A Differential Approach to Graphical
Interaction

Michael L. Gleicher

November 18, 1994
CMU-CS-94-217

School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3891

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Andrew Witkin, Chair
Paul Heckbert
Brad Myers
Robert Sproull, Sun Microsystems

(©1994 by Michael L. Gleicher

This research was supported in part by Apple Computer, aipexgunt grant from Silicon Graphics
Inc., and a fellowship from the Schlumberger Foundatiore ¥iews and conclusions contained in this
document are those of the author and should not be intezdr@$trepresenting the official policies, either
expressed or implied, of these companies.

Keywords: Constraints, Direct Manipulation, Interaction Technigjugser Inter-
face Toolkits

Abstract

Direct manipulation has become the preferred interfacedntrolling graphical ob-
jects. Despite its success, the ad hoc manner with which istietfaces have been
designed and implemented restricts the types of intemactimtrols. This dissertation
presents a new approach that provides a systematic methmddmenting flexible,
combinable interactive controls. Thifferential approachto graphical interaction
uses constrained optimization to couple user controlsaplgcal objects in a manner
that permits a variety of controls to be freely combined. @ifierential approach pro-
vides a new set of abstractions that enable new types oéittten techniques and new
ways of modularizing applications.

The differential approach views graphical object manipafaas an equation solv-
ing problem: Given the desired values for the user specibatrals, find a configura-
tion of the graphical objects that meet these constrairdsolve these equations in a
sufficiently general manner, the differential approachticma the motion of the objects
over time. At any instant in time, controls specify desiratbs of change that form lin-
ear constraints on the time derivatives of the parametersoftimization objective
selects a particular value when these constraints do netrdete a unique solution.
The differential approach solves these constrained opditiain problems to compute
the derivatives of the parameters. An ordinary differdréguation solver uses these
rates to compute object motions.

This thesis addresses the issues in using numerical tag®ig provide interac-
tive control of graphical objects. Techniques are presketdesolve the constrained
optimization problems efficiently and to dynamically defgmguations in response to
system events. The thesis introduces an architecturedcaiiap-Together Mathemat-
ics, that encapsulates these numerical needs. A grapbikgtoonstructed with Snap-
Together Mathematics, provides the features of the difteéakeapproach yet hides the
underlying machinery from the applications programmer.

The thesis demonstrates the differential approach by agplyto a variety of in-
teraction problems, including manipulation of 2D and 3Deal§, lighting, and camera
control. Demonstrated interaction technigues includeshmethods for some specific
interaction tasks. A number of prototype applicationdudimg 3D object construction
and mechanisms sketching, demonstrate the tools and thesapp

If I lost my mind, would you help me find it?
If I lost my mind, would | have to be reminded?
— Soul Assylum
Spinning

Acknowledgements

| acknowledge everyone who needs acknowledged.

With so many other pieces of thesis to work on, I'm tempte@&ve it at that. But,
thanks to a large number of people, my six years in Pittsbheyle left me with a lot
more than just the regional dialect.

It would be a lie for me to say | don’'t know where to begin. Firstould like
to thank my parents for their love and support throughoutytea's. The ski trips to
Colorado the past few years were particularly useful ininglme keep my sanity as
the throes of graduate student life stressed me out. My sigendmothers and Uncle
Robert were all particularly understanding that my scheduwhde visits infrequent.

My six years at CMU have been a wonderful opportunity to leard grow, not just
as a computer graphics researcher, but as a person in gedenaling the experience
would not have been possible without a great set of friends wre always there to
help me through the hard times, and to celebrate the goodtt Settles was there
from our first attempts to figure out how to buy beer under Pgrasia’s laws to the
celebrations as I finished. He always provided a willing eaniy complaining. Bryan
Loyall and Peter Weyhrauch, my housemates for the past 5ybalped make the
house on S. Atlantic Ave. a great place to call home. Brucentdad Spiro Michaylov
suffered through innumerable early drafts of my papers &ilichang around for the
fun things afterwards. It's impossible to list everyonet David Steere, Lin Chase,
James Landay, Jim Blythe, Phyllis Ruether and Greg Motreset the first people |
think of.

lan Davis encouraged me to get back to playing music, a muetatkdiversion.
He, Shaun McDermott, and the rest of Painted Mice providedulet for me to do
something besides computer science. The Thursday dinmehelped keep me well
nourished, nutritionally and intellectually. And a speédcleanks to Lori Fabrizio for
being special and for her care and patience over the pastr2.yea

My advisor, Andy Witkin, gave me countless good ideas, whike out of a lot of
bad ones (and tried to talk me out of some good ones as well)yan patient with me
as | learned to do math and write. He and the rest of my comeiRaul Heckbert,

\Y

Brad Myers, and Bob Sproull, really helped me turn a jumbl&leés into something
resembling a thesis. Will Welch, my officemate and co-canispifor the past 5 years,
shared countless amounts of caffeine and conversationinatieg process gave me
an amazing amount of mathematical intuitions. David Basdbastian Grassia, Paul
Heckbert, and Zoran Popovich all helped make the 4th floorasfddty Hall an excit-
ing place to do computer graphics. Phyllis Pommerantz wasdmn mother.” And
no CMU CS thesis would be complete without thanking Sharork8and Catherine
Copetas who really make the place run.

One of the most fun aspects of doing this thesis was to becamepthe world-
wide computer graphics research community. I'd like to thameryone who shared
ideas, encouragement, and skepticism. | would especildiyd thank everyone at the
graphics group at Apple ATG, which was my home away from hoonéfo summers.
A special thank you for the loaner computer to help with thestt writing.

Writing this is a lot harder than | had expected. It's difftdl summarize six years
of great experiences on one page. | guess | took two, anastjliscratched the sur-
face.

Vi

Contents

1 Introduction

1.1 Implementing Graphical Manipulation.
1.2 The Differential Approach
1.3 An Approach to Graphical Interaction.
1.4 ThesisRoadmap
15 TheThesis e
2 Related Work
2.1 Uses of Constraints in Graphical Applications
2.2 Constraint Solving Technologies
2.3 GraphicsToolkits.
2.4 Interaction Techniques and Applications
3 Differential Techniques
3.1 The Differential Optimization Problem.
3.2 Solving the Differential Optimization
3.3 Solving the Differential Equation.
3.4 Generalized Objective Functions
3.5 SoftControls
3.6 AnAlternate Technique.
3.7 AConcreteExample.
3.8 Summary
4 Efficient Solution Techniques
4.1 The Demands of Interactive Systems.
4.2 Scalability of the Differential Approach
4.3 Solvingthe Linear System.
4.4 Reducing Problem Size L.
4.5 Trading Accuracy for Performance

vii

12
14
20
22

10

Snap-Together Mathematics

5.1 EvaluatingFunctions.
5.2 Evaluating Derivatives L.
5.3 Sparse Representatians.
5.4 The Snap-Together Math Library

Controllers

6.1 Exampleinteractions.
6.2 ContinuousTime
6.3 BasicControllers
6.4 Switching Controllers.

A Graphics Toolkit

7.1 The Bramble ApplicationModel
7.2 ASimpleExample
7.3 Bramble'sWorld.
7.4 ConnectorsinBramble.
7.5 GraphicalObjects.
7.6 HOOKS
7.7 Other Application Components
7.8 The Bramble Standard 3D Interface.

Interaction Techniques

8.1 AttributestoControl
8.2 Strategies for Interaction. L.
8.3 SourcesofConstraints.
8.4 Employing Switching. L

Example Applications

9.1 ADrawingProgram.
9.2 APlanar Mechanisms Sketcher.
9.3 ABox-and-Arrow Diagram Editor
9.4 ACurveModeller.
9.5 AQCollisionSimulator. L
9.6 3DConstructionToys.
9.7 Scene Composition.

Evaluation and Future Work

10.1 Contributions
10.2 Evaluation.
10.3 Directions for Future Work
10.4 FinalRemarks.

A The Whisper Programming Language 217

Al WhisperBasics 218
A2 SomeExamples. 220
B Performance of the Implementations 225
B.1 A SyntheticBenchmark 226

B.2 Application Benchmarks

List of Figures

11
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1
7.2
7.3

8.1

3Dscenewithaluxolamp. 4
Schematic representation of a simple graphical ohject 15
Schematic representation of objects wired together. 17
Schematic representation of objects and controllers. 18
Point on the plane with aradialcontrol 42
Point moving with an Euler ODE solver. 46
Euler ODE solver with various stepsizes. 46
Euler and Runge-Kutta ODE solvers 48
Line segmentdragged byonepoint. 50
Hard and softcontrols 56
Example of an error with independent soft controls 57
Block-rectangular and block-diagonal matrices 69
Example expression graph for geometric figures. 78
Simple example of derivative composition 81
Half-sparsematrix 83
Scatter/gather variable representation 88
Schematic of two line segments with an attachment cainstr. . . . 94
Feedback fordragging 96
Timeline of a dragging operation. 97
Discretized timeline of a dragging operation 98
Point bound to remaininsidearectangle. 103
Clickingtoadiscreteset. 105
Inequality constraint keeps a block above floor. 106
Multiple blocks kept stacked by inequalities 108
Pieces of the Bramble toolkit. 114
“Hello Cone” programoutput. 117
Example of Bramble’s standard 3D interface. 135
Variety of parametric curves connected with constsaint 139

Xi

8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Acrowbar 140

Manipulating an inter-object shadow 147
Virtual eyepoint for reflections 148
Manipulating areflection. 149
Differential slider 152
Overlaying real and synthetic image for registration. 156
Registering real and syntheticimages 157
Fuelgaugewidget L. 162
Airplanegauges. 163
3DWidgets 164
Generalized snapping away from the dragging action. 167
Preventing two rectangles from overlapping 169
Simulating a mechanism with collisions. 170
Briar drawing program 172
Briar’'s feedback mechanisms 176
Constructing an equilateral triangle 177
Briar's representation of constraints. 180
Mechtoy planar mechanisms sketcher 183
Boxer diagrameditor. 185
NewFF curve modeler 186
Poly collision simulator. 187
PTinker 3D construction applicatian. 188
Tinkertoys 3D construction application 189
Merry-go-round constructed in the Tinkertoys simadat. 192
Sample run of the synthetic benchmark. 226
Performance of varying numbers of constraints 227
Performance of varying numbers of variables 228
5-bar linkage benchmark example. 231
Performance of simulating varying numbers of linkages. 231
4-bar parallel truss benchmark example 232
Performance of simulating truss linkages of varyingsiz. 233

Xii

and as she stepped from out her shell
and looked around for luck;
“Quack,” said Jerusha,
“l seem to be a duck.”
— Mildred P. Merryman
“Quack!” said JerushgMer50]

Chapter 1

Introduction

Ever since computers have had graphical displays and pgidavices, graphical ma-
nipulation has been an important means of communicatingdset people and com-
puters. Such interfaces couple the behavior of some gralpbigect to the input de-
vice, continuously tracking its changes with motion. Sketd [Sut63], the earliest
interactive graphical application, introduced this stylénterface, which has come to
be known as direct manipulatidninput and output devices continue to evolve from
Sketchpad’s vector display and light pen. Yet after 30 yefsdvancements in the
hardware for interfaces, the basic notion of direct graghicanipulation remains the
same.

As computers capable of supporting direct graphical mdaimn have become
more common, it has become the dominant interaction methrozbhfiguring graphi-
cal objects. However, present approaches to realizinghgralpmanipulation severely
limit the types of interfaces which can be constructed. Tiesyrict the types of in-
teractive controls that can be provided to users and prawadecilities for combining
these controls.

This thesis considers how the numerical and graphical pegoce of modern com-
puters can be exploited to create an approach to realizeqghgral manipulation that
avoids the limitations of previous approaches. | will imtuce adifferential approach
to graphical interaction, in which constrained optimiaatis used to couple the mo-
tion of graphical objects to a user’s controls. To creatdnsarcapproach to graphical
interaction, we must consider what types of mathematiclrtigues to employ, what
interaction techniques to build with them, and how to incogbe them into interactive
applications.

L Although the term “direct manipulation” is generally dftried to Ben Schneiderman [Sch83], the
ideas predates his work.

2 CHAPTER 1. INTRODUCTION

1.1 Implementing Graphical Manipulation

Direct manipulation has become the dominant style of giaglmteraction with good
reason: it provides a uniform mode of interaction that rddeminteraction with real
objects in the real world. The controls on a graphical obgeethandles that the user
can grab and drag. As the user drags a handle, the objecivéotlte motion of the
pointing device with continuous motion, providing kinestilc correspondence.

The success of graphical manipulation leads to a desireteméxts range to a
wider variety of graphical objects, control types, and aations. However, present
approaches to implementing graphical manipulation lim# tange. The task of imple-
menting direct manipulation requires mapping from the 'ssastions on the handle to
changes in the program'’s internal representation of theablajnd providing feedback
to the user of these changes. To date, the former has beeenrapted in an ad-hoc
manner. Each new type of handle must be specifically harftedra

Hand-crafting each handle places two significant restmdion the types of inter-
faces that can be created. First, it restricts the typesmdlea to those for which the
mapping to object parameters can be determined by the pnogea Second, it re-
stricts how handles can be combined, as any combination alssbe hand-crafted.
Because there is no standardized mechanism for defining dppimgs between han-
dles and parameters, defining new types of handles can bicaldifask.

To better illustrate these problems, consider a simple gi@npositioning a line
segment in a drawing program. Even with this simple graplologect, there are many
attributes that the user might want to specify, such as tegipns of the endpoints, the
position of the center, the length or the orientation. Ije#he program should permit
the user to control directly whichever attribute they degiand and mix-and-match
these controls as needed. That is, each attribute shoukldraassociated handle so
that the user can select controls that are most convenidmitdask, and a user should
be able to employ multiple, simultaneous controls to molg &pecify their intents.

A simple way for a program to represent the line segment isaie sts two end-
points. This representation makes itis easy to positiomdpe@int: simply set a pair of
parameters equal to the position of the mouse. Providingr ditindles is more difficult.
For example, to permit the user to manipulate the length elitte segment directly
requires the interface implementor to work out a bit of mathgcs to compute the
positions of the endpoints from the length. Had a differeptesentation been chosen,
implementing this control would have been easier. For exenipthe programmer
had chosen to store the center, orientation and length dfrteesegment, the set of
attributes that could easily serve as handles would berdifte

With the ad-hoc implementation methods, simultaneousrotsteither to support
multiple input devices or to express constraints on theatlgjeanges, require explicit
hand-crafting of each combination of controls. For exammlaintaining the position
of one endpoint of the line segment while the other is draggedbe implemented

1.1. IMPLEMENTING GRAPHICAL MANIPULATION 3

easily if the line is represented by the positions of its emds. However, an inter-
action that maintained an endpoint’s position while theteeof the line segment is
dragged would require some mathematical work by the intertiesigner if either of
the representations from the previous paragraph were used.

For an object as simple as the line segment, it might be pledsipredict all possi-
ble combinations of controls, or at least a sufficient setsf§ible combinations. How-
ever, combinatorics makes this impractical with more cooapéd objects. Similarly,
if we consider simultaneous control of multiple objects thcreased combinatorial
possibilities make explicit coding of all combinations iagsible. Controls on mul-
tiple objects, such as relative positions or differencesize, further compound the
problem with more potential handles, more possible contlaing, and less possibility
of predicting what the user will need.

Without a general mechanism for defining the mapping fromradlgato the ob-
ject’s parameters, it is difficult to define new handles andloimations. As a result, all
combinations of controls must be pre-designed by the prognaplementor, making
experimentation with combinations of controls difficulbdadynamic combination of
controls by the user impossible.

Even if combinatorics do not make it impossible to switchresgntations to pro-
vide alternate combinations of controls, other issueg lpossible interfaces with the
approach. Often, concerns such as numerical stabiligglfren from singularities, and
implementation convenience restrict the representatiosiscan be used for objects.
The tension between these implementation concerns andesds leads to interfaces
where the users must manipulate non-intuitive, but mattieally convenient, con-
trols, such as B-Spline knot points, or suffer with inferf@presentations, such as
the singularity-ridden Euler angles used by many systemstéwing 3D orientations
[Sho85].

In summary, the ad-hoc methods previously used to implediegitt manipulation
have many problems. As shown in the examples of the precediraggraphs, they

¢ limit the types of interactive controls that can be provitiedsers;
e prevent interactive controls from being freely combinedesired;

e restrict the types of representations that programmersisannside systems to
those that user controls can be conveniently mapped to;

o fail to provide a consistent set of abstractions for defimmeraction techniques;

e fail to provide a methodology for defining new controls, nmakit difficult to
experiment with new ideas;

e prevent the realization of some potentially desirablerfatee styles.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: A 3D scene in which a Luxo lamp is used not only as an objectérsttene, but
also for illumination. To create this image, the user mustfigure the lamp so that the light
falls in the desired location. The techniques of this thaliav the user to control the lamp by
manipulating the light's target directly, and have the lamepadjusted accordingly. The right
image shows an interactive scene composition system,ideddn Section 9.7, being used in
this manner. (Thanks to Drew Olbrich for the ray tracing.)

This thesis provides a systematic approach to implemedtnegt graphical manipula-
tion in a way that avoids these problems while keeping therdg&d benefits of direct
manipulation.

1.1.1 A Systematic Approach to Realizing Graphical Manipulaton

Our goal is to have flexible interactive controls that canrkelff combined. For some
interfaces, this increased power might be provided diyeotlisers who could mix and
match controls as needed for their problem. However, the@dwer also helps users
indirectly by giving interface designers more choices iratthey can provide to users.

Some of the benefits of this flexibility are illustrated in #sample of Figure 1.1.
Consider an interactive application that allows a user toimdate desktop objects,
for example to create pictures of office scenes. There arg thargs a user may want
to do with the lamp, for instance, they might want the lighshine onto a particular
place, place the lamp in a particular position, or orientiimep a certain way.

Inside the application, the configuration of the lamp migatrepresented as the
position of the base and the angles of each of the joints,raight be represented as
the position and orientation of each part of the lamp. The#aris preferable because
it maintains the connections between parts of the lamp. tturiately, to implement a
handle that permits the user to grab and drag the lightbydbpgrammer must some-
how devise a mechanism to update the joint angles accoydihgé ad-hoc approaches
to realizing graphical manipulation give little help in daéng such mathematics. Be-
cause the effort of deriving the handle’s implementatioruldanost likely be very

1.1. IMPLEMENTING GRAPHICAL MANIPULATION 5

specific to the Luxo lamp, traditiorfatlirect manipulation systems would most likely
be forced to provide the user with only direct control ovex ghint angles. While this
is sufficient to configure the lamp, it is not necessarily ament for tasks like posi-
tioning the light bulb or aiming the light.

This thesis presents a systematic approach for implengedirect graphical ma-
nipulation. A general-purpose mechanism maps betweenahelés provided to the
user and the parameters of the graphical objects. With suelparoach, a user of the
Luxo lamp example could not only manipulate the joint angbes could also grab any
part of the lamp directly, The programmer did not have to iexpl code the math-
ematics to map the manipulations into parameter changefactnthe flexibility in
controls permits definition of other less obvious handleg germit the user to have
direct control over attributes of interest. For examplesarunterested in shining the
light onto a particular location could simple grab the tamfehe lamp (the center of
the spot) and drag it to the desired location. The contratsbeafreely combined. For
example, a user could position the light’s target and siamglously specify the lamp’s
position on the table.

A systematic approach to realizing direct manipulation lsarbased on a general
purpose mechanism for mapping user controls to object peteas Creation of such
a mechanism requires us to view graphical manipulation amstained optimization
problem. To solve this problem in a practical manner, we rraat itdifferentially,that
Is to control how objects change rather than their final tatg€his thesis introduces
adifferential approachto graphical interaction that begins by taking the view of ma
nipulation as a mathematical problem. To realize the amprahe thesis will provide
mathematical techniques to solve the problem, implemiemté&chniques to address
pragmatic issues, and a system architecture to use theaagbpto build applications.
Example interaction techniques will be provided to showgtemise of the approach,
and applications will be demonstrated to show its viabhility

1.1.2 Classes of Users and Tools

There are different classes of people involved with an adve graphical application.
As in Myers’ survey [Mye93], we will need to distinguish tledato distinct categories.
Myers’ categories are users, interface designers, apiplicarogrammers, and tool cre-
ators. For the purposes of this thesis, we will lump intexfdesigners and application
programmers together as their tasks are similar: to buédahplication that the user
will employ in their graphical task with the tools providey the tool creators. The
application builders will be the users of application deypehent tools, but unless we

2The Luxo lamp is an example of an important special case: ticutated figure. Recently, sev-
eral commercial animation systems, such as Softimage 8baftd Wavefront [Wav94], have included
inverse kinematic techniques to manipulate such objegi®bitioning end-effector points. These meth-
ods, and their limitations, will be reviewed in Section 2.2.

6 CHAPTER 1. INTRODUCTION

explicitly refer to the “user of the toolkit,” the term “usawill refer to the “end user”
of the graphical application.

The work of this thesis affects all three groups. While ourrapph can be em-
ployed to provide conventional interfaces, it may also belus provide new types of
interfaces for users. It gives the application programmea set of abstractions with
which to build interactive systems. Finally, for the toslkuilder, there is a new class
of services that must be provided, but these services carehbbnce the modularity of
the tools by: providing a standard interconnection medrarietween objects; allow-
ing the internal representation of the objects to be hiddem fapplications program-
mers; allowing tools to be provided to the application pemgmer that allow pieces
to be assembled by combination and composition to formawsten techniques; and
allowing the encapsulation of numerical constraint corapans.

One might consider applications where the user is expostetmathematics be-
hind their graphical application. For example, the CONDQRtam [Kas92] allows
the user to construct mathematical expressions that défengraphical objects. Al-
though such an application can be constructed using thevagiprof this thesis, this
thesis focuses on applications where the user is insulaved the mathematics, in-
stead directly manipulating graphical objects. In factpal@f this thesis is to hide as
much of the mathematics as possible inside the applicatiemslopment tools so that
only the tool creators need see it.

1.1.3 Graphical Manipulation as Equation Solving

To introduce the differential approach of this thesis, gragl manipulation must be
viewed as a constrained optimization problem. Graphicalimdation deals with how
a user configures a set of graphical objects to achieve sosiredgoals. For the lamp
example, the set of graphical objects consists of the Luxgp|dhe table top, and the
other objects on the table such as the blocks. | will oftenthleéermmodelto refer to
the set of objects.

In the class of graphical manipulation tasks considereligthesis, users manipu-
late objects whose configurations can be stored as a comtisérgal-valued parame-
ters, called the objectstate vectorFor a given object, there are potentially many sets
of parameters which might equivalently serve as a repratent as demonstrated by
the line segment example. garameterizatiors a particular representation of the state
of an object.

Objects usually have many attributes that may be of intéoesh observer. Since,
by definition, the state vector fully describes the confitjoraof the object, the at-
tributes must be determined as functions of these parasaefer this thesis, we re-
strict ourselves to the broad class of object attributeswban be computed by closed-
form, differentiable expressions over the state variablégss class includes many of
the types of models used in interactive computer graphicis as most parametric and

1.1. IMPLEMENTING GRAPHICAL MANIPULATION 7

implicit curve and surface representations, transforomdtierarchies, virtual cameras,
and many simple shading models. We will not consider thing$ s combinatorial
or discrete attributes, such as the number of sides of a polyay attributes computed
by recursive or iterated functions such as fractals.

A control is an attribute of an object that can be specified or directipipulated.
For example, if a system allowed the user to drag the posifitime lamp’s lightbulb or
the target location of the light, these attributes of thedamould be serving as controls.
A constraint is a control for which a fixed value is given, preventing th&uezof the
attribute from changing. Such controls constrain the beinaf objects by restricting
their motion so that the constraint is not violated. For theppses of this thesis, the
terms constraint and control are nearly interchangeabbenatraint is a control with
its value fixed, a control is a constraint whose value is bspegified dynamically by
the user, e.g. a value constrained to follow the mouse.

A single control generally does not uniquely determine digamnation of the object.
For example, if one endpoint of a line segment is specifiedetis still a continuum of
possible configurations for the segment. To combat suncter-constrainedituations,
it is often desirable to use multiple controls simultandpus the cases where there is
only a single input device, dragging manipulation might benbined with constraints
(e.g. controls that are restricted from changing). In asgeasen a single dragging
operation can be thought of as multiple controls if we coasghch axis of the pointing
device independently.

It is unreasonable to require the user to employ enough asriv uniquely de-
termine the configuration of the graphical objects. The ssaply may not know or
care about some attributes of some objects, or it might bertech work to specify
everything. In such under-constrained cases, the systeshsomehow choose one of
the possible configurations. Without mind reading, it is asgible to reliably select
the solution that the user most desires. Systems must fetfenply trying to select a
solution that is reasonable. One version of this is the ‘@hpie of Least Astonishment”
[BDFB*87] which suggests the system should try to select the ofatrwill surprise
the user the least.

