-in/ease-out” function as given by [25] to warp time
so that the interpolations begin with a period of constant
acceleration, move with a period of constant velocity, and
end with a period of constant deceleration. This function
is shown in Figure 3. Alternatively, smoother splines can
be used for interpolating the matrix logarithms. We will
discuss this in (§4.5).

3.5 Lost Image Information
When we transform the image by M(t), we change it in

potentially damaging ways. Here we consider the four types
of damage to quantify the tradeoff between motion improve-
ment and image damage. In general, “larger” transforma-
tions, i.e. farther from the identity, cause larger penalties.
Identity transformations cause no penalty.

Figure 4: The projective transformation can stabilize the carpet
between two frames (left 2 images), but stretches objects out of
this plane (middle right). The rightmost image shows the simi-
larity transform closest to the projective homography.

Offscreen Penalty: The transformation may move por-
tions of the source image outside of the frame of the result. If
we know that this portion of the image is not important, the
loss is not significant. Conversely, if a portion of the source
frame is identified as important, it should not be moved off-
screen. The numerical value for this penalty (used in §4.3)
is the percentage of the important area of the frame that is
offscreen.

Truly measuring importance would require understanding
of semantics and intent. To estimate importance, we use
heuristic rules from image and video retargeting [30, 9, 25]:
identifiable objects (especially faces) and visually salient re-
gions are likely to be important. Our implementation de-
tects faces using the method of [34]. For salience, research
suggests that motion salience is a strong cue [29], corre-
sponding with our intuition that moving objects (i.e. with
motion relative to the camera motion) are likely to be inter-
esting. We compute motion saliency as the contrast between
the local motion vectors computed by optical flow, and the
global motion vectors given by the homographies.

Uncoverage Penalty: The transformation might map
places outside of the source image to inside the frame of the
result, leading to empty areas. Left empty (usually black),
not only are these areas ugly, but the edge moves with the
high frequencies that have been removed from the camera
motion. In-camera stabilization avoids these effects by cap-
turing “extra” pixels as a buffer and restricting the move-
ment. Software methods can use inpainting to fill these
regions. Simple inpainting methods [24] copy pixels from
neighboring frames, while newer methods such as [35] and
[27] are more sophisticated. Our implementation provides
simple inpainting. Neighboring frames (a 2 second window
in either direction) are stabilized to the current frame and
alpha-blended with more distant frames drawn first.

An alternative approach to address uncovered areas is to
enlarge the source image, effectively creating a buffer (like
the in-camera method). This approach has a cost as it cre-
ates more offscreen area. Determining appropriate scaling is
considered in our algorithms in §4.

The uncoverage penalty associated with a transition is the
percentage of the resulting frame that is uncovered.

Distortion Penalty: Non-uniform transforms may in-
troduce unpleasant distortions. They may appear as unnat-
ural viewing directions or will stretch portions of the scene
that violate the projective assumptions as shown in Figure 4.
To quantify the distortion of a transform, we compute the
distance to the closest similarity transform, where the dis-
tance is defined by the corner displacements.

Resampling: The resampling used to implement the
transformation may result in a loss of detail, especially if
some amount of zoom is used. Given that much casual video

is often presented in a small format (e.g. on a video sharing
site, a portable media player, etc.), these details might be
lost anyway. Our implementation does not explicitly con-
sider resampling losses.

4. RE-CINEMATOGRAPHY
A re-cinematography system first pre-processes input video

to perform motion estimation and important object identi-
fication. Given these three inputs, re-cinematography pro-
ceeds in the following steps. First, the video is broken into
short segments, each corresponding to a local mosaic. Sec-
ond, initial virtual camera motions are created for these seg-
ments that insure continuity between them. Third, the seg-
ments’ camera motions are each optimized independently to
best trade off image and motion quality. Finally, the camera
motions are used to transform each frame, and in-painting
is applied to fill uncovered regions. These steps are detailed
in this section.

Tunable parameters in our system are denoted by p?, with
the standard values given. Experimenting with parameter
settings is easy as the planning process is very fast (a few
seconds for a two minute video). In practice, we have found
that little empirical tuning has been necessary.

Because the source video footage tends to be of low qual-
ity, the information that can be extracted automatically is
limited. Issues such as poor lighting, bad sensors and lenses,
severe compression, and camera shake make casual video dif-
ficult for computer vision algorithms. Re-cinematography
relies on limited information about the source video: in ad-
dition to the motion estimation used by stabilization, it also
uses an assessment of the motion and motion salience as a
predictor of what may be important in each frame.

4.1 Motion Analysis and Segmentation
The first step in the planning process is to break the source

video into segments such that each is short enough that a
single local mosaic can be applied. Segments are classified
into three types: static segments, where there is little source
camera movement; moving segments, where there is source
camera movement; and bad segments, where the motion es-
timation is too unreliable to be used. The segmentation
process tries to create groups of similar frames such that
coherent camera motions can be used for each segment.

Bad homography segments are identified first by find-
ing frames whose un-reliability scores (§3.2) are above a
threshold (pbh = 5 pixels). Frames within a short window
(pbhw = ±2 frames) are also considered bad. Bad frames
are grouped into bad homography segments. For bad seg-
ments, re-cinematography sets M(t) equal to the identity as
we cannot alter the bad frames reliably.

Next, the planner identifies static segments. The magni-
tude of the camera motion at each frame is measured by
summing the corner displacements (§3.1) over a one second
window. If there are no bad frames within that duration
(for reasons explained below), the frame is considered static
if its cumulative corner displacement and cumulative cor-
ner arc-length are both below thresholds (pzxy = .6 and
pzs = 1.2 pixels per frame respectively). Consecutive static
frames are grouped into static segments. Remaining frames
are grouped into consecutive moving segments.

At this point, the video has been broken into a sequence
of non-overlapping segments. Note that the sequence is
constructed such that between any two static or bad seg-

Figure 5: (a) The initial frame with its salience bounding box
shown in green. (b) The proposed camera motion has a large
uncovered region (on many of its frames). (c) Scaling to fill the
uncovered region removes some of the salient image part. (d) The
salience onscreen constraint prevents too large of a scale factor.

ments, there is a moving segment. This is important as
there must be a transition between each of these segment
types to maintain continuity. Our system imposes a limit
(pts = 30 frames) on how short a moving segment can be
to prevent motions that are too abrupt. Static segments
are shortened if necessary to accommodate this restriction.
Moving segments that connect to static ones use ease-in and
-out (§3.4) to avoid abrupt starting and stopping.

The resulting segments may be too long to use a sin-
gle local mosaic. The criteria of (§3.2) are applied: seg-
ments whose cumulative homography unreliability scores are
above a threshold (pbhc = 80), or whose cumulative cor-
ner displacement or arc lengths are greater than a thresh-
old (pgbdx = .6 and pgbds = 3 respectively, units of screen
width), are broken into shorter subsegments.

For each resulting segment, the base frame is the middle
frame.

4.2 Static Segments
The next phase of the planning process determines the

camera motions for each segment. Static and bad segments
are considered first. Moving segments are determined sub-
sequently as they must consider adjacent static and bad seg-
ments to create continuity.

For each static segment, our algorithm computes a single
constant value for C(t) to be used over the segment’s dura-
tion. The constant camera creates a “locked down” look for
these segments where the camera was close to being static.

The camera matrix used, called the framing, is chosen to
minimize the amount of uncovered area, even at the expense
of causing offscreen areas (§3.5). The scaling is constrained
to prevent important objects to be lost off screen. To com-
pute the scaling, the system computes the minimum scale
required to fully cover the segment by determining the inter-
section of the covered areas of all of the frames and comput-
ing the scale required to make this area fill the frame. Then,
for each frame, a salience bounding box is determined. The
scaling is reduced to insure that none of these boxes leave
the frame. This process is shown in Fig 5.

To compute the salience bounding box for a frame t, we
consider a window of frames t ± psbw (psbw = 8 frames).
This implements the cinematographic principle of leading:
it gives a moving object space so that the viewer can see
where it is going. For each frame i in the window, its salience
object box is transformed to t via St(i). A histogram counts
the number of frames with salience in each region of the
image. The salience bounding box is determined from the
histogram cells with counts above a threshold.

Because the total amount of motion in a static segment
is small (which is why the segment was identified as static),
the amount of distortion applied to any frame is necessarily
small, so the system need not consider distortion on static

segments. Similarly, offscreen penalties are not an issue for
static segments because the only reason that an important
object would be moved offscreen is if it were close to the
image border.