For an analogy, think of a model as a large machine which haw &fobs for the
user to turn and many gauges whose values the user may bestettin. Suppose
there are a few gauges for which the user desires a particalae. The graphical
manipulation task is to find settings of the knobs such theghuges reach these desired
values. If each gauge to be specified corresponds directyktmb, the task is easy,
because each knob can be turned and set independently. Eiowssst gauges will
depend on complicated combinations of the knobs, makingrddr to find settings of
the knobs that achieve desired values. In this metaphokrtbles are the parameters
of the graphical objects, the gauges are attributes of tfectshthat the user may be
interested in, and the internals of the machine correspmtitetfunctions that compute
the attributes from the parameters. Traditional implemgons of direct manipulation

8 CHAPTER 1. INTRODUCTION

require the user to control the knobs directly. The methdtisi®thesis permit the user
to use any of the gauges as controls by automatically adgiite knobs as needed.

1.1.4 Goals for Graphical Manipulation

Treating interactive control as the specification of valt@scontrols as in the last
section leads to a concise mathematical problem. The usddwike to specify some
set of controlsp. The system needs to find some configuration of the stateblesia
g, which meets this. Since the controls can be computed ascidanof the state
variables, we have

p = f(q). (11)
Solving the manipulation problem is, at one level, as shtgward as solving this
equation forq . However, there are many difficult goals which we might wamnt o
solution technique to meet:

1. flexibility in the types of controls, and therefore the d¢tiaons which compute
them;

2. freedom to combine controls arbitrarily, “mixing-andatohing” them dynami-
cally;

3. keepingthe good properties of direct manipulation, eogtinuous motion, rapid
feedback, tight coupling of the input device to objects adtreen,. . ; [Sch83]

4. choosing the “best” solution in under-constrained caaed finding a “reason-
able” answer even if there is no exact solution.

To aid the application implementor, there are several ajbatrs:

5. freedom in picking representations independently of asacerns;

6. a standard procedure for defining new controls that mzesithe amount of
difficult mathematical work in defining a new type of control;

7. a solving mechanism that is general purpose and encaégisigl@o that a single
common implementation can serve a number of applicatiodsarthat the ap-
plication developers need not worry about the details otdteing mechanisms.

We would like the techniques developed to realize the agbréaalso:

8. work over a variety of domains;
9. be fast and scale well;

10. require only readily available, easy to code numeritggdréthms. Reliance on
sophisticated numerical codes that must be purchased fsonrmercial vendors
or developed by expert numerical analysts would be unaabépt

1.1. IMPLEMENTING GRAPHICAL MANIPULATION 9

1.1.5 The Problems of Other Approaches

Our goals make solving Equation 1.1 fpimpractical for three general reasons:

¢ inorderto have flexibility in the types of controls, nondar equations may need
to be solved. Such equations are hard to solve;

¢ in order to have flexibility in the number of controls that apecified, we must
permit under-constrained and over-constrained cases;

e in order to provide the desired direct manipulation inteefaobject must move
with continuous motion. Therefore, the solver must be fasugh and provide
continuity in the solutions.

In order to provide direct manipulation with general cotgioy solving Equation 1.1,
we must solve arbitrary systems of non-linear equationsefiagugh to allow for fre-
guent enough updates to give the user the illusion of coatisumotion.

In order to meet goal 1, the equation solver must be able tdleanwide range of
functions, including non-linear equations. Without knedde about the functions to be
solved, sets of equations are difficult to solve. Not onlyaedinformation hard to find
in general, but each combination of equations might alsairegpecific knowledge.
Because of this, [PFTV86, Chapter 9] argues that not onl chmereliable, general,
non-linear solver exist, but that one cannot exist.

Without global information about functions and combinatipsolving techniques
must rely on local information, effectively searching falgions. Almost all non-
linear solvers are iterative methods that take an initiasguas to the solution and
repeatedly update the guess until they find a solution. Ssolvar can never determine
that there is not a solution: if it fails to find a solution itghit simply mean that it has
not searched hard enough. These solvers will be discusgbeéifin Section 2.2.2.

As computers grow faster, it might become practical to agrsusing a sophis-
ticated non-linear equation solver to provide direct malapon. However, such an
approach is unlikely to succeed for a number of reasons:

e despite their sophistication, the methods are heuristd@mancompletely reliable;

e because they are doing searches, it is difficult to prediat lomg it will take
them to find a solution;

¢ the solvers may fail to find a solution, but only after spegdiriong time looking
for it;

¢ the solvers do not degrade gracefully: it is difficult to lirthe amount of time
that they spend because their intermediate states may otideeto the answer;

10 CHAPTER 1. INTRODUCTION

When we examine the previous approaches to implementindnigapnanipula-
tion, we see that they all fail to meet some of these goalsviéue work will be ex-
plored in more detail in Chapter 2.

Traditional Direct Manipulation — The traditional method for implementing direct
graphical manipulation has been to couple parameterstlyitecthe pointing
device. For example, with the luxo lamp, a conventionaladireanipulation
system would allow the user to connect a joint angle to a k&alme mappings
between the input and the values are possible, for exampgieneert the linear
motion of a slider to the rotary motion of the joint, but themast be some direct
way of computing the parameter values from the inputs.

Traditional implementations have been the mainstay ottdim&nipulation inter-
faces. Such interfaces have been very successful, largelghe fact that it meets
goals 3 and 9. However, its limitations have restricted fpe$ of interfaces
that have been constructed. Traditional direct manipaegeverely restricts the
types of functions which can be used as controls (goal 1) gmbvides no au-
tomatic way to combine controls (goal 2). Parameters mustiosen so that
the controls will map onto them easily (failing goal 5). Basa good represen-
tations must be developed for any new controls, and bechese tlosed form
mapping for controls must be found, developing new contcals be difficult
work (violating goal 6).

Parametric Modeling Approaches — Parametric modeling is a variant of the tradi-
tional direct manipulation approach. Such schemes pemditusers to create
models with parameter dependencies. These parametergestydspecified.
Parametric approaches permit a clever user to overcomeaitimedeficiencies
of the traditional direct approach. For example, if the gesr of the Luxo lamp
knew the user would want to control the height of the lamp, rmittthe joint
angles, they might have devised a way of representing thiggcoation of the
lamp so that height is a parameter, and the joint angles anputed from that.
Parametric approaches suffer from the same failures oftdin@nipulation, al-
though it does permit a clever user to sometimes have sonitoaudd flexibility
in the types of controls.

Traditional Constraint-Based Approaches — A constraint-based interfatetreats
Equation 1.1 by employing an equation solver. Typicallg tiser specifies val-
ues for various aspects of the model and then the systensdolvgome value of
the state vector which meets these constraints. We call swdmstraint-based
approach a “specify-then-solve” style.

3| use the terntonstraint-basednterface to mean that constraints are an abstractiongedvb the
end user of a system, rather than simply as an abstractiohbysgrogrammers.

1.1. IMPLEMENTING GRAPHICAL MANIPULATION 11

Although the problem of solving the equations required tetngoals 1 and 2
is difficult, a bigger problem with a specify-then-solve amgch is that it fails
to meet goal 3. After the user specifies the constraints, yee solves the
equations and then displays the result to the user. Objatis jo the new con-
figuration, leaving the user to puzzle out what happeneds Maikes goal 4 even
more difficult. It becomes critical to pick a good solutioreteoid confusing the
user. Picking the correct solution is also important beeaughout the rapid
feedback of direct manipulation it can be difficult to exggossible solutions.

A system designer might consider using interpolation teji®the desired con-
tinuous motion in a constraint solving system. After sofyfar a new configu-
ration a system might make a smooth transition by interpajdietween the old
state and the new. However, jumping between configuratiansat be avoiding
by simply interpolating. Unless something enforces thest@mts in the inter-
mediate states, the constraints may be broken, leading¢otoaly undesirable
behavior.

Specialized Constraint-Based Approaches The primary drawback of the tradi-
tional constraint-based approach is that it violates goah& desire for direct
manipulation. One approach to handling this is to resthietdlass of constraints
so that they can be solved faster. The best examples of thihampropagation
constraint solvers, such as DeltaBlue [FBMB90]. In essetimse algorithms
trade-off goals 1 and 2, in order to better meet goal 3. Asasifibct, some of
these algorithms provide techniques, such as constraerarichies [BFBW92],
to handle under-constrained cases (goal 4). Unfortunatetypagation solvers
restrict the set of possible controls and the ways conteridbe combined in ways
that are unacceptable for graphical manipulation (faigjogls 1 and 2). Also, for
each new control, a variety of bi-directional methods mésgbnerated, which
may not be easy for many types of functions (failing goal 6).

The problem of determining configurations that achieve teardd attribute val-
ues is an important problem in robotics and computer ananauch solving is
referred to asnverse kinematicsThe inverse kinematics literature, examined in
Section 2.2.4, includes numerical methods that solve te&eBys of non-linear
equations. A problems of particular interest to robotiesnely configuring artic-
ulated figures by positioning end-effectors, is partidylarell-studied. Highly
developed techniques have been developed and are commemplaugh to be
surveyed in robotics textbooks, such as those by Craig E}@8Paul [Pau81].
The techniques are now appearing in commercial computeraitn systems,
such as Softimage [Sof93] and Wavefront [Wav94]. The methndsuch sys-
tems are not general: they only permit manipulation of a w&grgcific control
on a very specific class of model (failing goals 1, 5 and 8),tspatally provide
only a single control at a time (failing goal 2). The diffet@happroach can be

12 CHAPTER 1. INTRODUCTION

viewed as a use of generalized inverse kinematics to cregémeral approach
to implementing graphical manipulation.

1.2 The Differential Approach

Existing approaches fail to meet the goals for graphicalimaation, demanding the
development of a new approach. An advantage that we havétwveevelopers of pre-
vious approaches is that computer hardware has advandeggoint that the machines
on which graphical applications are run have consideratngputational and graphics
performance. Such machines make it possible to do noratrvmerical calculations
in between each frame of continuous motion animation. Tleigms that itis possible to
perform some numerical constraint calculations and stil/jgle a continuous-motion
direct manipulation interface. This thesis presents sadcpproach to graphical inter-
action.

Our goals make solving the manipulation problem of Equatidndifficult. Pre-
vious approaches have either restricted the equationgstiiated the desired direct
graphical interaction. In this thesis, | will present an eggeh which makes a differ-
ent kind of restriction: that we are interested only in dirg@phical interaction and
will always demand that objects move with continuous maqtiat jump between very
different configurations. The interfaces desired for greghnteraction have this prop-
erty.

Because we are considering cases where objects move caundigiuit is sufficient
to control them by controlling how they change over time. Bntrolling how objects
are changing, rather than controlling their configuratidinsctly, a variant of Equation
1.1 may be solved. Controls specify the attributes’ rateshainge and the system
solves for the state variables’ rates of change to make dipigdn. | call this approach to
graphical interaction based on this control by time denestthedifferential approach.

With the differential approach, at particular instantgine a solver must determine
the time derivatives of the state vector given the time @giwes of the controls. We
refer to this aglifferential optimizationSolving the differential optimization is a much
more mathematically tractable problem than solving Equneti. 1 directly. This means
that it is possible to provide direct graphical interact{ameeting goal 3), while han-
dling a general class of non-linear functions (meeting 49aand allowing these to be
combined in arbitrary ways (goal 2). Methods for solving diféerential optimization
problem address the issues of under-constrained and etemtined cases (goal 4).

The differential approach meets the implementation goslwell. By allowing
almost arbitrary non-linear functions to map between adstand parameters, it pro-
vides flexibility in selecting representations of objectdependently of how they will
be manipulated (goal 5). The solving methods require itfiermation about the con-
trol functions, in fact, all that is required can be foundaamatically given the control

1.2. THE DIFFERENTIAL APPROACH 13

function (goal 6). The mechanisms behind the differenpakaach are general purpose
and can be encapsulated in a manner that not only hides treglyind mathematical
techniques, but also permits a single implementation teesas a building block for
almost any type of system requiring graphical manipulafgwals 7 and 8). The tech-
niques to realize the approach perform well enough to workusrent machines (goal
9), without resorting to numerical routines beyond thosstandard textbooks (goal
10).

1.2.1 Direct Manipulation in the Differential Approach

Digital computers provide the illusion of continuous matiof graphical objects by
repeatedly redrawing the image. The time between thesawsdnust be sufficiently
small in order for the illusion to be maintained. To suppdrect manipulation, a
system must sample the position of the mouse and update #iteops of the objects
at a rapid rate.

The differential approach breaks the numerical constsalving problem into two
parts: computing the rates of change of the parameterstatyar instants, and com-
puting the trajectory of the parameters over time, givenaies of change at particular
instants. The former problem is the differential optimiaatproblem, and the latter is
solving an ordinary differential equation (ODE). Betwe@agcle redraw, the ODE must
be solved to update the configurations of the graphical ¢thjd€ach of these solver
steps advances the configuration by solving some numbeiferfatitial optimizations,
each determining the rate of change at some particulaminsta

With the differential approach, the graphical objects adrsimply be moved with
the mouse. Instead, each step they move towards a targetations in ODE solving,
discussed in Section 3.3, provide speed limits on how quigkjects can move, so they
may not be able to reach their target in the time providedhdftarget is the position of
the mouse, this will cause the object to lag behind its tagetdually catching up as
the mouse slows down. This can make manipulation feel ae ibltlects are connected
to the input devices by springs, and will be discussed ini@e&.1.2. As computers
grow faster, more computation can be done between eachwednde maintaining
a rate sufficient to provide the illusion of continuous matid his allows raising the
effective speed limits of the objects, and can reduce the lag

1.2.2 An Alternate View of Graphical Manipulation

An alternatative view of graphical manipulationis to imaggraphical objects as phys-
ical entities that are manipulated as physical objectsenrdéial world: by pushing and
pulling on them. With such a view, implementing direct mangtion becomes a prob-
lem of implementing an interactive physical simulation.eTiesues in creating such

14 CHAPTER 1. INTRODUCTION

simulations are explored by Witkin et al.[WGW90]. The techugg presented in that
paper form the basis for this thesis.

The differential approach can be viewed as a variant of thesiphl simulation
approach. The physics of the “world” is modified from that loé real world in order
to facilitate manipulation. Most significantly, inertiarsmoved by replacing Newton’s
law of motion,f = ma, by its first derivative equivalenf, = mwv. An object in motion
is only in motion while it is being acted upon by a force. Fompalation, this has the
advantage that objects remain where they are placed, thdeskidding around.

The mathematical methods used for implementing the difteakapproach pre-
sented in Chapter 3 are the same as those used for implegiehiisical simulations.
Many of the numerical methods and implementation techrsquthe thesis were orig-
inally conceived for implementing interactive simulatsorPresenting the differential
approach as constrained optimization, as done in thistjregher than presenting it as
a physical simulation, is largely a matter of taste.

1.3 An Approach to Graphical Interaction

The ultimate goal of this research is to improve the qualitgraphical manipulation
interfaces. The central focus of this thesis makes an iodgtep towards this goal,
providing a new set of abstractions which provide more flidixytin the type of inter-
action techniques that can be created. This increased ifigxidnes not necessarily
imply better interfaces — in fact, they give interface degig new ways to baffle and
confuse users. However, there are several reasons to ddfiat/the differential ap-
proach can lead to improved interaction techniques.

The differential approach permits building interfaces ebhhave many desirable
properties. It provides for continuous motion of the graphobjects. It permits in-
terfaces to provide controls to the user which permit diyembntrolling attributes of
interest. These controls need not directly connect to thepeters. It permits controls
to be combined, either by the user or by interface elements.

The example interaction techniques of Chapter 8 show thaigeoof the approach.
The examples which recreate prior techniques show thatitsieaetions provided by
the differential approach are sufficiently rich to creatahls interactions. Some of the
newer techniques, such as the through-the-lens camenalsooit Section 8.1.4 could
not have been considered with previous approaches to bgiidierfaces. Some of
the examples, like the artificial horizon of Section 8.3, ot good interfaces. But
with the differential approach, techniques can be explai#aout deriving the inverse
mathematics, so it is possible to learn that they are unadadbre investing a large
amount of time and effort in their development.

The differential approach provides a new set of abstrastfon building graphi-
cal interaction techniques. In the remainder of this se¢twe briefly introduce the

1.3. AN APPROACH TO GRAPHICAL INTERACTION 15

center angle

[umnm]

State Vector

Line

Figure 1.2: A schematic representation of a simple graphical objece diject stores a set
of parameters internally in itstate vectorHowever, the outside world accesses the object via
its connectors, providing flexibility and parameter indegence.

abstractions, along with the terminology used throughloeithesis.

1.3.1 Graphical Objects and Connectors

For the purposes of this thesis, we are concerned with waatenmonly calledbject-
orientedgraphical editors. In such applications, the user dealsfiviite sets of graph-
ical objects which must be manipulated to create the desnedkel or drawing.

For the most part, graphical objects are the visible estitiat the user manipulates.
However, we will consider structural elements, such as thems that aggregate ob-
jects or the viewing transforms that map virtual worlds tesa coordinates as objects
as well.

For a graphical object, there are two “sides” which we mussater. On one hand
is what the programmer “sees,” the object’s internal regmetion. An important part
of this are the parameters that determine the configurafitimecobject. Each object
stores this set of numbers asstate vector.

To the user, the graphical object should appear as a graiipt. We assume
that the user is interested in the graphical entity, noténitibernal data structures used
by the programmer. For any object, there are many attrilibtgsnay be of interest to
the user, or to other objects in the program for that matter.

Ideally, we would like to think of a graphical object as a seldbox. Inside is the
programmer’s internal representation, including theestattor. To the outside world,
all that is visible are the many attributes which other pafthe program, or the user,
may want to observe. Our desire to think this way leads usdw dyraphical objects
schematically as Figure 1.2. The central notion is that thie $s internal to the object
and the object’s “outputs” are its attributes. How the ob@mmputes these attributes
is the concern of the object itself, not the outside world.

The state vector of an object fully specifies its configuratid@herefore, any at-
tribute of the object must be a function of these variabldss function must be known,
otherwise it would be impossible to compute the value of théate.

A graphical object may know how to compute many attributdse Jet of attributes

16 CHAPTER 1. INTRODUCTION

of an object is not necessarily fixed — an object may have ménpates, and new
attributes may be created in response to the needs of somepath of the system or
the user. The schematic of Figure 1.2 may be slightly mistepith that it should not
imply that the depicted outputs are a fixed, small set.

We will call the outputs of graphical objeatennectorsAs the name implies, these
are the sockets into which the outside world will connecth® dbject. A connector
is an attribute that an object provides for the outside wtwrldccess. Throughout this
thesis, the notion of connector will be both a conceptua @ewell as a data structure
that realizes it.

1.3.2 Compound Objects and Dependencies

Many attributes can be computed as functions of other ateg rather than from inside
the object. For example, if we wish to know the length of a Begment, this attribute
could be computed as a function of the positions of endpoifkerefore, if the line
segment did not know how to produce its length as a connestmight create a
special ruler object that looks at the positions of two poiad “connect” it to the
endpoint outputs of the line segment.

An important notion in the ruler example is that the rulerembakes as its “inputs”
the “outputs” of another object. The ruler measures theadcst between two points,
without concern for what these points are. This is signifi¢anthree reasons:

¢ It means that the objects, such as the line segment, can éredext to have new
behaviors without being internally modified.

¢ It means that we need only one type of ruler, no matter how rdéferent types
of objects we might be measuring.

e We are not necessarily restricted to points on a single abjastead we could
measure the distance between two points on two differeictdj

Objects like the ruler have inputs that plug in to the outpaureectors of other
graphical objects. Considering such dependencies leadslisw schematic diagrams
such as Figure 1.3. The outputs of the connective objectatarbutes just like the
outputs of the simpler objects. The distance output of ther ghould be a first-class
citizen, just as the position outputs of the line segmenike the outputs on simpler
object, the connectors on the ruler object’s outputs acefatsctions of the state vector,
except that they are potentially functions of the stateareat the entire model (which
we will call theglobal state vector), rather than just the state vector of a singjkect
The function that determines the attribute’s value can bk by composition: first
computing the values of the inputs and then using these sakithe inputs to a function
which computes the distance.

1.3. AN APPROACH TO GRAPHICAL INTERACTION 17

center angle

mmnm]

[State Vector

center angle

]

[State Vector

Line Line

Figure 1.3: Compound objects are composed by plugging objects’ conreeirtto sockets,
like wiring together a circuit. A standardized protocobals independence in wiring.

This picture emphasizes an important notion in the thesis:idea of plugging
objects into the “outputs” of other objects. The facilitydygnamically plug and unplug
such connections in response to user actions or other systents is an essential part
of the differential approach, and will figure prominentitie design of the machinery
to realize it.

The key element for creating the vision of snap-togetheedaibjin the differential
approach is a standard protocol for the outputs so that amyttan be plugged in.
Since the connector outputs are primarily functions, tiggeggate connection operation
is function composition: building more complicated fucis from simpler pieces.
By supporting this operation in a dynamic environment, tteehinery to realize the
differential approach can permit the needed plugging ampdugging.

Compound objects, like the ruler, can come in many formsicBlly, they are used
to compute aggregate properties of many different objdats.example, the distance
between two points, or the relative orientation of two liegents. They may also
be used to compute conversions, for example from degreesltans. More complex
attributes can also be built this way, for example, we migimhpute the position of a
shadow as a compound operation that takes the position oihg floe position of a
light source, and the position of the floor as its inputs. iy in building new types
of attribute outputs is a useful feature of the differengipproach.

18 CHAPTER 1. INTRODUCTION

Follow Follow GoTowards GoTowards GoTowards
Mouse X Mouse Y 0 0 3

A ’f‘ N 1

XWy

m

center angle

[umnm]

Lin e State Vector Lin e State Vector

[ummm]

Figure 1.4: Objects are manipulated by attaching controllers to thminectors. A controller
specifies how the value of a connector should be changingtr@iems can be plugged into
any connector. This diagram represents a model with twoskggnents that are attached. One
segment has its length constrained, while the other is l#riagged.

1.3.3 Control of Graphical Objects

Since the attributes are the only view of an object that tleg@mmer is given, it
follows that these attributes must also serve as the hahglesich the object is con-
trolled. The vision of the differential approach is that atfribute output should be
able to serve as a mechanism to control the object, and tes¢ ttontrols should be

able to be freely applied as needed in any desired combmakious, any output should
also be able to serve as an input.

Our notion of using an output as an input can be best discusgeédtroducing
another kind of special object, tlzentroller. A controller is a simple object that plugs
into a connector and specifies what behavior the outsidedvetasires from it. With
this final abstraction, we are led to draw schematics suclgasd=1.4.

With the abstractions in place, we can now examine Figuréolsde the mathemat-
ical constraint problem. We have specified the outputs ofuhetions that compute

1.3. AN APPROACH TO GRAPHICAL INTERACTION 19

the attributes being used as controls, and must determgni@pluts to these functions
(the value of the state vector) to achieve the desired values

As discussed in Section 1.2, we cannot solve this constpagitlem directly. In-
stead, we will solve it differentially. This means that mthhan specifying desired
values for attributes, controllers specify how they shdagdchanging over time. A
controller specifies a rate of change for the attribute ibisrected to.

It is important to notice that the controllers cannot intaaeously affect the values
of the connectors they control, nor the state variables efdbjects. Instead, they
specify how those connectors are changing, and over tinosgtbhanges will take
effect. This implies that there is a continuous flow of timeowhich the controllers
can act. At discrete instants, the set of active controllesy be altered, but values
cannot be changed.

What a controller can do is quite limited: it can simply spgtife desired rate of
change of an attribute. The diversity of interaction tegaeis comes not from diver-
sity in the types of controllers, but rather, from the wayytlaee applied. Interesting
interaction techniques result from:

e attaching controllers to interesting attributes;
e connecting controllers at interesting times;
e using controllers in interesting combinations.

Interaction techniques are defined by controlling connsatwer time. For exam-
ple, to drag a point, the connector that computes the pgotstion is connected to a
controller when the mouse button is pressed to initiate thg,cdand the controller is re-
moved when the mouse button is released. Similarly, a mézddanonnection between
two points is created by using an object which computes t@attement between two
points and creating a controller which drives the displaseito zero.

The differential approach provides a basic set of abstrastirom which interfaces
and interaction techniques can be built. The ability to wogether attributes and attach
controllers to them provides machinery that can be appfiedvide variety of manners.

One interface style which is enabled by the differentialrapph is to provide the
abstractions directly to the user, permitting them to miet aratch controls as needed.
For example, in the lamp demonstration, the user would baitted to grab and drag
many points involving the lamp, including the light’s tatgéhe bulb, and the corners
of the base. Attributes which are not positional, such a# pmgles or bulb brightness,
might be connected to sliders. The user could configure thp lay manipulating any
of these controls, or by constraining their values. Costaerke mixed-and-matched
by manipulating or locking their values. This interfacelstg similar to a traditional
constraint-based interface. Many of the issues which makstcaint-based interfaces
difficult to design must be addressed, such as how to prelsemalette of options to
the user effectively.

20 CHAPTER 1. INTRODUCTION

Another way that the differential abstractions may be eygdias to build interac-
tion technigues which are more similar to the traditioneddi manipulation interfaces.
An example is the 3D translation widget discussed in Se@&i8r6. To the user, the
translation handles appear as they do in other systems \phiefde them. However,
this interaction technique can be concisely described Ifinidg sets of controllers
during dragging. While the differential approach is meredgdito recreate an existing
technique in such cases, it does have some interesting tsen€fie differential ap-
proach addresses the difficult question of how to define sutelndsting behaviors in a
way that is parameter independent, and easy to generalitbeocontrollers.

1.3.4 Impact on Application Architecture

Just as the differential approach frees the user from waogrgbout the object repre-
sentations, it can also hide such parameterizations frenptbgrammers of graphi-
cal applications, helping to foster encapsulation. Okjentrely expose mathematical
functional outputs for attributes that other pieces of th&tesn may be interested in.
The program manipulates the object by placing constramdscantrols on these ports,
and the differential solving mechanism takes care of anfjgshe parameters accord-
ingly.

The solving mechanism needs very little information abbetfunctions that are
being constrained and controlled. This means that objeetd not expose much infor-
mation about the functions they provide. It also simplifles¢omposition of functions
from pieces, such as object outputs. This allows creatioa wfility which permits
functions to be defined dynamically, for example in respdoseser actions. The core
functionality of the differential approach, the abilitydefine functions and place con-
straints and controls on them, can be built in a general @&rpwanner.

The general protocol for connecting the outputs of objeetsnits the creation of
general purpose objects, constraints, and interactidmigaes. Objects can provide
mathematical ports without regard for what will “plug-irg these ports. Constraints
and interaction techniques can be defined in terms of typastptits, without regard for
the objects that are being connected to. For example, weedgfaphical objects that
produce outputs that are the positions of points, and definstraints and interaction
techniques in terms of point position outputs.

1.4 Thesis Roadmap

This thesis introduces the differential approach, prestthniques to realize it, and
provides examples to illustrate its power and viabilitylléwing this introduction, the
thesis proceeds to review some relevant related work.

Chapter 3 introduces the basic set of mathematical techsigeguired to realize

1.4. THESIS ROADMAP 21

the differential approach. The methods treat manipula®equation solving. This
problem is handled differentially to make it feasible tov&l The fundamental com-
putation is solving a constrained optimization problemdmpute how the parameters
of objects are changing given the rates of change of the @sntBasic methods for
solving these constrained optimization problems are dgezl and extended to handle
under- and over- constrained cases. The chapter also eosbiol to use the computed
rates of change to actually create the motion, a problemleiirgpordinary differential
equations from initial values. The chapter concludes witinaple example, worked
through in detail.

In order to use numerical techniques in an interactive systieere are two central
challenges that must be faced. The computations must be tmgoeast enough, and
the computations must be defined dynamically in respondeetagers actions. These
issues are considered in Chapter 4 and Chapter 5 respgct@bhpter 4 considers
methods to achieve the needed performance in such solviitey. analyzing the com-
putational bottlenecks of the approach, a variety of mettaoéd presented to enhance
performance. One key element is exploiting the inherentsiyeof systems of equa-
tions to be solved. Other techniques include solving smptteblems while still giving
the user the illusion that the system is solving a larger leraband trading unneeded
accuracy for speed.

Chapter 5 considers the task of dynamically defining fumstia a way that they can
be rapidly evaluated with their derivatives. A tool callesbp-Together Mathematics
that allows functions to be built dynamically from smalleeges is presented. Snap-
Together Mathematics is an important element of the diffeaé approach because
it provides the software structure for dynamically mixingdanatching controls, and
provides a mechanism for encapsulating the mathemati¢geatpproach.

With the basic machinery in place, Chapter 6 considers hewdbls are applied
to create interaction techniques. It defines the set of aftgtns provided to inter-
face designers by the approach, and describes how theedhiffelr notion of time is
different than what is commonly used in interactive-sysgmogramming. The chap-
ter provides some basic examples of how the abstractiorenapéoyed, and provides
some extensions to the basic differential techniques tmpsuch things as inequality
constraints.

Chapter 7 discusses how the differential approach can lamsuolated into a graph-
ics toolkit. The Bramble toolkit was designed to aid in theelepment of graphical
editing applications with the differential approach. dars elements of the toolkit are
described, with an emphasis on how it supports the diffekapproach.

Chapter 8 describes interaction techniques built usingliséractions of the differ-
ential approach. It begins by discussing some basic stestelgthen provides concrete
examples of techniques to address various interactios thskddition to several novel
interaction techniques, many previous techniques areaésxu, in order to show how
the Differential Approach can be applied to these problems.

22 CHAPTER 1. INTRODUCTION

Chapter 9 presents some example applications built witlapipeoach. The appli-
cations serve to demonstrate the viability of the approachta give some idea of its
promise in constructing tools for users. Chapter 10 coredute thesis by summariz-
ing the contributions, evaluating the various contentd, suggesting some directions
for future work.

1.5 The Thesis

It is the premise of this thesis that:

e The numerical and graphical performance of modern procgessm be applied
to address issues in graphical manipulation.

¢ A differential approachto graphical interaction provides a systematic implemen-
tation of direct manipulation. This approach allows a syste provide users
with a broad class of interactive controls that can be freeipnbined, yet pre-
serves direct manipulation, so it does not suffer from themilacks of other
previous approaches.

e Mathematical techniques to realize the differential applocan be provided,
and that these techniques can be realized such that the isSuneractive sys-
tems are addressed. In particular, methods permit the ciatimus to be defined
dynamically in response to user actions and to be performiidiently fast on
current generation hardware.

e The techniques of the differential approach can be encafesijlproviding a set
of abstractions with which to build interfaces as well asaggal purpose imple-
mentation.

e The differential approach can have a positive impact on tag thvat interaction
techniques are developed and that interactive systemsastracted, by help-
ing separate manipulation from representation and by amageneral purpose
constraints and interaction techniques.

e The differential approach can lead to interesting new adeon techniques and
applications, but can also serve as a substrate for implémgesxisting popular

interaction techniques.

1.5.1 Contributions

The contributions of this thesis are detailed in the finalptba Briefly and generally,
the contributions of this thesis are (in the order they walldsesented in the thesis):

1.5. THE THESIS 23

e To introduce a systematic approach to graphical interadisssed on the use of
numerical non-linear constraint techniques, which | ¢edldifferential approach.

e To present mathematical techniques for solving the pdaticzonstrained opti-
mization problems encountered in using the differentiairapch.

e To provide techniques to implement these mathematicahiquaks that address
the pragmatic needs of interactive systems.

e To provide atoolkit that encapsulates the differentialrapph, providing its fea-
tures to application developers while shielding them friwe details of its im-
plementation.

e To provide new interaction techniques and examples to adgreblems faced
by users of interactive graphical applications, and to show these techniques
fit in the context of graphical applications.

e To provide example applications demonstrating the vighdaf the approach.

24

CHAPTER 1.

INTRODUCTION

| think the past is behind us. Real confusing if it was not,
but anyway.
— Blues Traveler
But Anyway

Chapter 2
Related Work

The differential approach uses constraint techniquesalizeegraphical manipulation.
Like other uses of constraints in computer graphics, tHerdiftial approach must ad-
dress a number of challenges in applying, solving, and implging constraints. This
chapter looks at previous work on applications of constsaamd constraint solving
technologies. It then looks at previous work on the creatibtoolkits for the con-
struction of graphical applications, as the differentigpeach will be used to create
such a toolkit in Chapter 7. Finally, previous work on parts 3D interaction prob-
lems used as examples Chapter 8 will be examined.

Both the basic idea of graphical manipulation, and the usew$traints to enhance
it, date back to Ivan Sutherland’s Sketchpad system [Sut&8flebart pioneered the
more general use of a graphical pointing device in computerfiaces, as chronicled in
[Eng86]. The style of interaction in which a pointing devamntrols a graphical object
in a tight coupling is commonly referred to as direct mangpioin, a term generally
attributed to Ben Schneiderman [Sch83]. His classificatianterfaces in terms of the
user experience led to later attempts to better define it [V)R8id even to arguments
as to why such categorizations are not helpful [WG87].

2.1 Uses of Constraints in Graphical Applications

Constraints have been used in graphical applications inymays. Some systems
provide constraint-based interfaces, that is, the useitseodystem are presented with
constraints to use in completing their tasks. Constragfini&jues have also been used
to aid the programmer of graphical applications, by prowgdhem with a tool to use in
the construction of their systems. The two uses of congsraie orthogonal: it is com-
mon to write an application with a constraint-based intfasing conventional tools,
and to use constraint-based tools to write applications @onventional interfaces.

25

26 CHAPTER 2. RELATED WORK

2.1.1 Constraint-Based Graphical Interfaces

The central idea of a constraint-based graphical inteiitaitt the user is able to make
persistent constraints: declarations that the systemtenagafter they are specified.
The canonical example application of a constraint-basaghical interface is drawing.

In a constraint-based drawing program, the user specifiasaeships among parts
of the drawing as persistent constraints that the systemtaias during subsequent
editing. For example, a user can attach an arrow to an olgedtthe position of the

arrow is altered as the object is moved.

Sketchpad pioneered direct manipulation permitting useidirectly manipulate
graphical objects by dragging them with the light pen. lbalstroduced constraint
methods, permitting users to specify relationships betvpegts, for example that two
lines should be parallel. Sketchpad would “relax” the drayintil the constraints were
satisfied, and continue to maintain the constraints duniligeguent manipulations.

Since this ground-breaking application, graphical malaithon has been continu-
ally refined and has become standard. Constraints have eotasesuccessful. Const-
raint-based approaches to drawing have been limited byculif§i in creating con-
straints, solving them, and displaying them to users. Tiseface issues, coupled
with implementation complexity and performance problehasie prevented the wide-
spread acceptance of constraint-based systems.

There have been examples of research systems for condtesied drawing such
as Juno [Nel85], IDEAL [VW82], HILS [Whi88], CoDraw [Gro89], iEtureEditor
[KNK89], HotDraw [FB93], and Magrite [Gos83]. A very diffent use of constraints
is shown in the PED picture beautifier [PW85] that automdiiqahces constraints on
a rough drawing and solves them to clean up the drawing. Asmatbe of constraints
Is in the Visio [Sha93] diagramming program which permitBrdag object semantics
with equations with a spreadsheet interface.

Recent developments such as constraint inferencing, mdedyavailable solving
technology, and the faster computers capable of solvingtcaints at interactive rates
have renewed interest in constraint-based drawing. Sys$eich as Chimera [Kur93],
Grace [Alp93], IntelliDraw [Ald92], Rockit [KLW92], DesigWiew [Com92], Con-
verge [Sis91] and my own Briar (Section 9.1) all use constriaiferencing to couple
constraints and direct manipulation.

Constraint technigues have also been applied in 3D syst<mugh Sketchpad
[l [Joh63], the first interactive 3D application, did notieaconstraints, they are sug-
gested as a requirement for future systems. The Variat®aametry systems of Lin,
Gossard and Light [LGL81] renewed interest in the use of ttamg techniques for
designing 3D objects. Bruderlin [Bru86] and Rossignac g&ypresented constraint-
based solid modelers. Constraint-based solid modeletsuigadirect manipulation
input are presented by Sohrt and Bruderlin [SB91] and by Fad FD93]. David
Pugh’s Viking system [Pug92], uses constraints to mairngammetrical relationships

2.1. USES OF CONSTRAINTS IN GRAPHICAL APPLICATIONS 27

defined by sketching. Converge [Sis91] models 2D and 3D tbjeith constraints.

Constraint methods have been applied to surface modeliogyiag users to ma-
nipulate surfaces without seeing the underlying represgiems. Fowler [Fow92] and
Welch, Gleicher and Witkin [WGW91] present simple constrangthods for control-
ling points on B-Spline surfaces. Celniker [CG91] desaibeethods that optimize a
shape interactively, which are extended in [CW92] to a broatiss of constraints.
Welch and Witkin [WW92] extend this work to a wider variety ofnstraints that per-
mit the user to stitch together pieces of surfaces.

The “energy constraints” work of Witkin et al.[WFB87] intrades the idea of mod-
elling using arbitrary functions of objects as controls.r&4 [Bar92c]| discusses the
philosophical attractiveness of using physical constsdor modelling.

Specialized interactive graphics systems use constrartielp users manipulate
complex objects. Mark Surles’ SCULPT system [Sur92a, Sur&ur92b] permits
the interactive manipulation of molecules. The Jack syqteB88a] uses constraint
methods to interactively position a human figure. In [PB3i¢ authors extend Jack
with more complicated constraints on human figures.

The differential approach and the tools created to impldritemere heavily mo-
tivated by the desire to build constraint-based applicatiand to study the issues in-
volved. Seeing 30 year old films of Sketchpad inspired thé&elés understand how
these techniques might apply in modern systems. The energjraints work was also
particularly inspiring because it demonstrated the ytdita wide range of controls, a
central theme in the differential approach. Of the systeissudsed, Briar, Converge
and Chimera best typify the applications motivating théedéntial approach.

2.1.2 Constraint-Based Tools for Building Graphical Applicaions

Tools for building graphical applications have employedstaints to ease the con-
struction process, for example, by automatically maintgjiconsistency multiple rep-
resentations of data or between views and data. The use straom methods to sim-
plify the construction of graphical applications was pieresl by Borning’s ThingLab
system [Bor81]. The early successors to Thinglab for constrg interfaces using
constraints are surveyed in [BD86]. Barth’'s GROW toolkiafB6] was another early
use of constraints to help the programmer lay out the vaeteraents of the interface.
The common use of constraint methods for maintaining ctersty of data can
trace its origins to non-constraint-based methods. Thell&tkaModel-View-Con-
troller model [KP88] for direct manipulation implementatiprovided the influence for
many other systems, despite its late appearance in theshedlliterature. The model
uses separate objects to handle input and output for apphazbjects. A critical piece
to implement the model is a mechanism for dependenciesctshjeust be notified of
changes to other objects, for example to update the displenvappropriate. The
dependency mechanism is a simple form of constraints kn@wnewaybecause the

28 CHAPTER 2. RELATED WORK

data only flows one way in the constraint. Distinctions amiypgs of constraints will
be explained in the next section.

More sophisticated algorithms for creating one-way camsts were introduced
later, and lead to more general dependency mechanismstésfaice toolkits. For
example, Hudson’s incremental attribute evaluation [Hjd®as used to create the
Apogee toolkit [HH88]. Similar one-way mechanisms werediseother toolkits such
as Coral [SM88], MEL [Hil91], and Garnet [MG®0].

Despite the simplicity and limited expressibility of onexyvconstraints, they are
an extremely useful feature in interface toolkits. They sufficient to update views
when data changes, keep dependant data consistent, andelsepers lay out inter-
faces. Simple solvers are extremely popular because effiarel simple mechanisms
for creating them have been widely available. As develogmensolvers make more
powerful techniques practical, newer toolkits explordrthevantages. Examples in-
clude Rendezvous [HBM3], ThingLab Il [Mal91], VB2 [GBT93], and Multi-Garnet
[SB92]. Rendezvous even permits creating constraintsacmultiple displays, main-
taining consistency between multiple users of a sharedcgtiain.

The existing constraint-based tools for developing gregdhinterfaces are inade-
quate for constructing the constraint-based applicatéors examining the interface
guestions | wanted to study. The lack of support for numédoastraints in existing
tools provided a niche to be filled with the work of this thesiss important to explore
whether numerical constraint methods could be encapsidaie provided in a toolkit.

2.2 Constraint Solving Technologies

The wide array of uses of constraint techniques has led tordaion of an even larger
selection of constraint solving technologies. Here, wevipi® a brief survey. Most

systems have only used a single solving technique. Oth&ragsincluding the early
Sketchpad [Sut63] and ThingLab [Bor81], used hybrids wimeudtiple solvers were

used to solve different parts of problems.

2.2.1 Propagation and Symbolic Methods

The simplest constraint methods allow the specificationepfesthdencies among ele-
ments of the data. Some mechanism is provided in order to swaleethat dependent
values are updated appropriately. These mechanisms ceat®pgher by replacing ac-
cesses with function calls to recompute the data, or by lgashianged data notify their
dependents. This latter approach is knowrnaogsl propagationbecause new results
first propagate to elements closely connected (i.e. londhe dependency graph. De-
pendency schemes are caltmtk-waybecause information flows only one way across
the dependencies. Despite their simplicity, one-way lpcapagation techniques are

2.2. CONSTRAINT SOLVING TECHNOLOGIES 29

extremely popular because they are easy to implement etfigignd because they can
provide some important needs in user interface softwafiej&it methods for handling
one-way constraints by minimizing the number of evaluatiare discussed by Hudson
[Hud91], and extensions to one-way constraints for indiygeferencing variables are
provided by Vander Zanden et al.[VZMGS91, VZMGS94].

One way constraints describe dependencies on data. Fompéxaconsider the
constraint C=A+B. A one-way constraint would declare thadégpends on A and B,
and when either A or B changes, C is updated accordingly. iMuy constraints per-
mit the dependency to be determined based on the data, ajdito be computed
when A and B are provided, or B to be computed when A and C andged. Conse-
guently, multi-way solvers are more complex than one-wadyespwhich has hindered
their acceptance. Sophisticated multi-way local propgagatolvers such as DeltaBlue
[FBMB90], SkyBlue [San94], and the methods of Vander Zand&88, VZ89], are
now becoming more readily available. Sannella et al [SMFBEfgue that they are
as efficient as the simpler one-way solvers.

Local propagation solvers can be optimized by making thesremental, so that
only the elements affected by changes are recomputed.dfiffiigorithms that recom-
pute minimal numbers of dependencies include the Delta@&ver [FBMB90] and its
successors such as SkyBlue [San94]. These solvers alsdhsawgeresting property
that they are hierarchical [BFBW92]: they permit declarirgtain constraints to be
more important than others. The more important constrairgsolved first, and less
important constraints are used only when more importargtcaimts leave unspecified
degrees of freedom.

The popularity of local propagation solvers owes to theiityt their efficiency,
and the fact that arbitrary functions can be computed in gpeddencies. However,
even the most sophisticated local propagation solvers émav@aportant limitation: the
methods are local. Propagation constraints solve systéomstraints by treating the
constraints one at a time. Therefore, they can solve onyydfatonstraints for which
there is an ordering such that constraints depend only onque results. In graph
terminology, propagation constraints can solve only systéhat do not have cycles
in their dependency graphs; in terms of equations, locggation solvers can only
solve triangular systems. Sophisticated local propagatamvers, such as SkyBlue
[San94] can detect when their methods are insufficient, &mmaot solve simultaneous
equations.

For geometric problems, local propagation is insuffici&mr example, it is unable
to handle a pair of constraints that specify that a point isidigtant from two other
points. This requires solving two constraints simultarsiypuSolving two constraints
simultaneously is the backbone of geometric constructiagst permits intersecting
figures as done in compass and straight-edge constructidosipass and straight-
edge constructions need only to handle pairs of constrsimigltaneously as only two
objects are ever intersected. However, these objects nendeon the results that are

30 CHAPTER 2. RELATED WORK

propagated from previous computations.

Solving pairs of constraints simultaneously, for examplg@érmit compass and
straight-edge constructions, is an important special tasehas been added to some
propagation systems. Ruler and compass constructiomsysiéow the user to explic-
itly order dependencies on constructions. Examples imdNmma’s system [NKK88],
LEGO [FP88], DoNALD [Ben89], and GIPS [CFV88]. More sopitsted systems
have solvers that automatically plan the propagation p@&hsxample is the 2-forest
propagation solver used in PictureEditor [KNK89]. Even meophisticated solvers
use rule-based systems to find sets of constraints that reusdlibed simultaneously
and build propagation plans that use special case solubotise simultaneous cases.
Examples include Glenn Kramer’s TLA solver [Kra90] and Aleld’s system [Ald88].
Augmented term rewriting, introduced in Bertrand [Lel8B8¢aalso used in Siri [Hor91,
Hor92], generalizes and formalizes the rule based proagapproach.

The inadequacy of propagation methods was a motivatiorhfodifferential ap-
proach. The success of the methods showed that constrautslme a useful tool in
interactive systems. However, to achieve the desired fléyibf types controls and
simultaneous combinations, a new approach to using nuat@oastraints would be
needed.

2.2.2 Numerical Constraint Solving Techniques

Solving systems of linear equations for real numbers is g well studied problem.
Methods must address a wide variety of issues, includingision, stability, robust-
ness, and efficiency. An excellent introduction to the fislghiovided in the text by
Golub and van Loan [GL89]. Solving systems of non-linearstaints is much more
difficult. In fact, for an argument that no general guaradteethod can exist, see
Chapter 9 of Press et al.[PFTV86]. Generally, non-lineathmgs are designed for op-
timization, rather than equation solvingsood, general tutorials on optimization meth-
ods are given by the texts by Fletcher [Fle87] and Gill, Myiaad Wright [GMW81].
Some numerical methods operate like propagation methotisainthey operate
only on one constraint at a time. One example is relaxatioc$uccessively solves
each constraint. Relaxation has been used in several ear$jraint-based graphical
systems including ThingLab [Bor81] and Sketchpad [Sut8@}h relaxation, solving
a constraint may break previously solved ones. The protexsges over all the con-
straints until a solution is found, or the solver gives uph&tmethods that treat con-
straints individually include gradient (steepest) desead penalty methods, surveyed
by Platt [Pla92]. These simple methods do not work reliablydonstraint problems
and offer slow convergence even on problems that they de sdlve poor performance

IChapter 9 of Press et al.[PFTV86] explains why the two proislare not equivalent, and argues
why optimization is a more tractable problem.

2.2. CONSTRAINT SOLVING TECHNOLOGIES 31

of these simple solvers has discouraged many people framg nsimerical constraint
methods for interactive graphics.

An important class of equation solving and non-linear opation techniques op-
erate by solving a sequence of linear systems. These eratthods take a sequence
of steps (hopefully) converging on a solution. At each iierg a linear system is
solved to determine what step should be taken. Numericdysinaexts, such as
[PFTV86], introduce the basic varieties of these methott& Best known are Newton-
Raphson methods, which have been used in a number of conidiesied graphics sys-
tems including Juno [Nel85] and Converge [Sis91].

Methods that use linear system solving are susceptiblediolggms when the con-
straints are redundant, inconsistent, or ill-conditian&dtandard method to cope with
these problems is the technique known as regularizatiorampthg. The technique
will be discussed in Section 3.2.1, but briefly, it alters linear system by limiting
how much any particular equation can contribute to the smufThe method is the ba-
sis for the Levenberg-Marquardt method for solving nomdinequations [GMW81]. It
has also been applied to the animation of articulated figoyddaciejewski [Mac90],
and to the related problem of robotic control by Wampler [V8&in Damping methods
are equivalent to the robust pseudo-inverse techniqueskdiura [Nak91].

The “snakes” work of Kass et al.[KWT88] used numerical opzation to per-
form computer vision tasks. This work pioneered the use tifopation in interactive
graphical applications. The system permitted a user taetijrenanipulate curves by
resolving the optimization between each redraw. Useracteon is created by includ-
ing the user’s input as part of the optimization objectiveechnique that will be used
in Section 3.5.

It is possible to view the methods of this thesis as a form oflrear constrained
optimization solving in which each iteration is displayedthe user. Unlike most
solvers, the methods are more tuned towards generatingtriragectories towards
the goals, rather than getting to the goals as quickly asiges8ecause the user can
interact with the optimization process, a system can beaotsely guided out of local
minima. Mark Surles used a similar approach in his SCULPTesyg$Sur92a, Sur92c].
He used a different alternate Lagrange multiplier formatathan the one presented in
Section 3.2.

2.2.3 Physical Simulation

The computer graphics community is becoming increasinghrested in using tech-
niques of physical simulation for animation and modellirghysically-based mod-
elling and animation typically provide constraints in arde mimic the mechanical
and structural relationships found in the real world.

A simple method for implementing physical constraints isusing springs to at-
tach things together. This is called thenalty methodthecause broken constraints are

32 CHAPTER 2. RELATED WORK

penalized to pull them back to a solved state. To model mgié constraints, the stiff-
ness of the springs must be increased, making the equatiomstmn harder to solve
numerically. The penalty method and its problems are restiely Platt [Pla92].

Lagrangian dynamics provides a constraint method thavelemew equations of
motion for constrained objects. A standard text used todhice the methods is Gold-
stein [Gol80]. The methods effectively permit switchingateepresentation where the
constraints are implicit. Unfortunately, the methods arpassible to automate for gen-
eral cases as they require the ability to find algebraic mwlsato systems of non-linear
equations.