4.3 Keyframing Moving Segments
For moving segments, we create C(t) by keyframing and

using matrix logarithm interpolation, possibly using ease
curves, to provide velocity-profiled paths. A first step deter-
mines keyframes for the beginning and end of the segment
that provide continuity with neighboring segments. The
boundary keys are interpolated directly to provide an ini-
tial path that will be refined in the next section.

Let the frame index bi be the base frame of the moving
segment, bi+1 be the base frame of the next segment, tb be
the beginning of the moving segment, and te be the end of
the moving segment (so te + 1 is the beginning of the next
segment). We explain how the end of the segment is chosen;
the beginning is done similarly.

If the next segment is a bad segment, then M(te +1) = I.
We choose M(t) = I because without reliable homography
information, the best we can do for the boundary is to mimic
the motion of the source video.

If the next segment is a static segment, then we need to
choose the camera keyframe to be in the same position as it
will be during that static segment. Let the framing of the
next segment be Fi+1. Since this framing is relative to b+1,
it must be transformed

C(te) = Fi+1 Sb+1(te) S−1
b (te). (3)

This expression computes the key by transforming the goal
framing into the video coordinate system, then transforming
it into the coordinate system of the segment.

Insuring continuity with a neighboring moving segment is
similar to the static case, except that rather than considering
a static framing, we must connect to the keyframed path.
The latter of the neighboring segment is keyframed first,
without regard to the prior one. Then the end keyframe
of the prior one is chosen by first extrapolating the camera
for the latter segment to determine where the camera would
have been on frame te if te were in that segment. This
extrapolated transform is used in place of Fi+1 in Eqn. 3.

4.4 Placing Keys to Optimize Movement
Interpolating between beginning and ending keys creates

camera movements with direct, velocity-profiled paths. Such
paths are ideal in terms of our goals for motion (§1.2), but
may deviate considerably from the actual camera motion.
These large deviations lead to transformations that are far
from the identity and therefore may have large per-frame
image loss penalties (§3.5). We insert keyframes into the
segment’s camera motion to balance between image and mo-
tion quality. Figure 6 shows an example.

Inserting a keyframe has a benefit to image quality, but
a potential cost to motion quality. For example, inserting a
new keyframe at time j C(j) = S−1

b (j) makes M(j) = I so
the penalty on the frame is zero. Frames close to j (between
j and the adjacent keyframes) will also have their penalties
reduced. On the other hand, inserting the key frame breaks
the directness of the camera’s path.

Our strategy for choosing which keys to insert is greedy:
our algorithm identifies the frame with the worst image
loss and inserts a key, repeating until their are no more

original frame 0 original frame 88 original frame 149

direct interpolation

key inserted

source path

frame 88 from direct frame 64 from key inserted inpainted

Figure 6: 5 second segment walking backwards tracking a tod-
dler. Both subject and camera are weaving significantly. Direct
interpolation provides a smooth path, but creates an extremely
uncovered and distored frame. Inserting a key at this frame causes
it to appear as in the source. The smaller problems that remain
can be addressed with inpainting.

frames with bad enough losses to be considered a prob-
lem. The algorithm is constrained to keep a minimum spac-
ing between keys (pminKeySpace = 30 frames). The sim-
ple algorithm’s parameters are the minimum key spacing
(pminKeySpace = 30 frames), and the thresholds below which
penalties are not considered a“problem.” There are separate
penalty thresholds for salience offscreen (pso = 0 i.e. it is un-
acceptable for any important region to be moved offscreen),
distortion (pd = 20 pixels of corner movement), and uncov-
ered area (puc = 15% of the screen area). Rather than deter-
mining scaling factors between the different penalty terms
of §3.5, we choose a strict ordering: we choose salience off-
screen problems first, distortion penalties second, and un-
coverage penalties last. Note that since the penalties are
created by large transformations, frames with high values
for one penalty often have high values for the others.

A more complex algorithm that explicitly measured the
cost benefit ratio of different key placements offered little
benefit over the simple greedy algorithm described.

While choosing the keys such that C(j) = S−1
b (j) min-

imizes the error on frame j, it is not necessarily the best
choice to avoid penalties on in-between frames. In particu-
lar, uncoverage penalties on non-key frames can be reduced
by scaling up the keyframe images, just as with static shots.
We use the same method to choose a scaling that prevents
losing important information. We use a single scale factor
for all keys in the segment to avoid wobbles in the zoom.
However, the use of a single scale is often insufficient as dif-
ferent parts of the movement may exhibit different problems,
and the single scale must be chosen for the worst case over
the whole duration.