A method more applicable to computer graphics is the Lagramgjtiplier method.
In this method, constraints create reaction forces thatedamut any applied forces
that would cause the constraints to be broken. The consfi@ices are computed
by solving a system of linear equations. Constraint stadtibn methods, introduced
by Baumgarte [Bau72], also use the constraint forces tdinthe accumulation of
numerical error due to drift.

Methods derived from constraint stabilization have beeedusy the computer
graphics community to find initial solutions to constraiatswell as to simulate their
behavior. Barzel and Barr’s dynamic constraints [BB88] tingestabilization forces to
cause models to self assemble from various configuratidatt.a@d Barr's augmented
Lagrangian constraints for flexible surfaces [PB88b] alsed.constraint stabilization,
but attempted to avoid solving the linear system for the aage multipliers by esti-
mating them from previous values. In a later paper [Pla92}t Bxplains why this was
a bad idea, and provides a more standard Lagrange multg@igration of dynamic
constraints.

Issues in using the Lagrange multiplier and constraintilstabion methods in in-
teractive systems were discussed by Witkin, Gleicher anid\l8VGW90]. The sys-
tem of Witkin and Welch [WW290] used the basic methods of [WGW9Qjriavide an
interactive system for animating deformable objects. €heshniques evolved into
the differential methods of this thesis, first presenteddn\P1a] and [GW92]. For
the methods described here, constraint stabilizationasraplished by choosing con-
trollers that continually “go towards” a value, rather tisamply attempt to maintain a
constant value by creating a 0 derivative. This will be diésct in Section 6.3.

The animation system of Witkin and Welch [WW90] provided a nemdf inno-
vations that influenced the differential approach. Theeyspermitted specification
of objects’ mass distributions in order to control an obgedefault behavior, an idea
generalized into the use of metric definition in SectionB.Zhe system also presented
a predecessor to the controllers of the differential apgrodhe paper describes a vo-
cabulary of controllers used to describe animation by $pieg forces and impulses
on objects over time.

Non-interpenetration or collision constraints are a sgetyipe of physical con-
straint. They differ from other mechanical connectionshattthey are represented

2.2. CONSTRAINT SOLVING TECHNOLOGIES 33

by inequality rather than equality equations. Methods fonugating collisions were
first provided by Moore and Wilhelms [MW88] and Hahn [Hah88].a\Vid Baraff
has treated the physical simulation of collisions exteglgi{Bar92a], first introducing
methods that properly handle collision and contact of petirhl objects [Bar89], and
then extending this result to curved surfaces [Bar90],aa&$ with friction [Bar91a],
and deformable surfaces [BW92]. Gascuel [Gas93] providiisiom constraints for
other types of deformable objects.

As discussed in Section 1.2.2, the differential approachisthesis is a descendent
of previous work in physical simulation, discussed in [WGW30he differential ap-
proach can be viewed as a form of physical simulation whexevibrld has a different
set of laws than the real world. Rather than follow Newtofs ma laws of motion,
objects obey Aristotle’s = mwv. Objects move only when pushed, rather than having
inertia.

2.2.4 Inverse Kinematics and Dynamics

The problem of determining the configuration of parametecgiired to achieve de-
sired values of object attributes is called inverse kinérsatThe inverse kinematics
problem is important to robotics as it is used to compute gonditions of robots actua-
tors required to achieve needed end-effector positions.pfoblem is, therefore, well
studied, especially for the special case of most interesthotics: articulated figures.
An articulated figure is an object made of rigid links coneédby joints.

Basic robotics texts, such as those by Craig [Cra86] or FRau$1] present meth-
ods for solving inverse kinematic problems for articuldigdres. Craig splits solution
strategies into two broad classes, closed form solutiodshamerical solutions. His
text, like many others, dismisses numerical solutions dose of their iterative nature,
numerical solutions generally are much slower than theesponding closed form so-
lution; in fact, so much so that for most uses we are not coreckewith the numerical
approach.”

Inverse Kinematics techniques are becoming well known iwithe computer
graphics community. Commercial systems, such as Softif#@f@3] and Wavefront
[Wav94] now permit users to manipulate articulated figugepdsitioning their end ef-
fectors. Badler and et al.[BMW87] describe extensions todsded inverse kinematics
that permit positioning articulated figures by placing riplét constraints on them. Wel-
man [Wel93] surveys inverse kinematics methods and dissussw to interactively
position articulated figures using them.

More general methods for inverse kinematics use iterativaarical algorithms
to solve the non-linear equations. Nakamura presents su@pjproach in his text
[Nak91]. Nakamura’s techniques are very similar to thosthefifferential approach,
including his use of damping to handle singular systems.

Inverse dynamics, or robot control, is a related problemnieeise kinematics.

34 CHAPTER 2. RELATED WORK

Rather than solving for configurations, the methods deteerforces and torques re-
guired to achieve desired effects. Inverse dynamics hasdéqaored for use in com-
puter animation. Armstrong et al.JAGL87] and Wilhelms [/l present systems that
use inverse dynamics to aid in the animation of articulagparés. Issacs and Cohen’s
DYNAMO system [IC87] combines inverse dynamics with kin¢it&using a general
formulation that can handle objects other than articuléitrdes.

2.2.5 Numerical Methods for Interactive Graphics

As will be further discussed in Chapters 4 and 5, there arerakissues in employing
numerical techniques in interactive systems. The two magsare fast solving and
dynamic definition of the problems.

One issue in employing numerical computations in intevacsiystems is that the
derivatives of the functions representing constraintstto@somputed. While there are
several methods for computing derivatives, such as symddblicreating the equations
or estimating the values with finite differences, the methoidAutomatic Differentia-
tion have been shown by [Gri89] to be at least as efficient andrate. Anintroduction
to Automatic Differentiation provided by Iri [Iri91], and survey of tools is provided
by Juedes [Jue9l].

Research in Automatic Differentiation focusses on the bigaraent of compile time
tools for large problems [BGK93]. For computer graphicsigxnatic Differentiation
techniques were developed to operate on expression grapheitey represented in
program data structures, as will be discussed in Chapteh&sd& methods permit the
functions being differentiated to be dynamically definedn iAplementation of the
techniques was employed in the system built for SpacetimestCaints [WK88]. A
later system using the methods is Kass’ CONDOR [Kas92] wheimitted the user
to interactively specify constrained optimization probkeby direct manipulation of
expression graphs.

My implementation of Automatic Differentiation, called &mTogether Mathemat-
ics, encapsulated the methods into an application indegrendolkit and is discussed
in Chapter 5. The first version of Snap-Together Mathematers introduced as part
of work on interactive physical simulation [WGW290]. The first-€toolkit for Snap-
Together Mathematics was detailed in [GW91b]. Based on tipep Kaufman repro-
duced the system [Kau91]. A variant of the original Snapefbgr Mathematics was
used inside of the Briar drawing program (Section 9.1), araved into the current
implementation introduced in [GW93] and described in Chapte

The critical performance issue in most numerical constrai@thods is solving a
linear system, as discussed in Chapter 4. Exploiting dpatke fact that a matrix
contains many 0 elements, is a standard technique for spe#te solution of linear
systems. The text by Duff et al.[DER86] provides an intrdducto the techniques.
For the differential approach, the direct methods, likesthdiscussed Duff et al, are

2.3. GRAPHICS TOOLKITS 35

less appropriate than iterative methods. Detailed disons®f iterative methods, and
specifically the Conjugate-Gradient methods used in tieisifhare provided by [PS82]
and [She94].

Steven Sistare’s thesis describing Converge [Sis90] desvan analysis of the
performance issues in using numerical techniques in anaictige drawing system,
and includes methods for dynamically selecting linearesyssolvers and partition-
ing the constraint problems. Mark Surles’ work on intenaetinanipulation of protein
molecules extensively treated the performance issueduimgdhe linear systems in-
volved in solving the optimization problems [Sur92b, SwuPBecause his task was
to manipulate predefined models that had a very specifictateidis methods do ex-
tensive pre-analysis. The structure of the matrix founchi@ngistry problems permits
solutions with linear time complexity.

2.3 Graphics Toolkits

For a variety of reasons, constructing interactive appbos is an extremely difficult
task [Mye94]. In order to aid with this process, a varietyauils, surveyed in [Mye93],
have been developed. The most often used are graphicdbredoolkits.

Basic graphics toolkits, such as GL [Sil91], PHIGS [Com&B]d X [SG86], pro-
vide drawing primitives and basic elements for interagtgauch as events and windows.
Graphical interface toolkits support graphical applieasi by providing high level sup-
port for interaction techniques and graphical object managnt, aiming to insulate the
programmer from low level details such as window managem&much as possible.
Such toolkits have become a part of the construction of almbgraphical applica-
tions. However, most toolkits leave the majority of the woflgraphical editing to the
applications programmer.

Some research tools, such as ArtKit [HHN90], Garnet [M@D] and Coral [SM88]
provide support for graphical editing in addition to the mtypical buttons and sliders.
Tools specifically designed to support 2D graphical editoctude Unidraw [VL89],
ArtKit [HHN90], MEL [Hil91] and GRANDMA [Rub91]. Rendezvos [HBP"93] is
specifically designed for creating multi-user graphicatied applications. All of these
tools provide mechanisms for creating direct manipulatiparations.

More recently, toolkits have been developed to support 3plgcal applications
at a higher level than low level graphics packages such asr®HUGS. Such toolkits
are almost always object oriented, and provide high levstrabtions of interaction
techniques. Examples of such toolkits include MR [SLGS8R]}entor [SC92], UGA
[CSH™92], BAGS [ZCW"91], Alice [PT94], VB2 [GBT93], and GROOP [KW93].

Many of the toolkits mentioned contain support for advanoéeiface techniques,
such as ArtKit's snapping, GRANDMA's gesture recognitiam,Inventor’s 3D ma-
nipulators. However, no previous high-level toolkits p®/non-linear constraints or

36 CHAPTER 2. RELATED WORK

interaction techniques for both 2D and 3D applications.ikaiy, many user interface
toolkits use constraint techniques to help programmersl lntieractive applications,
as discussed in Section 2.1.2. In all cases, constraintadetire limited to propaga-
tion, and the focus is on abstractions to help programmetsyecessarily to provide
constraints to the users.

Providing an embedded interpreter in an interactive appba is not an uncom-
mon technique. The utility of such extension languagesssigised in [BG88], which
describes the success of the EMACS editor. Graphics tgolitich center around
such interpreters include Tk [Ous91], MR [SLGS92], Alicd 2], UGA [CSH'92],
and ezd [Bar91b].

Previous toolkits have attempted to aid in the developmérnmteraction tech-
niques, and their incorporation into systems. For exantpdenet provides a basic set
of interactors [Mye90] from which more complex behaviora b& constructed. UGA
[CSHT92] and Alice [PT94] allow prototyping 3D interaction tedtues procedurally.
GITS [OA90] defines interaction techniques with constigihbwever it is limited to
the design of 2D widgets and it precompiles constraint gmhst In [ZHR93], inter-
action techniques are interactively linked together in @st@int-like fashion to build
more complex 3D widgets.

2.4 Interaction Techniques and Applications

Development of 3D interaction techniques was a major mbtiador the differential
approach and is the source of most of the examples in thesthesi

2.4.1 Manipulating 3D Objects

Sketchpad’s 3D successor, Sketchpad 11l [Joh63], intredwgraphical manipulation
of 3D objects and first faced the issues of manipulating 3@abjwith 2D pointing
devices. Since then, many researchers have explored tlesis€atalogs of interac-
tion methods are provided by Evans et al.[ETW81], Nielson @skn [NO86] and
Osborn and Agogino [OA92]. The problem of specifying a 3Matimn using a mouse
has received close attention, such as the work of Chen eNEB8] and Shoemake
[Sho92]. Techniques which rotate and translate objectgusiferences to other points
of interest in the scene are explored by Bier [Bie86] and 9Bje Methods based on
interactions between pairs of objects are provided by [@&n9

In order to make interfaces easier to learn and use, desigrptore how to make
them self-revealing. Houde [Hou92] considers iconic haa@nd movements based
on the objects’ meanings. 3D Widgets [C832] use graphical objects which disclose
potential behavior in the same view as the objects they nudatg. The authors have
subsequently built an interactive tool for rapidly profaityg these widgets [ZHRO3].

2.4. INTERACTION TECHNIQUES AND APPLICATIONS 37

Inventor [SC92] is a popular toolkit for constructing 3D &pations that employ a
widget style interface.

2.4.2 Controlling Virtual Cameras

The problem of specifying a viewing transformation or vatteamera configuration
is an important problem for 3D graphics. This work deservestion here not only
because it is a problem to which the differential approadhb&iapplied to yield inter-
esting results (Section 8.1.4), but also because the wpikdyg the general problems
that the differential approach is designed to address.

Most camera formulations are built on a common underlyingehor perspective
projection under which any 3-D view is fully specified by gigithe center of projec-
tion, the view plane, and the clipping volume. Within thiarfrework, camera models
differ in the way the view specification is parameterizede3éparameterizations are
typically designed to provide controls that are useful fitiner interaction or interpo-
lation.

Much of the work on interactive camera placement in compgtaphics has
been concerned with direct control of these standard pdemmeSeveral researchers
have addressed the problem through the use of 3-D interfasd#ading six degree-
of-freedom pointing devices [WO90, TBGT91, BMB86] and mopedalized de-
vices such as steerable treadmills [Bro86]. Issues ingbiveusing the standard
LOOKAT/LOOKFROM model to navigate virtual spaces are cdesed by [MCR90].
In [DGZ92], the LOOKAT/LOOKFROM model is embedded in a prdaeal language
for specifying camera motions.

The difficulty with using camera parameters directly as paatis that no single
parameterization can serve all needs. For example, soegitns more convenient
to express camera orientation in terms of azimuth, elenatia tilt, and other times
in terms of a direction vector. These particular alterregiare common enough to be
widely available, but others are not. A good example inveltfee problem, addressed
by Blinn [BIli88b] of portraying a spacecratft flying by a plan&linn derives several
special-purpose transformations that allow the imageepasitions of the spacecraft
and planet to be specified and solved for the camera positlueneed for this kind of
specialized control arises frequently, but we would rati@rderive and code special-
ized transformations each time it does. The differentigrapch permits using these
interaction techniques without deriving the inverse tfamsations.

Registering graphical objects and a real image by recogeamera parameters is
considered in Section 8.2.4. Problems involving the reppwé camera parameters
from image measurements have been addressed in photoghg/memputer vision,
and robotics. All of these are concerned with the recoveryanameter values, rather
than time derivatives. Algebraic solutions to specific peafs of this kind are given

2Also see chapter 6 of [Sch59] for amazing mechanical soistio photogrammetry problems.

38 CHAPTER 2. RELATED WORK

in [Mof59] and [Gan84], while numerical solutions are dissed in [Low80, Gen79,
McG89]. In [TTA91], constrained optimization is employedgdosition a real camera,
mounted on a robot arm, for the purpose of object recogniti@ttors considered in
the optimization include depth of field, occlusion, and imagsolution. The use of
constrained optimization for camera placement in animat@roposed by Witkin et
al.[WKTF88].

2.4.3 Controlling Lighting and Surface Properties

Shadows play a particularly important role in 3d images. yTtentribute greatly to
viewers’ abilities to perceive depth [Wan92]. Techniquasdisplaying special cases
of shadows can be implemented in real time on graphics watiksts [Bli88a, Hud92],
and the most sophisticated graphics hardware is even apbthtawing more general
shadows in real time [SKvWO2].

Controlling scene parameters by directly manipulatingilination effects has been
explored by several researchers. A desire for appearaasmdbmanipulation is ex-
pressed in [VWJB85]. Poulin and Fournier [PF92] describbrigpies for positioning
light sources by specifying the positions of specular higjtts and shadows. Dragging
drop shadows on the floor and walls is used to position objedtdZR*92]. Hanra-
han and Haeberli [HH90] discuss techniques which allowsigepaint on images and
have the surface’s colors updated appropriately. Painiitly Light [SDS"93] per-
mitted controlling intensities of light sources in a simifashion. Kawai, Painter and
Cohen’s Radioptimization [KPC93] permitted controllingHt sources by specifying
the desired lighting on various surfaces. The methods usedstrained optimization
on the results of a radiosity computation.

The science is in the technique, all the rest is just com-
mentary.
— Allen Newell
SCS Distinguished Lecture, Dec, 1991

Chapter 3

Differential Techniques

This chapter introduces the basic techniques required pdeiment the differential
approach. We begin by reviewing how graphical manipulatan be viewed as an
equation solving problem. To solve these equations difiteaty, we will solve a con-
strained optimization that computes rates of change ofah@peters given the desired
rates of change of the controls. Basic methods for solviegdloptimizations will be
discussed.

Constrained optimization computes the rate of change doblarameters. To
determine the objects’ trajectories, an ordinary difféiedrequation (ODE) must be
solved from an initial boundary value. Some of the basicassa solving such equa-
tions as well as some methods will be introduced.

Additional flexibility is provided by adding additional @ into the constrained
optimization problems. This is used to provide default véira for objects and to
permit the creation of soft controls that can be used to esspeeferences.

The chapter concludes with an alternate solving methodtwifices generality for
simplicity, a simple example worked through in detail, arsienmary of the symbols
and methods discussed. The subsequent chapters descnlibdse methods can be
implemented in an efficient and flexible manner.

3.1 The Differential Optimization Problem

In the introduction, the basic notion of treating graphitanipulation as an equation
solving problem was introduced. We control graphical otsjey specifying what hap-
pens to the values of selected attributes called contrdiesd controls are defined by
functions,

p= f(q), (3 1)

whereq is the state vector of the objectsis the vector of values of the controls, aind
is the function that defines the controls. A full table of alitilematical symbols used
in this chapter is provided on page 62.

39

40 CHAPTER 3. DIFFERENTIAL TECHNIQUES

As was discussed in Section 1.1.5, itis not practical toesBlguation 3.1 fog given
p. Instead, we take a differential approach to the problendeasribed in Section 1.2.
Rather than specifying values for the controls, we will sfydwow they are changing
over time. At particular instants in time, we compute howstate vector must change
in order to achieve the desired changes in the controls.

Given a particular instant in time, the value for the stateteeat that instantq),
and the desired values for the rate of change for the cor{jsd/sve must compute the
necessary rate of change of the state vegjor{Ve call this problem thélifferential
optimization Since the value for the state and the control function arergiwe also
know the value of the controls at the instant the optimizatsoto be solved.

Our need to deal with the time derivatives of the controls state variables leads
us to take the derivatives of each side of Equation 3.1 talyiel

. dp _ df(q)
b= = (3.2)
Applying the chain rule yields
. of dq
b= %E (3.3)

For the general case of a vector of control functions, thevdgve is a matrix called
the Jacobianwhich is the matrixof /0q and is denoted by. Using this notation, we
get

p=1Jq. (3.4)

Like the controls themselves, the Jacobiais a function of the state variables.
The matrix of functions that compute the elements of the Jiacocan be determined
by differentiating the control functions with respect te thariables. Since the values
for the state variables are given, the value of the Jacobiaffactively given as well.
Methods for computing the Jacobian efficiently will be dissed in Section 5.2, but
for now, we simply assume we have some method to compute tobida from the
variables, and treat is as if it were a given as well.

Sincel is a known matrix, Equation 3.4 idiaear equation, even thoughis a non-
linear function ofg. The differential approach has replaced the multi-dimamedinon-
linear root-finding problem with a linear system and an cadyrdifferential equation.
Unlike non-linear equations, for which good solving teciugs are unlikely to exist,
linear systems are relatively easy to solve.

3.1.1 Underdetermined Cases

Unless enough controls are specified to uniquely determis@wgion, Equation 3.4
will be underdetermined. There will be many possible waysth@ state vector to
change to achieve the desired changes in the controls. Assdied in Section 1.1, the
system must select one of the ways for things to change. Weusesome heuristic to

3.2. SOLVING THE DIFFERENTIAL OPTIMIZATION 41

pick a solution, because we lack any information as to whagssred. The rule chosen
for the differential approach is to minimize the amount tiha@t configuration changes,
or, more precisely, to minimize the rate of change of the goméition. That is, if the

user’s controls don’t ask for something to change, the aysteould avoid changing it.
This leaves open a variety of ways to measure change thabevékplored in Section
3.4. Since the rate of change of the configuration will be edirfunction of the rate
of change of the variables, its magnitude will be a quadfatiction, which we denote
by g.

When the linear system of Equation 3.4 does not uniquely ohétexq , it provides
constraints on its possible value. To determine the pdatimalue ofg, we must solve
the problem

minimize F = ¢(q) subjecttop = Jq. (3.5)

That is, we have cast the problem as a constrained optimizatiinimize the value of

a quadratic objective function @f subject to the linear constraints that the controls are
met. In the following sections, we discuss solution methagisg standard techniques
that meet the needs of differential manipulation.

3.2 Solving the Differential Optimization

The linear/quadratic constrained optimization problemesaastandard class of prob-
lems for which a wide range of techniques have been develdpedd surveys can be
found in texts such as [FIe87] and [GMW8L1]. A standard techei$ the Lagrange
multiplier method. A form of it is reviewed here for use in tti€ferential approach.

To begin, we consider minimizing a specific quadratic olyectunction, simply
minimizing one half the magnitude gfsquared. The value @fthat minimizes that is
the same value that minimizes the magnitudg.of he specific constrained optimiza-
tion problem we consider in this section is then

1
minimize £ = 5(('1 -q) subjecttop = Jq. (3.6)

We will consider the general case of quadratic objectivesaation 3.4.

To provide an intuition for how Lagrange multiplier methadsrk, consider an ex-
tremely simple case: a particle in 2 dimensions, with itsestapresented as its Carte-
sian coordinatesy = {z, y}. We will place a control on the particle that is its distance
to the origin,p = f(q) = z* + y*. Suppose we specifyto be 1.

As shown in Figure 3.1, there are many possible valuesyfahich achieve the
desired value fop. In this case, it is clear to see that the one with smallest iadg
is the one which is in the same direction as the gradierft 8ihy component ofy not
along this line will not be helping to achieve the desiredtome. We can therefore
restrictq to be some multiple of the gradient, thatdscan be expressed as a scaling
factor times the gradient. This scaling factor is calledlthgrange Multiplier.

42 CHAPTER 3. DIFFERENTIAL TECHNIQUES

v

Figure 3.1: A point on the plane with a radial control. Many possible eslwfq will yield
the desired value gf. The one with least magnitude has the same direction as tdéegtaf

f

If there were multiple controls, each would make a contidouto . For each
control, the contribution is some multiple of its gradievife therefore have a vector of
Lagrange multipliers, which we denote Ayq is determined by the linear combination
JTA.

More formally, to be a solution to the constrained minimiaatproblem,q must
satisfy two criteria. Firstgq must satisfy the linear constraints, given by Equation 3.4.
Secondlyg must minimizeE’ as much as possible, subject to the constraints. In the case
of an unconstrained minimization, we would require thatgrediento £ /dq vanish,
meaning that there is no direction to charigéhat would result in a lesser value for
E. With constraints, there might be a way to chargéo further minimizeFE, but
only if these changes are prohibited by the constraintst iBh# the gradient of the
objective function is not zero, it must lie in the row spacehs constraint gradients.
This requirement is expressed by defining the objectivetiongradient to be a linear
combination of the constraint gradients,

oF T
3 JA, (3.7)
for some value oA. The vector\ is an intermediate result which we call thagrange
multipliers.
In the case of the simple objective function of Equation 816,gradientFE /dq is
simply q, giving
qg=J"x. (3.8)

Substituting this into Equation 3.4, gives
p=JITX, (3.9)

a linear system which can be solved for its one unknadnThis intermediate result
can be substituted back into Equation 3.8 to yield the deginal result,q.

3.2. SOLVING THE DIFFERENTIAL OPTIMIZATION 43

3.2.1 Over-determined Cases

To this point, we have focussed on techniques that handtases where an insufficient
set of controls are specified to uniquely determine a salutie now must consider
the problem of handling cases where too many controls spiagfsolution. Such cases
may involve redundant controls, where multiple controlspécify the same solution,
or conflicts, where there are no solutions to all of the cdstro

Conflicting controls are obviously a problem as there is not&m which will meet
the controls. However, redundant controls manifest thérasan exactly the same
way. Consider a system subject to two identical contgeleind p,. The net result
should be that; moves in the manner specified. Bits created by the sum of the
contributions of; andp,. How much does each contribute? Dgeggontribute a little
andp, alot? Doe9);, contribute a huge positive amount gidh huge negative amount?

When controls are over-specified, whether their values abofinot, they cause the
Lagrange multipliers to be under-specified. The makdixwill be singular. Redundant
or conflicting controls are inevitable, and are notoriounsyd to detect. It is important
that our solution method be robust in the face of these samgigls, and that it will do
something reasonable with conflicts.

One approach to handling the over-constrained cases wetuto &mploy a linear
system solver which could handle Equation 3.9 even when #itebms singular. For
example, singular value decomposition (SVD) [PFTV86] ddug used. The SVD has
many attractive properties, for example it provides infation as to which controls are
redundant. Unfortunately, SVD is expensive to compute olmtr@ast, if we can restrict
the problem so that the solver only needs to solve non-sangyktems, we can exploit
this property to solve them efficiently, as will be discusse@hapter 4.

Rather than force the solver to handle singular matriceswillenstead modify
the matrices so that they have a unique solution. We will mbiag exact solution to
the original linear system, but we are trading accuracyrfgsroved behavior in bad
cases. Because we are interested in interaction, rathehtgh accuracy quantitative
methods, we will make such tradeoffs often, as discussédduin Section 4.5.

The technique for making the matrices non-singular is dalEemping. The basic
intuition is that we generally prefer to avoid large valuessthe Lagrange multipliers,
therefore, in cases where the Lagrange multipliers aretendened, we should min-
imize their magnitude. The derivation here most closeliofes that of Nakamura’s
derivation of a robust pseudo-inverse [Nak91].

In cases where the controls are over-determined, the swlienot be able to
achieve all the desired values for them. Instead, we muie et getting as close
as possible, that is, to satisfy them in a least squares séasimd Lagrange multipli-
ers that achieve this minimum, we minimizg2(J”X — q) - (J*X — q), In addition,
we would like to minimize the magnitude af, although since this is not as important,
we can scale this term by a small amount, which we will palThe function we wish

44 CHAPTER 3. DIFFERENTIAL TECHNIQUES

to minimize is .
E=S(TA=a)- (J'A =)+ n(A-A). (3.10)

The minimum of this quadratic is found by differentiatinglmespect to\, and setting
that equal to 0, yielding
0=JI"X—Jq+ pIX, (3.11)

wherel is the identity matrix. Recalling Equation 3.4, a little reamgement yields
p=(JT" + DA, (3.12)

a variant of Equation 3.9 which has small amounts added tditdgonal of the matrix.

Rather than having a single scaling factor for the magnitfdée vector of La-
grange multipliers, we could have an individual one for e@adividual multiplier. This
would enable damping selectively, or to damp some controlerthan others. Selec-
tive damping allows the creation a a limited constraint dvieiny: if two constraints
conflict, and one is damped but the other is not, the undamgestraint will domi-
nate the damped one. When two conflicting controls are botlpddntheir effects are
blended. By individually adjusting their damping valude tontrols can be weighted.
The larger the damping value, the less weight the contrelives.

The damping technique presented here has three major drksviairst, it penal-
izes large values of the multipliers whether they are ureterdhined or not. This can
cause a problem when the multipliers legitimately need tatgge to satisfy the desired
controls. Secondly, damping is applied whether there anflictng controls or not.
Finally, it introduces a new dimensionless paramgteBecause it has no real mean-
ing to the original problem, values for it are difficult to denine. For the differential
approach, damping values must be determined empirically.

3.3 Solving the Differential Equation

The methods of the previous section permit us to computeatss of change of the
state vector. We now consider how to use the rates to find ajectories of the con-
figurations over time. We must solve the problem of computiregtrajectory of the
state given its initial value and time derivatives, a prablaf solving an ordinary dif-
ferential equation (ODE) from an initial boundary conditiddere, we provide a brief
introduction to handling this problem in the context of thiéedential approach. For a
more complete, but still practical, introduction to ODEwgan methods, see Chapter
15 of [PFTV86].

The value ofg is actually is a function of time, defined by a function thatnputes
its time derivative. The form that we have this function dedinn is

q="1f'(q,1), (3.13)

3.3. SOLVING THE DIFFERENTIAL EQUATION 45

wheref’ is found by solving the differential optimization. Giveretiialue forq (which
corresponds te(t) for some timet), we can computé . This is a standard form for
an ODE.

For the types of problems we encounter with the differerg@droach, we cannot
solve the ODE in closed form. Instead, we must solve it nucadlyi by discretizing
time into a series of small steps. In computing a step, tHevidhg problem must be
solved: given the state at the current tig€,), find the state at some time in the future,
q(t+At). The time derivativej (i.e. the result of the differential optimization) does not
directly provide the solution to this problem. It only sdexs how the state is changing
at the instant that it is computed. The problem of updatirgdtiate given the ability
to find its time derivatives is solving an ordinary differehtequation from an initial
boundary condition.

Solving the ODE is difficult because when we perform an ewadado find g for
a particularg , we are only finding out about a particular instant in time . Nege no
information about the futurey might remain constant for the duration of the step, but
it might also change drastically over the course of the step.

The simplest method for solving an ODE is to fidt the beginning of the step
and assume it remains constant over the course of the stepisTknown as Euler’s
Method, and has the simple update rule of

alt + At) = q(t) + Atg(t). (3.14)

Euler’s method approximategt) with as a piecewise linear function. The size of each
piece is the step size. If the step is too large, the apprdiomevill not be good. Notice
that each step requires computing a nghy solving the differential optimization.

To understand what is meant by “good” in ODE solving withie ttontext of the
differential approach, consider a simple example. Oncéagae will use a point in
the plane, however, this time, we will select a control teats angular position about
the origin. Suppose we provide a desired velocity for thistid of 1 unit per unit
time, the starting configuration has the point a unit distaineam the origin along the
positivez axis, and the specified derivative always points tangefgaircle. As time
progresses, we will expect the point to move around themiiga circular path.

If an Euler’s method ODE solver is applied to this example,ghoblems of ODE
solving are quickly apparent. At the initial position on thexis, the gradient of the
control points vertically. Any step in this direction wigéd the point off the circle itis
expected to follow around. As more and more steps are takemdint will continue
to spiral away from the circle, speeding off the page, as shiaWrigure 3.2.

Because of error in approximation, the point spirals outivarer time. However,
if smaller step sizes are taken, the behavior is better. iSh#te point spirals outward
more slowly, better approximating the expected circle sisishown in Figure 3.3. In
fact, by going more slowly, we may reach a desired destinatiore quickly because
we are less likely to overshoot or drift away from the targ&oing slowly can be

46 CHAPTER 3. DIFFERENTIAL TECHNIQUES

T

Figure 3.2: A point on the plane with a control that drives it tangent tdrale around the
origin. Although it should (ideally) travel in a circular g ODE solver error causes it to spiral
off the page.

RRATA

Figure 3.3: A pointis pushed in a direction tangent to a circle about tigim, using an Euler
ODE solver and various step sizes. In all cases, the poirdls@way from the target circle,
although with small step sizes, the point tracks the cirelid.

accomplished two ways, either by reducing the duration efstiep or by reducing the
velocities.

In solving the ODE, there is effectively a speed limit. If dojext attemptsto change
faster than this, it may speed out of control or even missatidation entirely. For
a given velocity, solving can be made more stable by reduthiegstep size, in the
limit of infinitesimally small step sizes, ODE solving wilelexactly correct. However,
since each step may require significant computation, thebeuthat can be executed
is limited. Alternatively, this speed limit can be viewedtiwa constant step size: for
a given step size, how fast can an object go without becomsgable. If we think
of steps as taking some fixed amount of time to compute, thnstates directly to an
apparent velocity in the image.

The speed limit given by ODE solving varies according to a benof factors.
Most significantly, it depends on the path that the objedts.tarhe more non-linear
the function is, the more poorly the linear approximatiofi fiti it. At the extreme,
if an object is truly moving in a line, Euler’'s method achisube exact motion, and
there is no speed limit. In a sense, the speed limit can beadas a restriction on the
types of controls used to define the motion: given that the sitee is fixed, how badly
non-linear a control can be used and still have the objectenaba reasonable rate.

3.3. SOLVING THE DIFFERENTIAL EQUATION a7

If we take smaller steps to achieve better performance, \gatase multiple ODE
solver steps for each redraw. For example, if we would likengontain 10 frames per
second and updating the image or solving the differentih@pation takes 30ms, we
might use two Euler steps between redraws. As we will see ap@n 4, typically the
differential optimization is the most time consuming pdrtte process, and becomes
more so as the problems grow larger. With a faster compietjrne to compute each
step will be decreased, so more steps can be computed pawrefectively raising
the speed limit.

Using multiple samples per step is what is calfedlti-step solving.We might
phrase the problem as follows: the starting poirarfdq(¢)), computeq(t + At) as
well as possible using samples. Using two Euler steps has- 2, and uses a 2 piece
piecewise linear approximation.

Given that we have some number of samples that we can maketép axe can
consider how to best use these samples to approxiqiateFor example, if we can
take 2 samples, we might use a 2 piece linear approximatitakyg two Euler steps.
Alternatively, we might use these same two samples to fit aljmda. This would be
called a2nd-ordermethod. The particular case of a parabola is simple to ¢remtee
a parabola has a linear function for its derivative. Thidfieatively done by using the
initial step as a trial step, evaluating the derivative & point, and using this for the
duration of the step. This is called th@dpoint methoar the 2nd-order Runge-Kutta
method. It is applied to the example problem in Figure 3.4.

According to Press et al.[PFTV86], the most popular mukpsnethod is the 4th-
order Runge-Kutta method. As implied by the name, it usesaduations per step.
According to the literature, this method is generally paree to be superior to higher
order methods. The 4th order Runge Kutta method has beemndferned solver for
the prototype implementations in this thesis.

A higher order method is only better than taking a larger neind$ lower order
stepsifit provides a higher speed limit for the same numbevaluations. This will, of
course, depend on the problem to be solved. However, inipeatie 4th-order Runge-
Kutta method seems to be a good method for implementing ffexehtial approach.
Empirically, it usually performs at least as well, but soimets substantially better, than
taking 4 small Euler steps, or 2 Runge-Kutta 2 steps.

There are many other multi-step methods. Predictor-Caréechniques [PFTV86]
are another popular strategy. Such methods use past stepsiiot future values and
then correct for the error of the prediction. However, thesghods are difficult to
apply in dynamic settings because the dynamic nature of thiglggms make it diffi-
cult to maintain a history to use in prediction. Often, theik be no history so some
technique like Runge-Kutta will be needed to start the pgsce

For the prototype implementations of this thesis, fourtteoiRunge-Kutta and Eu-
ler's methods solvers are used.

48 CHAPTER 3. DIFFERENTIAL TECHNIQUES

Figure 3.4: Left, a second order Runge-Kutta method, and right, an Buieethod are used
in the example problem of Figure 3.2. The evaluations usethbyRunge-Kutta solver are
shown in grey. Notice how the Runge-Kutta solver stays clas¢he circle using the same
number of evaluations as the Euler solver.

3.3.1 Adaptive Step-Sizes

So far, we have considered solving an ODE with fixed step siregead, we might
consider adapting the step size to the problem. When a steqads, it could be checked
to see how good it was. If it caused an unacceptably large ahaderror, it could be
redone with a smaller step size. Adaptive step size methads the advantage that
they can slow down to accurately handle problems when thegrbe difficult. Also,
because they check their results, they are less likely teechad errors.

Adaptive step size methods have some severe drawbacks whdmith the dif-
ferential approach. The most significant problem is thay tire continually adjusting
the step size which alters the amount of computation requoeadvance simulation
time a specified amount. If the computation rates are fixezlaiparent velocities of
objects will fluctuate. This can be disconcerting to the .ua&so, the extra evaluations
to perform checks and computing alternate steps might tertsgtent on making more
steps since error correction is built into the controls,@#mwllers can adjust their val-
ues in response to what is happening as will be discussecdtioS&.3. For example,
in the example of the previous section, if the user reallgdabout the point staying
on the circle, an additional control that maintained thisigdde used.

The differential approach provides some interesting ojppaties for employing
adaptive step sizes. Standard methods for ODE solving ttneaéquation as a black

3.4. GENERALIZED OBJECTIVE FUNCTIONS 49

box, that is they cannot get any information about the probd¢her than asking for
evaluations ofy . Standard adaptive ODE solvers employ methods such agttien
same step with a higher order method to compare with.

With the differential approach, we have more informationaththe problem we
are solving. In particular, the functions that define thetaus provide measures of
error. For example, if a controller is meant to keep a corral particular value, at the
end of the step it can be checked to insure that the contratdiashanged too much.
Each different control might have its own way of defining waatacceptable amount
of error is. | call thissemantic adaptatiobecause it adapts based on the meaning of
the problem. | have experimented with some simple semadéptation of step size,
simply reducing the step size when a control has a valuehibatytstem finds unaccept-
able. The method works as follows: a certain set of contn@s@onitored. When a
step is computed, the monitored controls are examinedyleaneed a specified error
limit, the step size is shortened.

A different type of semantic adaptation is to use a diffeep when problems
occur. One useful variant of this is the cleanup step. In gufiegtion like constraint-
based drawing or mechanism simulation, there is typicaliyes small number of con-
trols that cause motion and a potentially larger number riyatesent constraints. A
cleanup step is an extra step that is run only with the coingsralt is used when the
pulling controls have broken the other constraints to calism to get back to their
desired configuration.

3.4 Generalized Objective Functions

The optimization objective determines which solution Wwélgiven in under-determined
cases. By selecting different optimization objective$fedent default behaviors can
be given to objects. To this point, we have only consider gutemozation objective:
one half the magnitude of the state vector derivative sguaréis section considers
other objective functions.

The types of default behavior that we consider in the Diffiéied Approach can be
summarized by the idea that objects should not change umle®strol causes them to
change, and that when an object changes to achieve whatdgiegpdy a control, it
should do so by changing as little as possible. By altering Wwe measure change, we
can control the default behavior or feel of an object. Forxamgple, consider manip-
ulating a line segment by moving one of its points, as showsigare 3.5. Depending
on the metric of change, the line segment will behave diffédye In all cases, the line
segment achieves what is specified by the controls. Howbyesglecting an appro-
priate metric, the programmer can create a desirable défab&vior. An appropriate
metric is not essential since if there was something thainvpsrtant, it could be spec-
ified with a control. But, properly defined objectives carealhte the need for extra

50 CHAPTER 3. DIFFERENTIAL TECHNIQUES

(a) (b) (c)

Figure 3.5: A line segment is dragged by controls that specify the pmsitif the upper point.
Different objective functions provide different behador) change in length and orientation
are minimized; b) change in the position of the center is minéd; ¢) change in the position
of the lower point is minimized.

specifications.

The simplest metric of change is the magnitude of the ratbafge of state vector,
g, as was used in Section 3.2. This simple objective has beshugsto this point, and
is sufficient for a wide variety of applications. It has a dbaek: it causes the param-
eterization to affect the behavior of the object. Using theameterization violates the
goal of separating manipulation from representation. Esieple decisions, such as
whether to represent an angle by degrees or radians, can affeobject’s behavior
[Wit89a]. This may be a serious problem, or an opportunityméans that we can
choose which interactive behavior we would like by cargfahioosing the representa-
tion. However, if we are not careful about choosing the re@ngation, we might get a
less desirable behavior. The severity of this problem igdid) because the user could
always provide additional controls if they really cared whappened.

3.4.1 The Metric

In order to spare the user the increased effort of more camiplepecifying their intent,
and to give programmers more freedom to select represensdtiat are convenient,
we must use a different objective function. Rather than mn@&ag change in values of
the parameters, we could measure change in something thavtldepend as closely
on the representation. We have used the functions that denofjects’ attributes to
serve as controls that are independent of representationlaBy, we prefer to define
an object’s metric in terms of its attribute functions aslw@le select a subset of the
attributes to define the metric. Just as we denote the subtet attributes that serve
as the controls &s we will denote the function used to define the metrigywhich is
also a function ofj. We denote the Jacobidg/dq by G.

The optimization objective will be to minimize the magnieudf the change in the
attributes. This rate of change is

g = Gq. (3.15)

Since we are searching for the minimum, we can minimizethe sum of squares of

3.4. GENERALIZED OBJECTIVE FUNCTIONS 51

g, rather than the magnitude. Since we might wish to emphasine ®f the attributes
more than others, we also introduce a scaling factor for éachake the objective a
weighted sum of squares. Writing the scaling factors as thgothal elements of a
matrix for notational convenience, the objective funcii®n

1
E = 5qTGTSGq, (3.16)

We will call the matrix that defines this quadrati® (SG) term themetric because it
defines a way to measuég

The simple objective function of Section 3.2 used the patare@f the objects as
the attributes that defined the metric. Simce- g, G = | andM also is the identity
matrix. Viewed this way, the advantage of using a correctimean be seen. The
identity metric defines the behavior of the object in termgsoparameters, rather than
in terms of something that is potentially meaningful to tiseru

A Particularly Useful Metric

The metric provides a method for an interface designer tedefidefault behavior for
an object. In effect, it allows for hand-tuning the behavi@t a user sees when the ob-
ject is manipulated. However, this leaves the problem tmairiterface designer must
hand-tune the behavior in order to hide effects of the pararzation. Often, this is
not an issue, as the parameters provide a reasonable dethalior, or, if a specific
behavior is required, it can serve to describe a metric. Hewesome applications
demand an automatic method for determining a metric thatigggs a consistent, pa-
rameterization independent, feel for a variety of objeStsch a method is particularly
useful in cases where a user may define object behavior. Ang@eds the parametric
curve manipulation of Section 8.1.1 and Section 9.4.

An analogy to physics provides an automatic, consistenticfer a broad class of
objects. As first suggested by Witkin [Wit89b], we can imagan object as a physi-
cal entity with an uniform mass distribution. In effect, wancview each pixel of the
object as an atom, each with a tiny bit of mass. This masshlision defines how the
object changes as forces are applied in particular planestid causes each particle to
move as little as possible. The mass distribution servdseasetric does, defining the
behavior of objects in response to controls. Witkin and W¢WwW90] used specifi-
cation of the mass distribution to allow animators to spethe the default behaviors
of simulated objects that were acted upon by point controls.

When solving the equations of motion of a physical object inegalized coordi-
nates in order to simulate it, the mass distribution is erdadto a matrix known as
the inertia tensor or mass matrix [Gol80]. This matrix isrfidby accounting for the
effects of each particle on the objects’ behavior by integgeover the mass distribu-
tion. When such a matrix is determined numerically, the irgkig approximated by
sampling a set of particles.

52 CHAPTER 3. DIFFERENTIAL TECHNIQUES

Analogously, a metric can be defined by viewing a graphicg@ailas a collection
of “particles” and minimizing the motion of these particlés practice, the distribution
is estimated by a set of points. We define the metric functiorise the positions of
an evenly spaced set of points on the object. We call such acntieé mass matrix
because of its physical analog.

The mass matrix is an important metric because it can be defintependently
of the object. For any graphical object, a set of points caavaaly distributed either
along its length (for a curve) or within its area (if it is st)li Section 8.1.1 will illustrate
the utility of this, allowing default behavior to be autoncatly provided for a wide
variety of objects.

3.4.2 Solving the Generalized Quadratic Objective

Using a different quadratic optimization objective regsima slightly different set of
methods for solving the constrained optimization problemshis section, we derive
the method in its full generality for the case of any quadrabjective function and
linear constraints.

The standard form of a vector quadratic equation is

1
E= 5XTMX +bTx +E, (3.17)

wherex is the vector parameteg for this chapter)M is the quadratic or matrix term,
the vectorb is the linear term, and is a scalar constant. Since we are not interested
in the value itself, but rather only the valuexthat minimizes it, we can ignore the
constant as it goes away when we take the gradient, and we w#plynthe quadratic
by 1/2 as it cancels out other values later, simplifying the equesti The linear term
permits measuring change from a point other than 0, and wilided in Section 3.5.
The methods of Section 3.2 solve the special case of thistgewith an identity
matrix for M, and O for the linear componeht

The Lagrange multiplier derivation can again be applied,ttme to Equation 3.17.
We denote the linear constraints Ax = a. We require the gradient of the objective
function to be a linear combination of the of the constraints

oF

A = Mx - bx = AT (3.18)

Solving this forx and denoting the inverse of the methE ! by W, gives
x = WATX — Wh. (3.19)
Inserting this into the constraint equatidrx = a gives

AWATX = a + AWD, (3.20)

3.4. GENERALIZED OBJECTIVE FUNCTIONS 53

a linear system that can be solved farOnce is computed, it can be inserted into
Equation 3.19 to compute

The damping techniques of Section 3.2.1 are not taken irdoust by the gener-
alized quadratic objective. Using a derivation similartattof Equation 3.12, yields

(AWAT + uI)A = a + AWb. (3.21)

Using the notation of the rest of the chaptdr,is the metric as defined in Section
3.4.1 and the linear constraints are given by Equation 34 soJ anda = p.

3.4.3 An Approximation to the Metric

Using the metric to define the default behavior of an objestdeveral advantages. It
permits separation of manipulation and representatichpaovides an abstraction for
defining the feel of an object. However, it has a significast.cave must find the metric
and invert it. This is problematic because the metric isdarmverting a matrix this
large would be prohibitive. One advantage to using the itlemtatrix as the metric is
that it is trivial to invert.

What we aim for in this section is an approximation to the noetrat is inexpensive
to invert, yet provides some of the features of the full neetiihe approximation we
consider is simply using the diagonal elements of the mefrigs diagonal matrix is
trivial to invert — we merely take the reciprocal of all iteetents — and cheap to use
in solving Equation 3.20. It still addresses some of the irgrt issues that the full
metric addresses, particularly the selection of units.

Consider again the example of dragging a line segment inr€&igb. Suppose its
configuration is represented by the position of its centetength and its orientation,
and that the simple identity metric objective function igdisIf the upper left corner
of the segment is move a quarter of an inch to the left, thedaggment might have its
center move, scale and rotate, or some combination of theSwppose that the posi-
tion of the center of the line segment was represented inamieters from the corner
of the page, the orientation represented as radians frormdmbal, and the length in
inches. To achieve the movement of the upper left point bylsimmoving the center
would require the parameters to change very quickly as therenany micrometers
to be covered, while achieving the movement by scaling atating would require
considerably smaller changes in the parameters. Becaesentiple optimization ob-
jective minimizes change in the parameters, the latter wbalchosen. If the position
of the center were measured in miles instead, a very tinyg#ganthe position of the
center would create the needed motion, so this would betsédléy the optimization
criteria.

In the example, the simple selection of units with which tpresent the position
of the center of the line segment determined the dragging\weh The problem is

54 CHAPTER 3. DIFFERENTIAL TECHNIQUES

parameters having different units. One way around this defme an objective func-
tion which minimized the amount of change in the parametiées eonverting them to
some standardized units. Suppose we knew the conversimddaetween the units
of the parameters and the standard units. We would haveiagd¢attor for each pa-
rameter. For notational convenience, we can write thersgddictors as the diagonal
elements of a diagonal matr& so the component-wise scaling of parameters would
simply be the multiplicatiorsq.

Rather than simply minimizing the magnitudecgfwe would instead minimize the
time derivative of the scaled parametesg, giving

1
E=(S4-84), (3.22)
or, to use the generalized notation of Equation 3.17
M = STs. (3.23)

We see that we have a diagonal metric.

The problem is to determir@to convert the parameters to the standard units. One
way to define standard units would be to require that equalgd®in each variable
should affect the attributes the same amount. As for theimete pick a subset of
the attributes to define the objective function, and denwefiinction that computes
these attributes bg. However, we are only interested in the derivatives with eesp
to a single variable at a time. That is we want to measure thagd in all of the
attributes ofg with respect to each variable independently. For a pagicudriable,
the scaling factor is the magnitude of the derivatives ohedement ofy with respect

to the variable, that is,
S = /& . & (3.24)
q; d;

The diagonal terms in Equation 3.23 are the scaling factprared,

M, =& .8
q; dqd;

(3.25)
These are exactly the diagonal terms of the metric in Eqnatib6.

The diagonal metric cannot take into account interacti@taben variables. While
it can remove differences in units between similar termsaiitnot make two different
representations seem alike. In the line segment examplaninates the effects of the
choice of units, however it does not remove the effect of agetaly different param-
eterization. It could not, for example, express an objediimction that minimized the
motion of the endpoints. Therefore, no matter what diagoredttic are chosen, a line
segment parameterized by position of center, length amahiation will feel different
than a line segment parameterized by the positions of itp@nts.

3.5. SOFT CONTROLS 55

3.5 Soft Controls

The generalized objective functions of the last sectioovathe creation of objective
functions that can be used to control the object. To thistpame have discussed de-
fault behaviors for objects that causes objects to minigiaeir motion if controls are
causing them to change, they do not change. In this sectiaong&der an alternative:
having objects change by default unless a control speciffesrwise. The non-zero
defaults lead to linear terms in the general quadratic dpéition objective function
of Equation 3.17. Using this term will enable soft contratentrols which are over-
ridden by the regular controls. These are important bectheseallow us to create
behaviors such as dragging subject to constraints, wheabjact is manipulated by
the user but constraints will not be violated. While thesémégues do not provide
general constraint hierarchies as described by Borning[BFBW?92], the dragging
subject to constraints that they can provide is useful inyrgmaphical applications.
The use of optimization objective terms to provide user @nvas pioneered in the
vision research of Kass et al.[KWT88].