0 100 200 300 400 500
0

2

4

6

8

10

12

14

ve
lo

ci
ty

 m
a

g
n

it
u

d
e

(p
ix

e
ls

 o
f

co
rn

e
r

d
is

p
la

ce
m

e
n

t)

source motion

constant-velocity interpolation

piecewise constant interpolation

Hermite spline interpolation

Figure 7: Graphs of the magnitude of the camera velocities for
the paths in Fig 8. The green line measures the velocities of the
source motion, purple is a constant-velocity interpolation between
the endpoints. The orange and blue paths add 2 keyframes and
interpolate with piecewise-constant-velocity and Hermite splines
respectively.

4.5 Interpolation Types
Inserting a key into a constant-velocity interpolation cre-

ates a velocity discontinuity. If the direction does not change,
the discontinuity is hard to notice even if there is a large
discontinuity in magnitude. We explain this by observing
that most of the velocity discontinuities are about the same
magnitude as the velocity changes that occur between each
pair of frames in the source motion (see Fig 7). Directional
changes in velocity are noticable, but often seem intentional.
This is because a change in virtual camera motion direc-
tion is almost always caused by a corresponding change in
the source camera’s motion, which was probably motivated
by something. Meandering source paths become crisply di-
rected virtual camera paths, with similar targets.

Velocity discontinuities seem to be noticeable and objec-
tionable when the camera starts or stops. Therefore, we
apply an ease curve (§3.4) when a moving segment connects
to a static one.

An alternative to constant-velocity interpolation, velocity-
continuous interpolation is implemented using Hermite cubic
splines to interpolate the matrix logarithms. While these
splines remove velocity discontinuities, they also remove the
velocity constancy. The tradeoff is subjective, and the effects
are surprisingly subtle. Our implementation uses constant-
velocity interpolation by default. An example of camera
paths is illustrated in Fig 8. The corresponding velocity
profiles are shown in Figure 7.

5. EXPERIMENTS
Our re-cinematography prototype is implemented on PCs

running Windows XP using compressed AVI files. Motion
estimation, homography evaluation, and motion salience are
computed as a pre-process. Our implementation of these
standard components is inefficient. State of the art systems
provide near real-time performance [4, 28].

The main steps of re-cinematography are performed in our
interactive system and are all much faster than real time.
The system caches the video in texture memory for efficient
playback and precomputes all O(n2) stabilizations, meaning
that memory becomes an issue after (approximately) 2700
frames on a machine with 2G of memory. After the video is
read from disk (which happens faster than real time) none
of the steps (including the O(n2) step) take more than a few

source motion

constant-velocity interpolation

piecewise constant interpolation

Hermite spline interpolation

Figure 8: Camera paths illustrated for a moving segment in
the coordinate system of its base frame. The green path shows
the movements of the corners of the image from the source mo-
tion. The purple paths show the constant-velocity interpola-
tion between the endpoints. The orange and blue paths add 2
keyframes and interpolate with piecewise constant-velocity and
Hermite splines respectively.

seconds (for an entire 2 minute video), when the data fits
into memory.

Most of our test data (and all of the non-synthetic ex-
amples in this paper) were recorded using a Sanyo Xacti
C6 camera. It records Quicktime MPEG4 at 640x480 at
30 frames per second. All examples use automatic white
balance and exposure. Most examples were originally shot
using the camera’s digital image stabilization, which does
degrade input quality. We have also done tests using video
from a Motorola V3xx cell phone that records video in the
3GP format (176x144, 15fps, highly compressed).

Because most of our examples were shot with in-camera
image stabilization, the re-cinematography results are effec-
tively a comparison with current technology. For a more
fair comparison, we have also implemented the low-pass fil-
ter method from [27], however we apply it within our system
using the same motion estimation and in-painting implemen-
tation as used for re-cinematography. We also compare our
results with DeShaker [11], a post-process image stabiliza-
tion program.

5.1 Contrived Tests
In addition to real examples, we experimented with video

created specifically for testing. These examples illustrate the
differences between re-cinematography and filtering. Some
examples were footage shot in our lab, while others were
created synthetically using a compositing tool. The latter
have the advantage that we can compute the homographies
directly, without relying on motion estimation.