Suppose that we had some desired default valug fatenotedqoe. Rather than
simply minimize the magnitude af, we would instead minimize its difference from

the default value, so
1

E= 5((1 —do) - (4 — do). (3.26)

In terms of the generalized objective function of Equatidti73the coefficients of the
linear termb in this case isjg. Similar metrics can be worked out to include a metric
as well. While the generalized solution of Section 3.4.2 caapplied, we review the
derivation for this important special case here as it presitsight.

To provide intuition for how this works, consider again thegle point example
from Section 4.3. Notice that the control specifies the bamanly in the direction of
its gradient, so the optimization objective is free to do tekar it wants in an orthog-
onal direction. Suppose that we have specified be 0. This restrictg to lie along
the line perpendicular to the gradient, as shown in Figuse Bo findq closest tagg,
we must projectjg onto this line. We do this by adding in a componentjofvhich
cancels out the disallowed portion. Thignstraint componemnnust be a multiple of
the gradient. This multiple is the Lagrange multiplier.

We computeaj as the sum of two components, its default vadigeand the contri-
butions of the controlsj., so

q = 4o + qe. (3.27)
Sinceq must satisfy the controls, we substitute this into EquaBi@h to yield

P =J(do + qe)- (3.28)

Since the contribution of the constraints is a linear coratiam of the control gradients,

56 CHAPTER 3. DIFFERENTIAL TECHNIQUES

Figure 3.6: A hard controls constrains the distance from the point tootiigin. Any move-

ment of the point must be orthogonal to the gradient of thigrmd. When a default velocity
(go) is given forq, it must be projected into the space that meets this restricifo achieve
this, a component is addeddg that projects it onto the space where- 0.

we define the Lagrange multipliers as
de = J7A. (3.29)
Which, with a little rearrangement yields
p—Jqo =JI"A, (3.30)

a linear system, which like Equation 3.9 can be solved\awrhich in turn determines
qc by Equation 3.29, from whicky can be computed by Equation 3.27. Notice that
whenqgg = 0, the method of this section is exactly the same as that of @eétB. The
damping techniques of Section 3.2.1 also apply.

3.5.1 Determining the Values for Soft Controls

We now must figure out how to obtadjy. Our goal is to provide soft controls that work
as the hard controls do, except that the hard controls aemgivecedence over them.
Soft controls are defined @g = f5(q), but like the hard controls, would be specified
by their derivativesps.

If the soft controls do not conflict with the hard controlsyttan simply be treated
as hard controls. The more interesting cases, however e the hard controls limit
the soft controls. The ultimate goal is to have have softroditvork exactly as hard
controls do, except in the cases where there are hard cetttailtake precedence over
the soft controls.

We would like to satisfy the soft controls as closely as dassubject to the restric-
tion that the hard controls are specified exactly. We can e¢fia objective function
to minimize the squared error of the soft controls meetimy thhesired values

1
minimize £ = i(qu — Ds) - (Jsq — ps) subjecttop = Jq. (3.31)

3.5. SOFT CONTROLS 57

- &0

p=x2-x1 P=x2
p=0 p=1

Figure 3.7: Two points are connected by a hard control constraining tiistance. The
right point is also pulled by a soft control. If the soft canigrare computed independently, a
non-optimal solution may be found, as shown on the left. Tdfecontrol may specify that
the right point should move, but part of this motion might bepved by the constraints. As
shown on the right, there is a solution that both satisfiedtthestraints and meets the desired
values for the soft controls.

Such an objective function is the similar to the definitiothad metric in Section 3.4.1,
except that rather than minimizing the magnitude squardédeothange of the deriva-
tives of the functions value, we minimize the magnitude sgdaf the difference be-
tween the derivative’s value and a default value. Geneardlgets of soft controls (e.g.
Js) will lead toM terms in Equation 3.17. The problems in using general nse#igo

apply to soft controls: A sufficient number of soft controlashbe specified to uniquely
determingj in all cases, even when there are no hard controls. If anfinguft number

of soft controls are specified) will be singular. Problems with ill-conditioning and
efficiency in invertingVl make this soft control scheme impractical. In this sectios,

concentrate on methods for simpler achieving soft contsglsomputing values for

do-

Two-Pass Solver

One way to findy, is to ignore the hard controls, and simply use the method feged
hard controls for the soft controls. Using this approacty, liwear systems are solved:
first, a linear system is solved to compute the Lagrange pligts that will determine
qo, then a linear system is solved to projégtinto the subspace allowed by the hard
constraints.

The method of computing the soft controls independenthalsesious drawback: it
does not achieve the desired solution. Consider a case Wwhepmoints are connected
with a hard control constraining their distance, and a soffitol pulling one of the
points to the right, depicted in Figure 3.7. The soft conalohe would move one of
the points, violating the hard control. When this is projddteo the legal subspace,
part of the motion world be cancelled out. However, if all ttantrols were treated
equally, the other point could be moved to satisfy the hardrob

An alternative is to account for the hard controls in compgi€lo. We computejg
using the methods we would use for the hard controls, exbapirte include both the
hard controls and the soft controls in the computation. Dammust be used in case

58 CHAPTER 3. DIFFERENTIAL TECHNIQUES

the controls conflict. We then solve an optimization probbegain using the result of
the first solution asgjg, and just using the hard controls as constraints. | first tisisd
technique in thdriar drawing program described in Section 9.1, and therefolatcal
theBriar-style solver.

In cases where all the controls, both soft and hard, are si@msj theBriar-style
solver has the nice property that both hard and soft conbeleave the same. It is
also the case that the effort in solving the linear systernéwan be avoided by first
checking to see il gg = p, in which casej, will trivially be 0. When using an iterative
linear system solver, as described in Section 4.3.1, tl@slchappens automatically.

However, if we knew that the hard and soft controls did notfloctn then there
would be no need to have soft controls. In the cases where #rerconflicts, the
Briar-style solver has a few drawbacks. Most obvious is that it requichdrg the
linear system twice, which can be expensive. Also, sincarspthe larger system will
have conflicting constraints, damping must be used. Thesdlves not actually solve
Equation 3.31, but instead minimizes the difference betvtke damped result, which
already partially accounts for the hard constraints.

Spring Controls

An alternate method to compuig is to use gradient descent to drive the soft controls
to their desired values. We compujgto have the direction of the gradient of the soft
control functions, and a magnitude proportional to how fanf the target it is,

QO - kJs(ps - fs(q))a (332)

wherek is a scaling constant. This causes the controls to be puleartls their desired
values with a decaying attraction: as the control nearggged value, the rate at which
it is being pulled is decreased. In the physical analogy cfiSe 1.2.2, this attraction
is a spring. Equation 3.32 is the generalized force versidtooke’s law.

| will call these spring-like controlspring controlor simplysprings.Their method
can be viewed as a cheap way to estimate the Lagrange Meitfighi attempt to use gra-
dient descent to achieve desired values for the soft cantoolas generalized springs,
if we view the optimization as a physical simulation. Desylie fact that they are a
little harder to justify, they do work very well.

3.6 An Alternate Technique

The methods presented in the last sections described Lggyraaltiplier techniques

for solving constrained optimization problems with lineanstraints and a quadratic
objective function. The methods build a linear system andesfor an intermediate

result, the Lagrange multipliers. The methods have theradga that they permit the
use of any quadratic objective function.

3.6. AN ALTERNATE TECHNIQUE 59

Often, we do not exploit generality of the Lagrange mulépliormulation. For
example, the simple objective functions of Equation 3.6 gqudiion 3.26 may be suf-
ficient. In such cases, alternate, special purpose solatathods are sufficient.

The objective function that simply minimizes the magnitoél§ gives an important
special case called a linear least squares problem. Thigasyastandard problem in
numerical analysis. Example solving methods include dargealue decomposition
(SVD), QR factorization, and pseudo-inverses. These nasthemd many others, are
discussed in [GL89]. Unfortunately, these methods are sl@bextremely expensive
to compute, as they are unable to exploit properties of tbblpms such as sparsity
that we will use in the next chapter to speed performance.

Iterative solvers may also be used to solve the linear lepsares problem. In
particular, conjugate-gradient solvers, discussed ini&@ed.3.1, are relevant to im-
plementing the differential approach. Variants of conjeggradient find a solution to
the linear system, but have the property that the solutiey girovide to a linear sys-
tem is solution closest to the starting point. Thereforghd solver is begun with a
zero starting point, the solution with least magnitude igi. The conjugate-gradient
linear system solver in the Numerical Recipes text [PFT\88&lch a solver. To im-
plement soft controls using the conjugate-gradient, Eqn& 28 is solved fog. using
the conjugate-gradient solver.

Using a least squares solver to implement the differenpiat@ach effectively solves
Equation 3.4 directly, without first computing the Lagramgeltipliers. For instance,
implementing the differential approach by using a conjagatdient algorithm works
very well. The solver given in the text of Press et al.[PFT}Vgérmits the two most
often used objective functions, and handles over-detexthtases by providing a min-
imum norm residual solution to the linear system. Using therethm is a very practi-
cal way to implement the differential approach. It perfoemremely well in practice.
This method served as the backbone of my early implementtand is available by
a run-time switch even in my most current versions.

The obvious question is why bother developing a more comigelnique when
the simpler approach works so well. The three main reasangsiog the Lagrange
multiplier techniques in this chapter over the simplerégit approaches such as using
conjugate-gradient are: the intermediate result of therdrage multiplier techniques
(the Lagrange multipliers) will be useful in certain intetian techniques such as the
active set methods of Section 6.4; they place few restristam the linear system solver
that is used, so that fast algorithms can be found; and, tkieyneé to other quadratic
objective functions. However, in cases where these adgastare not required, the
simpler approach is worth considering. The approach hanbketwo most often used
objective functions, those of Equation 3.6 and EquatioB,32 it is often sufficient.

60 CHAPTER 3. DIFFERENTIAL TECHNIQUES

3.7 A Concrete Example

To review the basic techniques of this chapter, we now censidomplete example in
detail. Our object will be a fixed length line segment with & vadius, represented by
the position of its center and its orientation. The contrelwill create is the position
of its endpoint. The state variables afe= {q.., 4y, Qineta }, and the controls are

P = {Ps, Py}
The control functions are:

Pz = fm(Q) = (¢ + COSqy (333)
by = fy(q) =y t+ singp.

The core of the implementation will be the differential opization that will com-
pute a value foky given a value forg andp . This routine must first compute the
Jacobian of the controld, as a function of :

|1 0 —sinqgy
J= [0 1 +cosq] . (3.34)

It then can compute values for the Lagrange multipliers byisg the linear system
p=JITX (3.35)

for A, and then computing as
qa=JTx (3.36)

Suppose at the current time, the line was at a 45 degree aitpléswcenter at the
origin (q = [0, 0, w/4]), and that the control specifies the endpoint to move rigkt wi
unit velocity @ = [1, 0]). The Jacobian of the controls is then

10 —.707
J_[o 1 .707]' (337)

To compute thej, we must first solve the linear system

1.5 —0.5
[—0.5 1.5] A=

.] , (3.38)

then use Equation 3.36 to determife At this particular instantA = [.75 .25], so
q=1[.75.25 — .35]. If we were to use an Euler step with step size .1, the configura
at the end of the step would lee= [.075 .025 .75].

The basic control for interaction will be to repeatedly t&dBE solver steps, inter-
leaving redraw between the steps to give the illusion of amtihis solver will call the
differential optimization routine, possibly several tisnger iteration. The ODE solver

3.8. SUMMARY 61

will also have to provide values fgrto the optimization routine. These values are what
accounts for the user’s motions; for example, they mightid tb the input device.
Methods for determining desired velocities will be disads Section 6.3, however,
one simple way of gettingg from the input device is to use decaying attraction: we
compute the vector from the position of the control to thenper, and use a multiple
of this forp.

In this example, we are already using multiple controls, famesach axis. Even
more controls could be added. For example, suppose we wantadd two more
controls that position the other end of the line segment.s@élmntrols are computed

by
Pa2 = f2(Q) = Qea — COSqy (3.39)
Py2 = fy(q> =Qey — sinqy.

The Jacobian would now be a 4 by 3 matrix.

Since we most likely will not have two mice, rather than petimg the user to
control the position of the second point, we might want tostaain it to remain at the
origin. This would require specifying,, andp,, to have values that caused the point
to move towards the origin, e.g. to be a negatively scaledipheibf the position of the
point.

Clearly, these controls will conflict: the mouse might atpeno pull the other end-
point away from the origin. This will cause the matdd™ to be singular. In order
to solve the linear system, we might add damping by adding @lsamount to the
diagonal elements of the 4 by 4 matrix.

We might instead wish to drag the endpoint subject to thetcains that the other
endpoint remains at the origin, that is, the mouse shouldaatble to rip the other
endpoint from its resting point, but other than that, shdaddible to drag its endpoint
as well as possible. To do this, we use soft controls.

To compute the optimization with the soft controls, we firgtshcompute a value
for qo by computing the Jacobian of the soft controls with EquaBi@®, and multiply
this by the desired value of the soft controls. The regulatrods are now just the
opposite endpoint, so the Jacobian is simply the 2x3 mafrtkair derivatives. To
computeq we first compute the Lagrange multipliers by solving thedingystem

p—Jaqo=JI"X (3.40)

We use that to compuigby
q=qo+JITX (3.41)

3.8 Summary

In this section we review the techniques presented in trapteh for solving the dif-
ferential optimization problem, summarize the procedorarhplementing it, and de-

62 CHAPTER 3. DIFFERENTIAL TECHNIQUES

number of controls

number of state variables

state vectori-vector)

values of the controls:tvector)

function to compute the controlp,= f(q)
time derivative ofg (m-vector)

time derivative ofp (n-vector)

Jacobian of (n x m matrix),J = 0f/dq
optimization objective

Lagrange multipliersi{-vector)

damping factor (scalar or-vector)
default value foig

soft controls

function computing soft controls
Jacobiardfs /0q

metric (n x m matrix)

inverse metridvl = (m x m matrix)
functions whose change is minimized to defive
Jacobiardg/dq

OQ SZ&,T T |>meT oDl S

Table 3.1: Symbols defined in this chapter, and used throughout thésthes

scribe the caveats as to solving the more general, numeptatization problem. The
symbols used throughout this chapter, and for the rest dhtss are reviewed in Table
3.1

The differential optimization takes the current value & ¢iateq, and the functions
that define the controls and objectives as givens. From thigeas, the current values
of the controls and the Jacobians of the controls and okgeatietric functions can be
computed, so they too are considered givens. The procesiasefollows:

1. Compute they, value of the force controls, if any, using the damped spramg f
mula of Equation 3.32, or some other methods.

2. Find the metricM, and its inverse. Often, the identity matrix is used instead.
Computing a metric involves computing the Jacobiag.of

3. Compute the Jacobian bfJ.

4. Compute the Lagrange multipliers, using some variantqefaion 3.20. Most
likely, some damping will be used on some of the controls.

5. Computey , for example by Equation 3.8.

3.8. SUMMARY 63

6. Ifthis computation was to compute both the hard and sofrots in a Briar-style
solver (as in Section 3.5.1), remove the soft controlsgget ¢, and return to
step 3. For the second time through, less damping might lgk use

The differential optimization solves f@f, givenp andg. It makes use of the control
function) and its Jacobian (which is a function @f). If a metric is to be defined, a
set of functionsg) and its Jacobian will be needed as well. The process hagkesin
tunable parameter, which is the amount of dampjr)g (. might be a vector if damping
values are to be provided for each control.

To emphasize, being able to solve the differential optitwreproblem

q= 0O, (a.p)- (3.42)

is not the same as being able to solve the general controtiequa

a=f"(p). (343

In fact, being able to solve Equation 3.42 does not necdgsdlow solving Equa-
tion 3.43. There are two main reasons for this: we need to kmbatp will achieve
the changes necessary to get the desired valupsarfd, once we hav§, we don’t
necessarily know whay is at some future time.

Given a desired value fqy, the most obvious way to proceed differentially is to
use ap that changes the value as needed, e.qg. if the value of a tmiiwo high, make
it decrease. However, heading straight for the goal is orfigwistic that can often
fail, for example, if there is a local minimum. Also, therenis certainty that there is
velocity p that will achieve the desired controls, either if there isvay to achieve the
desired controls at all, or if there is simply no continuoathghrough state space.

Even if a direction forp is known, and the correspondirgthat achieves it can
be found, there is no guarantee that the corgecan be found. Finding values gf
requires solving the ordinary differential equation of Btjon 3.42 forg.

64

CHAPTER 3. DIFFERENTIAL TECHNIQUES

The secret to walking on water is knowing where the rocks
are.
— Herb Cohen
Vail Symposium 14 poster

Chapter 4
Efficient Solution Techniques

In the previous chapter, we introduced methods for impldimgrihe differential ap-
proach. In this chapter, we now consider how to solve thesidfitial optimization
problems efficiently.

4.1 The Demands of Interactive Systems

Interactive systems place a different set of demands on ncahgechniques than more
traditional, batch computation applications might.

One unique demand of the numerical problems in interacigéems is that they
are dynamic. Because the equations are created in resgotieeusers’ actions, they
are not known when the system is created. More significattyset of equations to
be solved is continually changing in response to the uses dynamic nature of the
numerical problem means that we must be able to define egsaiaun time, which
will be addressed in Chapter 5. Solution methods that regxensive pre-analysis are
to be avoided as the problem being solved may change befgt of the analysis
can be amortized.

A common practice in numerical computations is to adapt th&ti®n methods on
a per problem basis. This ranges from experimenting witteidint algorithms to see
which best solves a given problem, to adjusting parametersake solvers converge.
Such per problem tweaking is unacceptable in the setting oftaractive system. Not
only is the problem continually changing, but we would ligétsulate the user from the
mathematics. We do not want the user to have to learn abostreamed optimization
just to draw a picture.

Speed is an important consideration for numerical routinésr the differential
approach, it is critical. If the computations are not fasbuggh, the system will not
be able to provide the smooth motion which is demanded by tmanipulation. We
also must be concerned with scalability, that is how the oahwill perform as the
problems grow larger.

65

66 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

Accuracy, typically an important concern in numerical gsal, is less critical to
interactive systems. This is important since there is oftéradeoff between the time
a computation takes and how accurate it is. The accuracyreehis typically limited
by factors such as device resolution. In the cases whers dearand sub-pixel accu-
racy, for example when designing an object that is to be nzantufed, the accuracy
demands are typically known. Even in applications wherd laigcuracy is required,
fast, inaccurate methods are useful if these results caefined.

While accuracy is not essential for interactive applicatiatability is. Numerical
instabilities can cause such undesirable effects as abyaaibbling or flying off the
screen. Stability is, therefore, an important concernriteriactive systems.

For the purpose of this thesis, there is an additional ggahfsnumerical routines.
We would prefer techniques that are simple and widely alklaFor several of the
numerical problems we face, for example solving linearaystand ordinary differen-
tial equations, a vast array of sophisticated software ge& are available, both from
public sources and commercial vendors. Development ofalgchithms is beyond the
scope of this thesis. Similarly, relying on a particularteeire package would make
the approach harder to reproduce and port.

4.1.1 Basic Methods for Achieving Performance

There are a few general strategies for improving the perdoce of the computations.
These will be applied in various ways throughout this chapte

Trade Accuracy for Performance — As discussed earlier, in an interactive system,
we are often willing to trade accuracy for performance. Teghes for doing this
will be discussed in Section 4.5. It is generatigt acceptable to trade stability
for performance.

Trade Convergence for Iteration Rate — As a control moves towards a goal value,
it is more important that it moves with smooth motion thart thgets to its goal
in @ minimum amount of time.

Exploit Sparsity — The matrices involved in the differential optimization ptems
are filled mainly with zeros. It is crucial to exploit this faboth for speed and
memory usage.

Reduce the Problem Size —In the next section, we will see that the computational
complexity of the differential methods is linear in the nuenlof variables and
quadratic in the number of constraints. Therefore, to hatatfer problems, the
size of the numerical problems actually solved must be rediughile giving the
user the illusion that the system is solving the larger mrobl

IThe work of Mark Surles[Sur92a, Sur92b] has such a problenyofe wishing to reproduce the
results must purchase an expensive sparse matrix packagecmthe work relies.

4.2. SCALABILITY OF THE DIFFERENTIAL APPROACH 67

Reuse Previous Results —Many intermediate results are used by several later com-
putations. Caching such intermediate results can avoighieht computation.
Caching will be discussed in the next chapter.

One other important method for speeding numerical comjmunsits to exploit spe-
cial cases. For example, extremely efficient algorithmstehair solving n-body dy-
namics problems, finite elements, diagonal matrices, am#tittematics of articulated
chains. However, the goals of the differential approachatetrgeneral purpose solu-
tions. We therefore focus on general purpose methods fareimg performance.

4.2 Scalability of the Differential Approach

With the differential approach, it is important that thenaa steps happen fast enough
to give the illusion of continuous motion. As the number gfealbs and controls grows,
so does the time required to make a step. In this section, wsider how the perfor-
mance of solving in the differential approach scales aslprmbget larger, and identify
the bottlenecks in performance. We are primarily concemigial parts of the compu-
tation that scale worse than linearly.

The problem size of the differential approach can grow in ways: the number
of controls(n), and the number of variables or obje¢is). For complexity analysis
purposes we consider variables and objects equivalentibe@ach object will have a
small constant number of variables. For all interestinggsas > n, otherwise there
will certainly be redundant or conflicting controls.

We consider only the complexity of solving the differenti@kimization problems.
Other parts of the system might scale badly: for examplenpaotitechnique might
need to examine all pairs of objects (requiringn?) time), or a rendering computation
might require solving for interactions among all object@awéver, such issues would
need to be addressed in non-differential approaches as @BIE solving, the other
part of the differential approach’s computation, will régua small constant number
of calls to the differential optimization solver for the kis1of ODE solvers we might
consider.

With arbitrary controls, the computation costs of the d#fgial approach are al-
most unbounded. For example, we might have a control on theage center of each
combination of 4 objects, requiring a combinatorial exmagust to enumerate the
terms in the expression. However, for analysis we make s@wmenagptions that are
rarely violated in practice:

1. Objects are independent, therefore, the addition otemnatbject does not change
the number of variables an object has, or the amount of timgtttakes to com-
pute attributes.

68 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

2. Controls are independent, therefore, the addition otherocontrol does not
change the number of variables a control depends on or adyarsange the
amount of time to compute a control’'s value. Some optimaresj such as no-
tably common subexpression sharing, may speed evaluations

3. Controls depend on a fixed number of variables, indepélydgfthe total num-
ber of variables or controls in the system. This restricebminates controls on
the aggregate of all objects, for example the center of miah objects in the
world.

From these three assumptions, it follows thaandm are independent. It also
follows that the time to compute the values for the cont®{3(in), because computing
each ofn controls cannot depend on eitheor m. By a similar argument, the Jacobian
of the controls can also be computedin) time.

The fact that the Jacobian of the contrely can be computed i®(n) time is
significant, and non-obvious.is ann x m matrix, so it would tak& (nm) time just to
fill the matrix with 0s. The key observation is that we do noténto store all the values
in the matrix because many of them will be zero, that is, thimig sparse.Each row
depends only on the variables that its control depends oichvidnindependent at or
m. Therefore, the entire matrix will contain ondy(n) entries. By exploiting sparsity,
this can be stored and accessedim) time. Exploiting sparsity is an important tool
in implementing the differential approach.

Computing the differential optimization requires solviadinear system with the
n x n matrix JJ7. This matrix can be built irO(n?) time because each element is
computed by the dot product of two constant length vectoouigy the linear system,
with a standard method such as Gaussian Elimination, wa#h(n?) process. This
unacceptable asymptotic performance can be improved Hgidrg sparsity.

For certain classes of sparse matrices, linear systemsecanlzed in much less
than O(n?) time. For example, if the matrix has constant bandwidthyiegltime
is O(n). For certain configurations of controls, the matrices wiNahis structure.
Surles[Sur92a] describes why important problems in mdéedaiology and other do-
mains have this structure, and describes techniques fangauch constraint systems
using methods very similar to the differential approachr§&b]. Unfortunately, if we
permit constraints among arbitrary objects, as we musti@igeneral differential ap-
proach, we do not know the structure of the matrix a priorfabt, there is no guarantee
that the matrixJJ" will be sparse.

The way to exploit sparsity without making restrictions e tvay objects can be
connected is to avoid constructidd™. Many types of iterative linear system solvers,
such as the Conjugate-Gradient techniques discusseddatesss the matrices only by
multiplying them by a vector. Using the associativity of nas, the multiplication
JJ™x can be achieved by doing two matrix by vector multiplies. icatthese would
takeO(n) time because that is the number of entries are in the matrbechnically,

4.2. SCALABILITY OF THE DIFFERENTIAL APPROACH 69

Figure 4.1: Sparsity patterns depicted by filling potentially non-zelements with grey. Left:
Since each object defines a few functions to contribute toiteic, and these functions depend
only on the object’s variables, the Jacobian willkdeck-sparsewith a rectangular region for
each object. Right: When the Jacobian is multiplied by @aspose, the blocks do not interact
with each other, leading to independent squares along #yodal of the matrix. This form of
sparsity is calledblock-diagonal.

these multiplies will take) (m) time because the intermediate resliit is a vector of
lengthm, andm > n. However, ifm > n, the vector will be sparse, so sparse vector
techniques reduce things back®¢n). Using a solver that requires oniy(n) of these
matrix vector multiplies means that the linear system casdieed inO(n?) time.
Empirical results using a Conjugate-Gradient solver comfig this are discussed in
Appendix B.

4.2.1 Complexity of the Metric

The above discussion ignored the metri. is anm x m matrix, so in the general
case, simply filling it or inverting it would dominate the asgtotic complexity of the
differential solving. This complexity prohibits using @rary metrics or using the op-
timization objective to find the soft controls as describe&ection 3.5.1. With some
reasonable restrictions, metrics can be supported witehgrsely effecting the com-
putational complexity. To the restrictions of the previsestion, we add

4. Each object defines its metric (e.qg. its contributiong)tmdependently.

All of the arguments for evaluating the controls and theaoléan apply tay as well.
However, since each row @& can only depend on the variables of one object, we
know that the matrix must have a block structure, depictdelgare 4.1. When this is
multiplied by its transpose to form the metric, the matriX e block diagonal with a
block for each object, and block sizes equal to the numbeanébles that each object
has.

The block sparsity of the metric is important. It has otlym) entries, and can
be inverted inD(m) time because each of the blocks is independent. Using the sam
associativity argument as fad™x, the matrix multiplicationJWJ™x also will take
O(n?) time. The same arguments apply for the diagonal metric.

70 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

4.3 Solving the Linear System

To compute the Lagrange multipliers, we must solve a lingatesn which can be
written in the standard form

AX=b, (4.1)

whereA is a square matrix of size equal to the number of constrantsjs determined
by the Jacobians of the control functions, dnid a vector computed from the control
values. For example, in the simplest form of the differdrajatimization,A is JJ”,
andb is p.

In choosing a numerical algorithm to solve the linear systeafirst must consider
the properties oA. First, it will always be positive semi-definite, and in thesea with
damping, positive definite. It will also always be symmetrichese properties hold
because it is created by multiplying a matrix by its trangparsd altering the diagonal.

The most important property & with regard to solving it efficiently is that it will
be sparse. Or, more precisely, it will be created by mulingya set of sparse matrices.
This is significant because in this section we will show aroatgm which does not
actually ever buildA. The structure oA relates to the constraint problem at hand. In
particular, an element & will be non-zero if the two constraints (one corresponding
to the row, one corresponding to the column) share a variable

Solving a linear system is afi(n?®) process in general. Exploiting the sparsity of
the matrices is important to achieving better performarggarse matrix techniques
generally fall into two categories: direct and iterativethuels. Direct methods take
advantage of the structure of the matrix problem to solvéitiear system as quickly as
possible. For matrices where the structure is unknown lg@igthms do a pre-analysis
to find the structure of the matrix so it can be solved quickhrect methods are not
well suited to the purposes of this thesis for several remsbirst, because the struc-
ture of the matrix is continually changing, the pre-anaysust be done often making
its cost difficult to amortize. Secondly, direct methodsimgutational complexity is
proportional to the bandwidth of the matrix, so it is possithlat even for an extremely
sparse matrix, the cost will still b@(n?). Finally, direct methods are complicated to
implement.

Iterative methods solve linear systems by repeatedly parfg a calculation that
eventually converges on the solution. Such methods offepg@ortunity to trade ac-
curacy for performance by controlling the tolerance to whilse solver is required
to achieve. By setting a larger tolerance, the algorithmeisnitted to stop before it
achieves an exact solution. In Section 4.2, an argument iwas that with an iterative
solver that does only a constant number of matrix vectoripligs per iteration{ (n?)
performance could be achieved for the differential appnodte particular type of al-
gorithm suggested for use in the differential approach,j@mte-Gradient methods,
offers this performance and several other advantages.

4.3. SOLVING THE LINEAR SYSTEM 71

4.3.1 Conjugate-Gradient Linear System Solving

Conjugate-Gradient is a class of iterative algorithms fivisg linear systems, non-
linear systems, and optimization problems. Surveys of Ggate-Gradient methods
for solving linear systems are provided in [PS82] and [She[@lL89] also provides a
good introduction to the techniques. The actual solver ehssed is adapted from the
one presented in [PFTV86]. We briefly review some of the ingrdrattributes of the
algorithm here.

Conjugate-Gradient algorithms operate by repeatedlyingfian estimate to the
solution of the system of equations. Consider the curretimate as a point im-
dimensional space. At each iteration, the algorithm cheasdirection in which to
move the estimate, computes a distance to travel in thisteébre and finally updates
the estimate accordingly. This process is repeated uptdstimate is sufficiently close
to being a solution, which can be quickly checked by insgrthre estimate into the
equation and measuring the error.

The key piece of a Conjugate-Gradient algorithm is how iestsl directions to
move its estimate in. For each iteration, a direction is ehdhat is conjugate (orthog-
onal) to the preceding directions. Since a set of mutualhjwggate vectors im-space
hasn elements, a conjugate gradient algorithm, under ideatns, would require at
mostn iterations to get an exact solution. In practice, numeiri@dcuracies may cause
the solver to require more iterations on ill-conditionedljfems. Because we are not
as concerned with accuracy, we will settle for stopping tilees before it completely
converges in ill-conditioned cases, limiting itd¥») iterations.

At each iteration, a conjugate gradient algorithm must asi@@ new direction,
find a step length in this direction, revise the estimate,@rdpute the error residual.
The only part of this which actually must access the matréxthe first and last step.
What is most significant for our purposes here is that in thtsgssthe only accesses
to the matrix are to multiply it by a vector.

The Conjugate-Gradient technique leads to a family of aigamis. Many of the
more sophisticated algorithms, such as LSQR algorithrodhiced in [PS82], provide
greater precision and more tolerance of numerical errosdidcussed in the paper
introducing LSQR, the more sophisticated algorithms adfrantages only when high
accuracy is required and when the matrix is ill-conditionddwever, as discussed in
Section 4.1, the standard tradeoffs of numerical analysisal apply to our applica-
tions. Since getting an answer quickly is more importam thtataining a high-accuracy
answer, the more traditional Conjugate-Gradient methaasime actually be more de-
sirable for our purposes.

4.3.2 Selection of a Linear System Solving Algorithm

Solving the linear system dominates the computational ¢exityg of the differential
approach. Selecting the algorithm is, therefore, an ingmbidecision.

72 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

From my experience, a Conjugate-Gradient solver is thedaastidate for use in
the differential approach because:

1. It exploits sparsity irrespective of the form of the nrato be solved, leading to
O(n?) performance in typical applications that meet the asswnptof Section
4.2.

2. Itis simpler to implement than other general sparse matiivers such as direct
methods.

3. It does not need to form the actual matrix that defines tresali system, which
may not be sparse. Instead, it simply uses the Jacobiancemthat make it up,
avoiding multiplying the Jacobian by its transpose.

4. The only operations it requires from the Jacobian is thigyato multiply by it
and its transpose by a vector, providing freedom in choosiegepresentation
for J.

5. The stopping criteria can be adjusted to trade accuracgeidormance by ac-
cepting solutions within a larger tolerance.

Most other approaches to solving the linear system in thieréifitial optimiza-
tion problem fail to provide one of these advantages. Otbkfess potentially offer
other advantages, for example lower overhead, more agcuoabetter tolerance of
numerical errors, however, these advantages are ofterelted by those listed for
Conjugate-Gradient. For example, a Cholesky factorinaas presented in [PFTV86],
is a very efficient way to solve linear systems with positiefinite symmetric matrices,
justwhat is needed for the differential approach. SuchwesdlasO(n?) performance,
but with a very small constant, and is numerically stable.draall problems, the small
constants of the Cholesky algorithm might make it a fastethoee However, even in
these cases, performing the matrix multipl/ is often expensive enough to outweigh
the performance gains in the linear system solver.

Other iterative solvers may compete with Conjugate-Gradiesome applications.
The performance of iterative solvers is very problem depahdMy experimentation
shows Conjugate-Gradient to be vastly superior than sindaleobi iterative solvers.
Implementing Gauss-Seidel iteration or Successive Oedgfation (SOR) is difficult
with the matrix representations used in my implementatiisc{issed in the next chap-
ter), as column operations cannot be implemented effigientl

If the matrices to be solved have a known sparsity pattermvfoch an efficient,
special purpose solver exists, such a solver would probbélpreferable to using
conjugate-gradient. For example, if the matrix is known ¢oblanded with a narrow
bandwidth, linear time algorithms can be used. Howeveecsieke use of special pur-
pose solvers has not been explored in this thesis as | hagkttriemphasize general
purpose techniques.

4.3. SOLVING THE LINEAR SYSTEM 73

4.3.3 Partitioning the matrix

One very important type of sparsity that will often be uséfugxploit in the differential
approach is partitioning. In some cases, the rows of thatisyestem may not all depend
on one another, that is, they may be partitioned into sepasataller pieces, similar to
those shown in Figure 4.1. With the differential approacpadionable matrix occurs
whenever there are groups of objects that do not share atptorPartitioning breaks
the large matrix into smaller pieces when they are indepande

The reasons for partitioning the matrix include:

1. Solving several smaller problems will be faster than glsitarge one if the
complexity is greater than linear.

2. If one of the partitions is ill-conditioned, it can havedbeffects on the other
partitions.

3. Some of the partitions may be trivial to solve. This is sy true in cases like
constraint-based drawing where one partition will be néogi user input, and
the other partitions will be sitting idle.

Reason 1 is not as important with the conjugate-gradientotetescribed in Sec-
tion 4.3.1. In a sense, the Conjugate-Gradient algorithivesdhe disconnected par-
titions in parallel. However, the solver must take the nundfeterations required to
solve the largest block. The savings is, therefore, noteatgs when a straight(n?)
or O(n*) solver is used. However, the savings can be considerabla whe block
requires many iterations, for example if it is large or irdlitioned, and many other
blocks can be solved quickly, either by trivial checks ordaese they are small.

Reason 2 is particularly important with the conjugate gratimethods described
in Section 4.3.1. If any partition of the matrix is ill-cotidined, the steps the solver
will take will involve very small direction vectors and velgrge scaling factors. The
parts of the direction vector that correspond to the welkderined partitions of the
matrix will contain extremely small numbers, so the larggpstshould not have any
effect. However, because of floating point inaccuracy imresenting the very large
and very small numbers, much error is introduced. The neteff this in differential
manipulation is that if there are any controls which aredhditioned they will cause
completely disconnected graphical objects to jiggle.

An algorithm for partitioning

One of the features of partitioning is that it is simple arst fa implement. To partition
JJT, itis sufficient to orded.

We begin with each variable in a disjoint set. For each cangtrwe union the dis-
joint sets that correspond to each variable that the cansatiects. When completed,
we can then gather each set together into the state vector.

74 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

The key piece to performing the partitioning is that we cataodisjoint set union
and find operations very quickly. In fact, using an extrensiyiple algorithm, the
unions and finds can be performed in nearly linear tintehe disjoint set union and
find algorithms, along with a complexity analysis, are pdad in [Cor89].

The partitioning algorithm runs in time linear with the nuenlof variables and the
number of non-zero elements of the matrix. Since the algoritnust actually have
the matrix to partition, and filling the matrix takes time paostional to the number of
non-zero elements in it, computidgs often the most expensive step in partitioning.

4.4 Reducing Problem Size

As described in Section 4.2, solving the linear system indifferential optimization
is the dominant factor in the computational complexity c# thifferential approach.
Without placing restrictions on the problems, it is unlikéhat we can achieve better
thanO(n?) complexity for general constraint problems. We must find sveykeep
n small, without restricting the size of the problems that tiser actually works on.
That is, to find methods which give the user the illusion thatgystem is working on
a larger problem, while in fact, the problem’s size has beeiiced.

Partitioning, described in the previous section, is an garaf a method for trans-
parently reducing the problem size by solving a set of smpheblems rather than the
larger problem.

If we know how some variables are going to change by some atkeans, the ex-
pense of solving the differential problem is not requiredr &le, If we know that
an object is frozen in place, we know that it will not move, dhdt the time deriva-
tives of its variables are simply zero. We can implement thestraints by removing
the object’s variables from the set of variables solvedrfther than by adding more
equations.

For complexity purposesy andn are really the number dadctive variables and
constraints, that is the number that might actually havef@ctaon the current step.
We can discount objects if there are no controls that mayectinesn to move or if there
is something else which requires that they do not change.aWdarget a control if it
does not effect any changeable objects. We call the set @iblas and constraints that
are actually participating theorking set!

In general, adding a new control or constraint adds tnd therefore makes the
differential optimization more expensive to compute. Heareconstraints realized by
removing variables from the working set instead reduceather than increasing,
speeding computations. Such constraints are represenfaiditly in the structure of

2Actually, itis inverse Ackerman worse than linear, but sitfee inverse Ackerman is a small constant
(< 5) for any quantity we are likely to encounter, we can considierbe linear.
3The other obvious term, active set, already means somedtsirg

4.4. REDUCING PROBLEM SIZE 75

the problem, rather than explicitly by an equation.

Freezing an object is a simple example of a constraint thatbeaimplemented
implicitly. Specifying that an object is to be frozen, e.gat it must not change, could
be represented by explicitly placing a control on each wgiaHowever, the effects
of these controls are known: they will cause the variabldssmaehange. Since the
variables will not change, they can be removed from the wagykiet. Without variables
in the working set, the object is constrained not to move, énax; this constraint is
represented implicitly in the structure of the problem.

Implicit constraints generalize to sets of individual @dles. For example, a line
segment has four degrees of freedom. Freezing its lengtbeamplemented by ex-
plicitly placing a controller on a length connector. Howgvethe line segment’s rep-
resentation included a separate independent variablerigth, this variable could be
removed from the working set to implicitly represent thegimconstraint. This was
how the fixed length line segment of Section 3.7 was created.

Implicit constraints are representation dependent. Irekaenple above, if the pro-
grammer had chosen a different representation for the Bgenent, for example to
represent it by the positions of its endpoints, the lengtist@int could not be imple-
mented as an implicit constraint.

Often, itis worthwhile to choose representations to mazathe number of implicit
constraints. For example, in a planar mechanisms simui&tothe one described in
Section 9.2 mostline segments represent rigid linkage rDasrefore, a representation
is used that has length as a variable. This way the commoelyatkconstraint that the
line is a rigid length can be realized as an implicit constrai

Finding new representations of objects is a difficult prablespecially when we
cannot anticipate the types of constraints and combinstibat will be desired. In
fact, the whole differential approach is a response to tbélpm that representations
cannot simply be derived on demand. In terms of physical lsitimin methods, finding
new representations is equivalent to deriving new equatddmotion with Lagrangian
dynamics techniques.

Finding new parameterizations is equivalent to symbdyiclving the non-linear
systems of equations. This task is not automatable for angrgéclass of problems.
Although it is not possible to create new representatiotteeeidynamically or in a
general, automatic way, it is possible to create multipfgesentations for important
cases of controls on objects.

It is conceivable to build a system that changes the reptasen of objects to
maximize the number of implicit constraints. This requisedving a combinatorial
optimization problem. Globally optimizing for the maximummber of constraints is
most likely difficult? Incremental methods might provide different results dejpemn
on the order the controls are added, which may be a problece $he behavior of
implicit constraints and standard controls differ.

4| believe it to be NP-hard, although | do not have a proof.

76 CHAPTER 4. EFFICIENT SOLUTION TECHNIQUES

Another form of implicit constraint is merging, that is hagimultiple parameters
access the same variable, as seen in ThingLab [Bor81]. Kigigian implicit con-
straint for equating parameters. Because merged pararsitare a single variable,
they have exactly the same value. A more general variant agfinggpviews a variable
as an input. It can either be connected to a slot in the stateryer connected to some
output. This effectively mixes local propagation into themwerical methods.

Implicit constraints are exact. If an object is frozen, ayst exactly fixed. Two
merged quantities are exactly equal. While this exact etyuedin be an asset, it can
also be a problem as it means the constraint behaves ditffetkan its explicit coun-
terpart. This can be particularly troublesome in cases avtier solver might break the
equality constraint slightly, for example to achieve ateagiares solution to an over-
constrained problem. This distinction becomes signifiedmen the system switches
between the two types of constraints.

4.5 Trading Accuracy for Performance

Trading accuracy for performance is an important methodrfgroving the perfor-
mance of the differential approach.

Using simple ODE solvers with fixed step sizes is one way toetraccuracy for
performance. The simpler ODE solvers compute rough salstauickly, and then
permit feedback terms to clean up the results in subseqiegrs. ST his is useful because
it gives a rough answer quickly, but provides a more accuaagwer over time. For
example, in dragging an object, the accuracy needed mighivine When the user
stops to examine a situation more closely, the solution hasraent to become more
accurate, and by the time the user has decided that a solstamteptable enough to
print or render at high resolution, the constraints are/fatinverged.

Varying the step size of the ODE solver is another way to texteiracy for per-
formance. Larger step sizes cause larger apparent veoaiti the screen, assuming
that control velocities are constant. As discussed in 8e@i3, larger step sizes may
be less accurate.

The use of a Conjugate-Gradient linear system solver peswatiother way to trade
accuracy for performance. By using a larger tolerance ferstiopping criterion, the
solver can accept an answer more quickly if it finds an appnate one.

Many aspects of the methods used to handle inequalitiestietiéy trade accuracy
for performance as well. For example, the simple schemediectng active sets of
Section 6.4.4 trades accurate solutions for faster salvidgt backing up the ODE
solver when an inequality boundary is crossed, as will beusised in Section 6.4.5,
may also be viewed as another method to achieve performagigibhg up accuracy.

Do not worry about your problems with mathematics. |
can assure you that mine are far greater.
— Albert Einstein

Chapter 5
Snap-Together Mathematics

The mathematical techniques of the previous chapters peomirolling graphical ob-
jects by specifying the derivatives of functions of theirgraeters. In this chapter, we
consider techniques for defining and evaluating these iiumet The challenge stems
from the dynamic nature of interactive systems: objectsghan response to system
actions as the system runs. This means that the functiohsi¢fiae controls must
be created on the fly, in response to user actions. In orddfetctigely implement the
mathematical calculations, we must evaluate the funciodgheir derivatives rapidly.
This chapter presentnap-Together Mathematics toolkit for dynamically defining
functions and rapidly evaluating them and their derivative

With the differential approach, objects provide theiribatites as output connec-
tors for other objects to use, and as attachment points faralters that will control
the objects. These connectors compute functions of thesbjearameters and in-
put dependencies, and must support the operations of etaatier object inputs and
controllers. Snap-Together Mathematics provides a meashmafor realizing the con-
nectors.

“Wiring” connector outputs to inputs builds new, more comoaled functions from
the elements being assembled. Building a new function mapdraany time a new
object, constraint or control is defined. It would be unatable if building a function
required an extensive symbolic math computation or for tioggam to be recompiled
and re-linked. Snap-Together Mathematics explicitly espnts the expression graph
of connected functional elements as C++ data structuresoniector is simply the
output of a node in the expression graph. We will call the sdiecks. To wire an
input, it merely needs to be given a reference to some ougnap-Together Mathe-
maticshas efficient mechanisms for evaluating the valudsianvatives of nodes by
traversing the graphs.

For example, consider an expression graph that represamigcting the endpoints
of two line segments together with an attachment constrasrghown in schematically
Figure 5.1. In this figure, the line segments have a stat®wverstore their parameters
(x,y,0,1), and provide the positions of their endpoints as connectdhe inputs to
the attachment constraint are plugged into these outputemars. The output of the

77

78 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

attach

Figure 5.1: An expression graph representing two line segments coetégtan attachment
constraint. The outputs of the line segment objects, thibate connector, serve as inputs to
the attachment constraints. Function composition is adgd inside the objects to build up the
functions representing graphical object attributes.

constraint is a function of the variables of both line segmmgouilt by composing the
two attribute outputs with its own function. Snap-TogetMathematics allows this
plugging to happen dynamically, for example if the user g@etthe constraint with a
mouse click.

Snap-Together Mathematics provides a common protocolltmkboutputs, per-
mitting any output to be wired to any input. This is importastit allows objects with
inputs and those with outputs to be designed independemdygnamically snapped
together at run time as needed.

Inside the graphical objects, blocks are wired togetheniomute the attribute func-
tions. While these object functions could have been explipitogrammed because
they would have been known ahead of time, constructing themiting together sim-
pler blocks can simplify programming as it allows the pragnaer to avoid writing the
code to evaluate the derivatives.

Several other systems, such as CONDOR [Kas92] and the SPARIMg Test-
bed [FW88], have explicitly represented expression graphbe user. In contrast,

5.1. EVALUATING FUNCTIONS 79

Snap-Together Mathematics provides the graph data stascas a general purpose
tool for the programmer. The programmer could implemengplgviewer and permit
the user to have direct access to the data structures. Hovsered an interface has not
been implemented with Snap-Together Mathematics. The sf@pplications which it
has been used to support intend to hide the mathematics frennser. Snap-Together
Mathematics has been used for a number of purposes othethbatifferential ap-
proach including physical simulation and optimizatiorsé@ motion planning.

The elements of Snap-Together Mathematics are not novelidiky representing
data flow graphs has been around for decades, and the teebrifjautomatic differ-
entiation (AD), required to rapidly evaluate the derivasyare becoming a common
practice in the numerical analysis community. Snap-Tagrebhathematics addresses
a very different need than previous AD systems have. Dynaongposition and eval-
uation of functions and their derivatives was introduceé igystem by Witkin and
Kass [WK88]. Snap-Together Mathematics is refines these Idesiis in an a simple,
general purpose toolkit, allowing direct support for thetadctions of the differential
approach. Snap-Together Mathematics was originally @geel to support work in in-
teractive physical simulation [WGW90], but has evolved intoare general purpose
tool for encapsulating numerical computations.

5.1 Evaluating Functions

Evaluation is the most basic computation to be performedpression graphs. In the
interactive applications which we are considering, exgmsgraphs will be evaluated
many times per second, so performance is critical. The nfiigeat way to repeatedly
evaluate an expression is to compile itinto machine codéortimately, compiling and
linking code for each dynamically created expression isifmitvely expensive in the
programming environments presently available.

Other approaches to evaluating the expression graph ampiative: traverse the
graph for each evaluation. Each node of the graph compw@esiiput value, given
the values of its inputs. A set of primitive function elenmeate predefined at compile
time to do this. Evaluation of a node involves asking its paassors for their output
values then computing the “local” function of the node.

Performance can be enhanced using caching to exploit twestgpredundancy:
within an evaluation, common subexpressions need be dgedlaaly once (these subex-
pressions may be shared within one expression or betwelenedtit expressions); be-
tween evaluations, certain old values might still be cdnfesome of the inputs did not
change. Re-computation can be avoided by storing the sesiédt calculation and, for
a later request, deciding whether this stored value iscstilect. There are many pos-
sible ways to implement this cache validation; elaborateestes might avoid some
re-computation, but will require additional computatiardsstorage to make the de-

80 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

termination. The more expensive the evaluations becoreemttre effort should be
expended to avoid excess evaluations.

5.2 Evaluating Derivatives

We will need to evaluate the derivatives of expressions wagpect to some subset
of their inputs. Although the techniques extend to higheivagives, for this discus-
sion, we will consider computing first derivatives sincestid what the differential
approach’s methods require. Derivatives are taken withe@sto a set of variables
that we call thevorking set of variablesThe working set is a subset of the state vector.
We denote the concatenation of this set of variables intockbovdy w. For a vector
expressiorf, the Jacobian, or first derivativé,is the matrixof /ow. In this matrix,
each row corresponds to an element.afhile each column corresponds to a variable
inw.

There are three basic approaches to computing deriva@ygsoximate them nu-
merically, derive a symbolic expression for the derivagiver compose them using
a process calledutomatic differentiationThe latter approach has been shown to be
superior both in performance and precision of the results3gh

To understand the process of automatic differentiationsicier how derivatives
are computed manually. The chain rule allows us to decomgmsglicated functions
into smaller pieces. For example, if our expressiofi is f(a,b,...), then the chain
rule yields

of _0fon 05
ow Odadw 0bow

Differentiation involves recursive applications of theaghrule. If we are able to
evaluate the derivative of each of the primitive functionghwespect to their inputs
then we can apply Equation 5.1 recursively to build the commgoexpressions. The
recursion bottoms out at the constants, whose derivatnee8,aand at the variables,
whose derivatives are 1 with respect to themselves and Orasftect to others.