Figure 9 shows a synthetic example simulating a videog-
rapher filming a UFO weaving over a city. The “videogra-
pher” tries to keep the saucer centered (i.e. following the
bobbing), but has an unsteady hand (simulated by adding
white noise). Image stabilization methods can remove the
noise, but leave the smooth (approx 1hz) zig-zagging of the
camera, which can be quite sea-sickness inducing - even with
a larger filter kernel than suggested in [27]. Also, the saucer
is no longer tracked perfectly, and has an unsteady wobble.
The re-cinematography result has a camera that moves in
straight pans, leaving a smoothly weaving saucer. The re-
sulting camera path began as a direct interpolation between
the beginning and end position, with a key inserted where
the salient object was maximally out of the frame. Because

original

image stabilization

re-cinematography

Figure 9: Synthetic video example of a flying saucer zig-zagging
over New York. The video simulates a videographer tracking the
saucer. Lines in this mosaic image show the paths of the corner
of the video images. Yellow is the original (noisy) path. Magenta
shows the result of low-pass filtering from [27]. Cyan shows the
re-cinematography result.

original

image stabilization

re-cinematography

Figure 10: Video taken walking down hallway. Image corner
paths shown using the first frame as base. Yellow is the original
motion, Magenta is filtered using the method of [27], and Cyan
is the re-cinematography solution.

of the noise, the key is inserted such that the path of the
camera is not precisely horizontal.

The smooth oscillations appear in real examples as well.
Figure 10 shows a video taken while walking down a cor-
ridor. With standard image stabilization, the oscillations
due to the videographer’s stride are very apparent. Our
approach removes these oscillations. Also note that the for-
ward motion is not well represented by the homographic
model, yet our system can still create a good result by in-
serting keyframes periodically.

5.2 Evaluation
We have experimented with our implementation on a col-

lection of home videos. The results are difficult to convey
in still images. They exhibit very stable static segments,
and motions appear directed and intentional. Pictures from
these examples appear throughout the paper, including Fig-
ures 6 and 13.

The moving segments produced by the system achieve
their intended effect. The desirability of these effects is a
subjective question. Our initial informal evaluation suggests

Figure 11: A frame from near the end of the example of Fig
10 that exhibits the worst penalties in the result. Left: original.
Center: result without inpainting. Right: simple inpainting is
ineffective as the homographies poorly model the actual motion.

Figure 12: Beginning and end frames of a zoom segment shown
in Fig 13.

that viewers appreciate the “improved” motion, especially
when the original source video was shaky. However, this
may just be confirming what camera manufacturers already
know: that image stabilization is a good thing.

We have compared our results with DeShaker [11], a post-
process image stabilization program. That software uses
a filtering-based approach and is able to remove the high-
frequency movements on almost all of our examples. Re-
cinematography offers a clear advantage in making the static
segments more stable. For videos with static segments con-
nected by short motions (which are very common among our
sample videos), the stable static shots with directed con-
nections in the re-cinamatography results are particularly
compelling.

For moving segments, the differences between the systems
are more subjective. DeShaker’s smooth motions are quite
different than the point-to-point motions produced by our
approach. In both systems, the worst artifacts are the un-
covered screen areas as neither system offers an advanced
in-painting scheme (c.f. Fig 5.1). DeShaker’s implementa-
tion of scale to cover is problematic as it varies the scale
too rapidly causing rapid oscillations in size (this problem is
noted in the manual). At the opposite extreme, our scaling
solution (§4.2) picks a single scale factor for each segment
(to avoid oscillations in size) which is often insufficient, espe-
cially since the scale is chosen conservatively. An advanced
inpainting method such as [27] or [35] is a better cure for
uncovered regions.

5.3 Failures and Limitations
Re-cinematography creates a new video by transforming

an existing one. This places a number of fundamental limi-
tations on the technique. Because re-cinematography is lim-
ited to transforming the frames of the source video, if it is
not in the source video, re-cinematography cannot put it
into the result. Furthermore, the amount of change that
can be applied to a frame is limited, which in turn limits
the amount of change that can be made to the motion.

A richer class of transformations (as in [8]) would allow
larger changes without distortion. However, poor quality

Figure 13: Visualization of re-cinemtography of zoom segment
(Fig 12). The first frame is shown transformed to the base frame
(whose boundary is shown in Cyan). Yellow paths trace the cor-
ners of the original video, magenta paths (darker) trace the cor-
ners of the resulting camera motion.

source video makes estimating rich motion models difficult,
and interpolation of more complex transformations may be
problematic. Our simple inpainting implementation also
limits the amount of change that can be made to a frame.
Recent inpainting methods [27, 35] would provide improved
performance.

Another limitation in re-cinematography is the reliance
on motion and importance estimation. While state of the
art methods may provide better performance than our pro-
totype, no method can be completely reliable as some video
is inherently ambiguous.

Given the limitations, we recognize that re-cinematography
cannot help all videos. We consider a result from our system
a failure if it produces a result that is worse than the source.
The system should recognize places where it cannot help.

One category of failure is when the system incorrectly as-
sesses a bad homography as reliable. This leads to trans-
formations that give visual artifacts, including distortions
and small jiggling. These errors come from poor motion
estimation and scenes not well modeled by the projective
assumptions. In future work, we believe that it is possible
to make a reliable assessment of both of these kinds of er-
rors and to use this to restrict the amount of transformation
used.

Another class of failure is when the system makes a bad
tradeoff, for example, choosing to show a large uncovered
area rather than a less smooth motion. Part of the prob-
lem is that these tradeoffs often depend on the image, the
application, and the viewer’s preference. A related class of
failure is when the system misses an opportunity to make
an improvement because it is being too conservative.

Our approach, like any stabilization approach, trades off
in image quality to achieve better motion quality. There
is an implicit assumption that some loss of image qual-
ity is worthwhile to gain an improvement in motion. Re-
cinematography discards image detail, particularly when it
zooms in. Given that much casual video is often presented
in a small format (e.g. on a video sharing site, a portable
media player, etc.), these details might be lost anyway.

6. DISCUSSION
Our re-cinematography approach can improve the cam-

era dynamics in a wide range of casual videos. Wandering
hand-held motions are turned into smooth directed move-
ments that exhibit ease-in and out where appropriate, and
the camera stays rigidly fixed when this is similar enough
to the source movement. Better evaluation is important to
understand the performance and utility of our system.

Our current system is almost completely automated. A
more appropriate use of the technology may be as a more in-
teractive authoring tool where a user has more control over
the process. A user can make decisions about quality trade-
off parameters based on their preferences and knowledge of
the video’s content and application. The user can also pro-
vide high level insight based on the semantics of the video
and the desired storytelling in the result. By definition, this
latter information cannot be obtained without the user.

Ultimately, our approach is limited by the quality of the
source footage. No post-process is likely to be a replacement
for good planning, skillful camera work, proper camera sup-
ports, and artistic talent. Re-cinematography will not turn
casually captured video clips into masterpieces of film. How-
ever, the techniques presented in this paper can effectively
improve the apparent camera dynamics in casual video.

Acknowledgements.We thank Rachel Heck for her assis-
tance in preparing demonstrations. The city background
image in Figure 9 is by S. Schultz and used under a Creative
Commons license. This research was sponsored in part by
NSF grant IIS-0416284.

7. REFERENCES
[1] M. Alexa. Linear combinations of transformations. In

SIGGRAPH ’02, pages 380–387, 2002.
[2] D. Arijon. Grammar of the Film Language. Silman-James

Press, 1991.
[3] E. Bennett and L. McMillan. Proscenium: a framework for

spatio-temporal video editing. Proceedings ACM
international conference on Multimedia, pages 177–184,
2003.

[4] A. Bevilacqua and P. Azzari. High-quality real time motion
detection using ptz cameras. In AVSS ’06: Proceedings of
the IEEE International Conference on Video and Signal
Based Surveillance, page 23, 2006.

[5] B. A. Block. The Visual Story: Seeing the Structure of
Film, Tv, and New Media. Focal Press, 2001.

[6] D. Bordwell and K. Thompson. Film Art: An Introduction.
The McGraw-Hill Companies, Inc., 1997.

[7] B. Brown. Cinematography: Theory and Practice:
Imagemaking for Cinematographers, Directors &
Videographers. Butterworth-Heinemann, 2002.

[8] C. Buehler, M. Bosse, and L. McMillan. Non-metric
image-based rendering for video stabilization. In IEEE
CVPR, volume 2, pages 609–614, 2001.

[9] L.-Q. Chen, X. Xie, X. Fan, W.-Y. Ma, H.-J. Zhang, and
H.-Q. Zhou. A visual attention model for adapting images
on small displays. ACM Multimedia Systems Journal,
pages 353–364, 2003.

[10] M. Christie, R. Machap, J.-M. Normand, P. Olivier, and
J. Pickering. Virtual camera planning: A survey. In
Proceedings Smart Graphics, pages 40–52, 2005.

[11] Deshaker. www.guthspot.se/video/deshaker.htm, 2006.
[12] R. Dony, J. Mateer, and J. Robinson. Techniques for

automated reverse storyboarding. IEE Journal of Vision,
Image and Signal Processing, 152(4):425–436, 2005.

[13] A. Girgensohn, J. Boreczky, P. Chiu, J. Doherty, J. Foote,
G. Golovchinsky, S. Uchihashi, and L. Wilcox. A
semi-automatic approach to home video editing. In UIST
’00, pages 81–89, New York, NY, USA, 2000. ACM Press.

[14] M. Gleicher. Projective registration with difference
decomposition. In IEEE CVPR, pages 331–337, 1997.

[15] V. M. Govindu. Lie-algebraic averaging for globally
consistent motion estimation. In IEEE CVPR, 2004.

[16] R. Heck, M. Wallick, and M. Gleicher. Virtual videography.
ACM Transactions on Multimedia Computing,
Communications, and Applications, 2007.

[17] X.-S. Hua, L. Lu, and H.-J. Zhang. Optimization-based
automated home video editing system. IEEE Transactions
on Circuits and Systems for Video Technology,
14(5):572–583, May 2004.

[18] M. Irani and P. Anandan. Video indexing based on mosaic
representations. Proc. IEEE, 86(5):905–921, 1998.

[19] M. Irani, P. Anandan, and S. Hsu. Mosaic based
representations of video sequences and their applications.
International Conference on Computer Vision, pages
605–611, 1995.

[20] M. Irani, B. Rousso, and S. Peleg. Recovery of ego-motion
using image stabilization. In IEEE CVPR, pages 454–460,
1994.

[21] O. Johnston and F. Thomas. The Illusion of Life: Disney
Animation. Abbeville Press, 1981.

[22] S. D. Katz. Film directing shot by shot: visualizing from
concept to screen. Michael Wiese Productions, 1991.

[23] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara. Dual
quaternions for rigid transformation blending. Technical
Report TCD-CS-2006-46, Trinity College Dublin, 2006.

[24] A. Litvin, J. Konrad, and W. Karl. Probabilistic video
stabilization using kalman filtering and mosaicking. In
Proc.IS&T/SPIE Symp. Electronic Imaging, Image, and
Video Comm., pages 663–674, 2003.

[25] F. Liu and M. Gleicher. Video retargeting: Automating pan
and scan. In ACM Multimedia 2006, pages 241–250, 2006.

[26] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[27] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H.-Y. Shum.
Full-frame video stabilization with motion inpainting.
IEEE PAMI, 28(7):1150–1163, 2006.

[28] D. Nistér. Preemptive RANSAC for live structure and
motion estimation. Machine Vision and Applications,
16(5):321–329, 2005.

[29] R. Rosenholtz. A simple saliency model predicts a number
of motion popout phenomena. Vision Research,
39(19):3157–3163, 1999.

[30] B. Suh, H. Ling, B. B. Bederson, and D. W. Jacobs.
Automatic thumbnail cropping and its effectiveness. In
UIST ’03, pages 95–104. ACM Press, 2003.

[31] R. Szeliski. Video mosaics for virtual environments. IEEE
Computer Graphics and Applications, 16(2):22–30, 1996.

[32] R. Szeliski. Image alignment and stitching: A tutorial.
Technical Report MSR-TR-2004-92, Microsoft Research,
2006.

[33] L. Teodosio and W. Bender. Salient stills. ACM Trans.
Multimedia Comput. Commun. Appl., 1(1):16–36, 2005.

[34] P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In IEEE CVPR, pages
511–518, 2001.

[35] Y. Wexler, E. Shechtman, and M. Irani. Space-time
completion of video. IEEE PAMI, 29(3):463–476, 2007.

[36] D. N. Wood, A. Finkelstein, J. F. Hughes, C. E. Thayer,
and D. H. Salesin. Multiperspective panoramas for cel
animation. In SIGGRAPH ’97, pages 243–250, 1997.