Symbolic differentiation applies the chain rule to an esgren graph to transform
it into a new expression graph that evaluates the derivailite resulting expression
must then be simplified to take advantage of the sparsityeofiinivatives. Even then,
the symbolic differentiation of a vector with respect to atee yields a matrix oex-
pressionswhich is unwieldy to manage.

Automatic differentiation also applies the chain rule tpeessions; however, rather
than symbolically composing more complicated expressithesintermediate results
are combined numerically. For any node in the graph, if tipgiis to equation 5.1 are
concatenated into a vector, the equation multiplies twaices: the “local” Jacobian
of the outputs with respect to the inputs, and the derivatofeéhe inputs with respect
to the working set.

(5.1)

5.2. EVALUATING DERIVATIVES 81

s=35
os/ow= [7]o]5]o]

times of _ of ox
f(x)=x0*x1 ow 0x ow
of _ = [7]5] [1]o]o]o
ax ;b x0l olo]1]o

s=5
os/ow= [1]oJo]o]

s=7
os/ow= [oJo]1]o]

State Vector

5]6]7[8]-

Figure 5.2: A simple example of derivative composition. Signals camyhbvalues £) and
their derivatives @s/0w). The function block computes its internal Jacobian andmusas
the global Jacobian by multiplying the matrices.

We implement automatic differentiation by augmenting tkpression graph with
the ability to pass derivatives as well as values along edijeaddition to comput-
ing its output values, each node of the expression graph alesbe able to compute
the value of its local derivative, also a function of its itguThe composition process
builds the “global” Jacobian by multiplying this matrix \witntermediate result matri-
ces. By passing the entire intermediate result matricasgyaioe edges of the graph,
the derivative matrix can be built in one traversal of theregpion graph. The same
mechanisms for sharing intermediate results by cachingsasissed in the previous
section apply.

A recursive descent of the expression graph computes tieatlee matrix. Each
node in the graph is able to respond to requests for the dimevaf its output with
respect to the current working set. Constants and varialoaa the working set return
zero in response to this query. A state variable in the ctumanmking set returns a
vector with one in the position corresponding to the vagalaind zeros elsewhere.
After determining that its cached value is not valid, a nemrinal node recursively
asks its children for their derivatives, computes its I@zadobian, and multiplies these
together to produce its derivative with respect to the aurveorking set. Figure 5.2
demonstrates a simple example. Edges of the expressioh gess not only values,
but also their derivatives.

82 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

This method of automatic differentiation assembles theldian bottom-up, and is
called the forward-mode. The alternative reverse-mod&mdown, approach is pre-
sented by [Gri89] and implemented for an interactive sydtgrnSap93]. This algo-
rithm reverses the order of the matrix multiplies, buildihg Jacobian matrix from the
top down. It has the advantage that the intermediate resitigas are of small, fixed
size. In the bottom-up approach, the size of intermediateicea depends on the num-
ber of variables which contribute to that derivative. Besmathe intermediate results
are fixed-sized, the top-down approach can achieve lingem@stic complexity in
places where the bottom-up approach i@s?) complexity. However, this increased
worst-case performance on dense problems comes at thesexpigzonsiderable book-
keeping, inability to fully exploit sparsity, inability tshare intermediate results, much
higher time constants, and difficulty in changing workintsse

It is important to recognize the generality of either of ghdgrivative composition
processes. Each node of the expression graph need only tbldéoacompute its
local Jacobianthe derivative of its outputs with respect to its inputs. STimatrix is
a function only of the input values, not their derivativesivéh the local Jacobians,
the composition process merely multiplies the matricegtiogr to build the global
derivatives.

5.3 Sparse Representations

The critical performance issue in building the Jacobianrixats well as most calcu-
lations that use this result, is exploiting sparsity. Bottap matrix passing schemes
exploit sparsity by using sparse representations for tteenmediate matrices. There
are many possible ways to represent a sparse matrix, witly inaaheoffs to consider
in selecting a representation [DER86]. This decision idregito the design of an im-
plementation. One particular representation with whichhage had success is the
half sparse matrix: a full vector of sparse vectors, as degimn Figure 5.3. We call a
system based on these data structurgsaaise vectoscheme.

In the sparse vector scheme we consider every output in ffregsion as an inde-
pendent scalar, even if higher levels will interpret themiases of larger structures. A
function block can have multiple scalar outputs. The gnatdi¢ each scalar is a sparse
vector Oz /ow).

Sparse vectors can be represented as a list of paitsz, value), taking space
linear in the number of non-zero elements. If this list igsdby index, we can perform
the essential vector operations in time linear in the nurobeon-zero elements. For
single vector operations, such as multiplying by a scaldnding the magnitude, the
algorithms simply run through the list. For multi-vectoresgtions, such as addition,
linear combination, or dot product, we exploit the sortedeorof the lists and step
through both in parallel, advancing which ever has the lea&x. These algorithms

5.3. SPARSE REPRESENTATIONS 83

[T TTTTT

eie(®(®|®|?

Figure 5.3: A half-sparsematrix representation store the matrix as a full vector afrsp
vectors. Each entry in an array points to a sparse vectoict@efhere by a sparsity pattern.

maintain the representation invariant so re-sorting isweeted.

Each derivative in the expression graph is represented@s sesvector, the deriva-
tive of a scalar with respect to a set of variables. For eagplgrone set of variables is
denoted as the current working set: all derivatives are mesipect to this set. For each
variable, we must know an index to the corresponding coluhthenJacobian.

Sparse vectors are collected into matrices which are ppalfse. While this is a
non-standard representation, it does permit the opematexuired by the numerical
methods we employ. In particular, half-sparse matricesbeamultiplied by a vector
or by its transpose rapidly. These methods are the esseatighutations in iterative
linear system solvers like conjugate gradient [PFTV86]e Tultiplication routines
are among the most important in the entire implementatighetlifferential approach
as they form the inner loop ¢¥(n?) portion of the computation. However, the routines
are very simple and can be coded efficiently. The algorithras a

v = HX
multiply HalfSparseMatrix H, Vector x = Vector v
v=20

for i=0...H.rows
for j=0...H.row[i].elements
V[i]l+ = H.rowli].value[j] * X[H.row(i).index[j]

84 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

v=HTx
multiplyTranspose HalfSparseMatrix H, Vector x = Vector Vv
v=20

for i=0...H.rows
for j=0...H.row[i].elements
V[H.rowl(i].index[j]]+ = X]i] * H.rowli].value[j]

5.4 The Snap-Together Math Library

The machinery of the differential approach is encapsulateda C++ toolkit called
Snap-Together Math. The library implements the functiomposition and evaluation
discussed in this chapter, as well as the differential solve

5.4.1 The Protocol for Function Outputs

One of the essential elements to implement the differeapg@koach is the standard
protocol for connectors, the outputs of objects. Conneatorrespond directly to Snap-
Together Math block outputs. When a controller or object gslin” to a connector, it
merely stores a reference to a Snap-Together Math output.

In order to be a Snap-Together Mathematics output, and abj@ely must provide
two functions: one that computes its output value, and oaicttmputes the derivatives
of its values with respect to the current working set. In mplementation, the class of
objects that have Snap-Together Mathematics outputs ddssPort. EachPort
may provide a number of scalar outputs. The two methods th&aoast subclasses
must provide take an index that specifies which scalar valleing referred to, and
return either the real number value of the output, or a potota sparse vector (class
SpVec) containing the derivative of the value with respect to theent working set.
The signature for the minimum set of methods is:

class Port {
public:
virtual Real o(const int);
virtual SpVec* grad(const int);

In order to be a mathematical output, an object is requirqate@ide only these two
methods. The protocol supports many optional methods alut$ feich as the width

5.4. THE SNAP-TOGETHER MATH LIBRARY 85

(the number of scalar values the object provides), stringsprovide names for the
signals, and nominal value ranges. To identify a particstatar output, a pairing of a
Port and an integer index is required. This is referred to 8ggaal. Signals are
constructed by pairing a pointer tdPort and an integer index.

Graphical objects could be subclassed?oft so that they could provide con-
nectors for their attributes. However, this gives littleusture when there are many
outputs on a single objects. Instead, a graphical objettypically define other sur-
rogatePort objects which provide smaller numbers of scalar outputs.ekample,

a polygon object might keep a list of vertices, each of whicluld be aPort object.
This is important because these surrogate objects can haasthzed. For example,
all polygons could use the same vertex objects, so attatcbiagertex could be done
independently of the polygon type.

StandardizingPort types adds further modularity. Snap-Together Mathematics
permits connecting any scalar input and output. Howevégnasuch connections are
most useful when they are grouped together and typed. FongeraA 2D distance
object has 4 scalar inputs, however these are most meahwlgéun they are thought
of as two 2D point inputs. Graphical objects would providegalizedPorts which
meet this standard.

Several standard types Bbrts will be discussed in the following sections.

5.4.2 Functional Elements

The most basic element of Snap-Together Mathematics aeetshywhich can be used
in function composition. As explained in Section 5.4.1 sihebjects are subclasses of
Port and must provide a few basic methods. Part of the beauty @nlhe-Together
Mathematics scheme is thRort class is minimal enough that its functionality can
be added to application classes. However, the Snap-Tagdttbematics toolkit pro-
vides a variety of types d?orts for general mathematical elements that can be com-
bined to build more complex structures.

The most fundament&ort subclass i$=Block, the class of function blocks.
These objects compute mathematical functions of theirtsipiihe standard library
includes various primitive functions, including almodtaflthe functionality of a sci-
entific calculator. The clagsBlock isimplemented to have a fixed number of inputs
for each subclass. Other special subclass®odf can do things such as sum a vari-
able number of inputs or take the magnitude of a vector oftspThis permits creating
controls on aggregate collections of objects, as in GaM&WGS94].

Wiring functions together simply requires inserting anpuitSignal into the
input field of a function block. The clagsBlock stores its inputs as an array of
Signals . Connecting the output of one function block to the inputmdther looks
like

block1l->ins[0] = Signal(block2,0);

86 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

whereblockl is a pointer to a function block—Block*), butblock2 can be a
pointer to any subclass &fort. This code fragment connects the first output of the
object pointed to bylock2 into the first input of the function block pointed to by
blockl. Notice that this wire is not explicitly represented, nor slttee output port
receive any indication that it is being attached to.

Defining a new function block requires specifying two metho@ne that computes
the function, and another that computes its internal Jacobi is important to note that
this is really the only place where a programmer might havake a derivative.

Writing the derivative routines is a simple matter of medgbalty applying the rules
of freshman calculus. However, this can be tedious as thaifumrs get complicated,
especially since we have a strong desire to have optimizee. decause the process
is mechanical, it can be automated.

The BlockMaker tool automatically generates code for new function bloglety
from mathematical expression. The tool, is written withie Mathematica symbolic
algebra system [Wol88]. The tool takes as input an expredhit describes the func-
tion block to be created, and a small amount of auxiliaryrimfation such as the number
of inputs to the block and the name for the C++ class for thetfan block. The out-
put of the tool is a C++ program file that contains the codeHterlilock’s methods, as
well as a C++ header file describing the new class. The gestecatde is optimized
using Mathematica’s simplification tools as well as a commanexpression remover
that | developed with Stephen Schwab. Because the tool rithewMathematica, the
full power of the symbolic algebra system is available tordethe expressions used
to create blocks.

New function block types are not often required. The Snagelioer Mathematics
library includes many basic functions, such as those found scientific calculator,
and more complicated functions can be created by compdsasg telements together.
The main reason to create new blocks is efficiency. Compasfogction out of other
function blocks is more expensive than compiled code if tregiled code is optimized
to exploit internal sparsity within the block and to sharencoon subexpressions. For
derivative evaluations, properly optimized code will penh the same evaluations as
done by automatic differentiation. However, because ixieitly compiled, there
is less overhead. Automatic differentiation works betterrhore complex functions
whose symbolic derivatives would be difficult to optimize.

5.4.3 Representing State Variables

The leaves of the expression graphs are constants and leariakhe two are distin-
guished from one another in that the derivatives for thealdeis are not zero when
taken with respect to itself, while the derivatives for tlomstants are always 0. Im-
plementing a class to represent constant values is, thierefimple; its methods just
return constant values. The derivative of a variable must laal in the column of the

5.4. THE SNAP-TOGETHER MATH LIBRARY 87

gradient that corresponds to that variable.

The simple protocol for Snap-Together Mathematics doesddtess the issue of
defining the working set of variables and the mapping of itsnipers to columns of
the Jacobian. Thisis indicative of the larger issue of mangagpllections of variables.
On one hand, building systems in an object-oriented marawgrires the state of the
system to be distributed into the objects themselves. Bathematical algorithms typ-
ically require this state in the form of contiguous vectavhjch are gathered, ordered
collections. This ordering also gives meaning to the colsigfrthe Jacobian matrices.

There are many potential schemes for representing vasiaibla Snap-Together
Math implementation ranging from having objects allocgtace in a global state vec-
tor to modifying our numerical algorithms so that they operan distributed, non-
contiguous, vectors. Several of these were explored ireetobls. The Snap-Together
Mathematics library uses a combination of centralized asttiduted representation.
Objects each have their own state, however these variatdegahered” into a cen-
tralized state vector for numerical computations. When gaabds variable has been
gathered, it knows where in the global vector to find it so it stll retrieve its value
as well as index it for creating derivatives. In the conteh@oap-Together Mathemat-
ics, derivatives can be taken only when variables are gadhes this is the only time
when variables correspond to matrix columns. When the nwalesomputations are
complete, the values are scattered back into the corresgpachaller vectors.

The ability to scatter and gather variables has an impoadvdntage over always
keeping the variables centralized. It allows for the setoifables to be changed rapidly.
This not only simplifies adding and deleting objects from #aking set, but also
makes it easy and efficient to operate on subsets of the \esialiechniques that make
use of this latter feature are discussed in Section 4.4.

The scatter/gather scheme uses two main data structureto m@present the smaller
individual state vectors, and one to store the gatheredagktiate vector. In Snap-
Together Mathematics these classes are c8t@b] andStVec respectively. Each
of these classes is a subclasgPoft, althoughStVec objects rarely have connec-
tions made to them.

StObjs are objects that store a number of state variables. Eaclhigedmbject
would have one that stores its configurati®iObjs are also used to store constants
by marking their variables so that they are never gathered.

The gathering operation takes a list®Objs and assigns designated variables
in them to elements in aBtVec, as depicted in Figure 5.4. Variables store their
assigned location. If their value or derivative is requeéstlen they are in an assigned
state, they forward the request on to 8t%/ec. If they are not assigned, they return
the value stored internally and O for their derivative. Atsmaoperation returns each
variable in theStVec to its correspondingtObj, updating theStObj ’s internal
value, and removing the assignment.

TheStVec provides a contiguous vector for mathematical computati®outines

88 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

1]2[3]4] [5]6] [7]8]2]stObjs

[2]4]6[8] | | StVec

Figure 5.4: Selected variables fror8tObj objects are gathered into ti&Vec object.
Variables in the working set point to slots in tB&/ec object.

such as ODE solvers look at the data stored here. The inditks $tVec define the
columns of the Jacobian: requests for derivatives offvec return vectors witha 1
value in the corresponding column.

An important part of the scheme for storing state varialdebé ability to gathér
selectively. This provides the ability to switch a variabfé or turn it into a constant.
Uses for disabling variables are described in Section 4.4.

During a gather operation, a function is provided that dexid a variable is to
be gathered or not. Typically, the default function is usé@this function makes its
decisions based on a bit vector stored with each variable.blthvector and function
provide the following mechanisms for selection:

e Each variable belongs tocastethat identifies its type. Whether or not a given
caste is to be gathered can be decided independently. Timstpeperations
like “gather only the variables that affect lighting.”

e Each variable has several type bits, which permit denotiegeixpected use of
the variable. For example, if a variable is denoted as a aanst will not be
gathered.

e Each variable has a counter that freezes it whenever the ®uaon-zero. A
problem with using a single bit for this purpose is that itmigibssible to deter-
mine how many constraints are freezing a variable. If twost@ints freeze the
same variable, deleting one of the constraints would rélerthe variable. A
counter re-enables the variable only when all freezes haga lemoved.

Selective gathering also provides a mechanism for mergesquating two vari-
ables. During a gather, two variables can be made to sharspae in thétVec.
This will effectively merge them, constraining them to hake same value. A sim-
ilar technique can be use to constrain a variable to haveain® yalue as any other
Signal . Such features are not used much in the Snap-Together Matiosmmple-
mentation, because they make the optimization of the ne=gpaph impossible.

IThe corresponding scatter operations always scatter waatast gathered, so there is no selection
involved in them.

5.4. THE SNAP-TOGETHER MATH LIBRARY 89

An important special case of a function block is one that resheof its inputs
connected to the san®Obj. This is a very common case, used often for graphical
objects where the function blocks each compute some attibBecause all of the
inputs are connected to variables, the Jacobian of thesrgduhe block is the identity
matrix, possibly with some columns missing. By exploitihgst the matrix multiply
to compute the block’s Jacobian can be considerably fa$tas leads to substantial
speedups in many applications, as these direct-connetiellsbare very common,
and very often constitute the majority of the “wide” inpubbks, which are the most
expensive to compute.

Partitioning, as introduced in Section 4.3.3, reorderstaments of th&tVec so
that variables in a common partition are next to one anofheiijtating solving each
subset independently. Partitioning is done only when aggaiperation is performed,
not each time the linear system is solved. This is done becassrdering the state
vector would confuse the process of differential equatmisg.

Because the partitioning algorithm does not actually loothe values of] , they
do not need to be computed when finding the initial matrix tdiff@n. In fact, rather
than using the real values of the matrix, it can be better &ohisary values which
represent that the matrix element might be non-zero, rafiaer that it is non-zero for
the current value of the state vector. This is easily acliddwe having eachPort
provide a method which works like thgrad(int) method, but does a logical or
instead of a linear combination of its input vectors. Foreakg that do not provide this
optional method, the gradient may be used instead.

5.4.4 Caching in Snap-Together Math

As hinted at in Section 5.4.1, caching is an important tooéfthancing performance in
Snap-Together Mathematics evaluations. Whenever a valderimative is computed
by a function block, or othelPort type that implements caching, it is stored inside
the block in case the result is used again. Each time a valderosative is requested,
the block first decides if its cached value is valid; if it isavoids re-computation and
simply returns the cached value.

The Snap-Together Mathematics toolkit employs a simpleeaalidation scheme.
A single global timestamp is used. Whenever any of the inmitdd variables) are
changed, this timestamp is incremented. A block must recoenpits internal times-
tamp is older than the global timestamp. This scheme is we1ple but has the obvious
problem that it invalidates much more than needs to be. Ghgragsingle value inval-
idates all caches in the entire system.

In the context of the differential approach, invalidatiibthe caches simultane-
ously is not as catastrophic as it might seem since the \asave all updated simul-
taneously with each ODE solver call for evaluation of thdedéntial optimization.
Schemes that do substantially better require some condinait substantial amounts

90 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

of graph traversal, explicitly representing links bidiienally, doing numerical and
sparse data structure comparisons, or exploiting knovelethgut the particular prob-
lem. For most applications, such complication is not waedias, at best, it serves only
to reduce the constants on the linear complexity portiorieetifferential approach.

5.45 The Differential Solver

The Snap-Together Mathematics toolkit encapsulates stesaiions of the differential
approach in a set of classes that implement the techniqube pfevious chapters. An
object is used to represent the differential optimizatiombem, storing information
about the controls and the variables they effect. This eigexalled a constraint engine
or ConstEngine.

The ConstEngine class has fields that contain &\Vec and a list ofStODbj
that are to be gathered for computationsCAnstEngine object also stores infor-
mation to define the objective function for the differentb@timization, such as a list
of Signals that make um.

The controls for the differential optimization problem atered in &ConstEngine
by a list of Controller objects. Controllers are objects that specify desired
derivatives for connectors, as discussed in the next chafite Snap-Together Math-
ematics class for a controller specifieSgnal to control, a controller type, and
several parameters.

Solving the differential optimization problem, e.g. usithg techniques of Chapter
3 and Chapter 4, is executed by a method of@lmmstEngine class. This is the
only part of the system in which constraint solving needsdadbne. This method
is implemented in a manner that interfaces with the ODE sdaplementations of
the underlying mathematics toolkit. Tl@&onstEngine class also interfaces with
non-linear iterative solvers.

Snap-Together Mathematics is built on top of an objectraeid mathematics toolkit
that | wrote. The toolkit includes an object-oriented fravoek for defining ODE prob-
lems and solvers. The claigtegrand represents an ODE problem by defining a
single method that defines a function to compiégtgiven g and¢. An ODESolver
object stores an integrand and an initial condition andrsfée method to step time
forward. TheConstEngine class is a subtype dfhtegrand

When used as amtegrand to solve a differential optimization problem, a
ConstEngine must first load theq vector provided by the ODE solver into its
StVec. Loading the state allows the solver to try different valuesthe state in
the process of taking an ODE step. ThenstEngine keeps all of the intermediate
results of the solving process, such as the Lagrange matsphs internal fields.

5.4. THE SNAP-TOGETHER MATH LIBRARY 91

5.4.6 The Whisper/Snap-Together Math Interface

While Snap-Together Mathematics is a C++ toolkit, an inteefess provided to it as
an extension to the Whisper interpreter described in AppeAdiThe extension adds
several new data types to Whisper, as well as many new prarfitinctions.WhSTM
provides a convenient way to access to the functionalithefSnap-Together Mathe-
matics, and can be used on its own to develop simple apgitatompletely in Whis-
per. The Whisper/Snap-Together Mathematics interfacéedt®hSTM,shows how
the functionality of Snap-Together Mathematicscan be iplexvin a more convenient
form, and will be used in later portions of the thesis.

WhSTMrovides primitive Whisper data types for most the Snap-ffogreMathe-
matics classeBort , FBlock , StObj , Signal , andConst . Other classes, gener-
ated by primitives written in C++ are generally treated bg thore generic class that
is appropriate. For example, a summation block, which isamdiBlock because it
allows variable numbers of inputs, simply appears Bed in Whisper. No facility
for defining new subtypes of Snap-Together Mathematicsetass provided in Whis-
per. WhSTMiefines 88 primitives, including creation functions for 3flestent types
of function blocks.

WhSTMupports automatic promotion of types as needed. Any fonecgquiring
aPort can take anything that is a subtype, includi¥Block andStObj types,
even though Whisper has no subtyping mechanism. Real nurateedso promoted
toPort where necessary; a constant valued port object is autcaiigticeated.

The constructor foBignal takes @&ort and anindex. It permits specifying the
index either as an integer or as a string name if the blockgbedmnected to supplied
the optional names for its outputs. If the index is omittéas assumed to be 0. This
allows aPort to be promoted to &ignal when needed.

Function block creation routines all optionally take iaitvalues for the signal in-
put. The convenience of this, coupled with the automatioqotions, is demonstrated
in this simple example

(set b (plus-block (times-block (signal point-port 2) 5)
(signal point-port 'y)))

that computes the sum of 5 times thealue of a 3 output port representing a Cartesian
coordinate and itg value. The ease with which functions can be built in Whispéir wi
be used in the Bramble toolkit, described in Chapter 7. A neatensive example of
usingWhSTMo build function graphs is described in Section A.2.

The Whisper interface does not provide constraint engin@dt solvers as basic
types. HoweveWWhSTNoes have default instances of these objects, so that codsman
like

92 CHAPTER 5. SNAP-TOGETHER MATHEMATICS

(add-const (controller sig '= 2.0))
implies the use of the “built-in” constraint engine, and
(rk4-step .1)

uses the built-in 4th order Runge-Kutta solver instanceaep the default constraint
engine forward a time step. Other packages further extgridihisper can alter the
defaults. This will be used extensively in Bramble.

If you don't know where you’re going, you will wind up
somewhere else.
— Yogi Berra

Chapter 6
Controllers

The previous three chapters provided the machinery redgjua@emplement the dif-
ferential approach. This machinery permits specifyingrdesderivatives for func-
tion outputs. Appropriate changes to the state of the abpet computed from these
derivatives. Inthis chapter, we consider how to specifydi@vatives in order to create
graphical interaction techniques.

With the differential approach, graphical objects are rpalated by specifying how
particular attributes of the objects should change. Gglubjects provide their at-
tributes as output connectors. A connector serves as aotaeviten its behavior is
specified. The specification of the derivative of a connerst@ncapsulated into an
object called aontroller. These objects are plugged into any connector output just as
dependency inputs are. A controller can look at the outpistéobnnected to and the
external world (e.g. input devices) in order to produce arddslerivative value for the
connector.

The capabilities of a controller are limited: they can sfyecnly a rate of change.
Objects move by having controllers attached to their cotumsover a period of time,
continuously specifying derivative values which are cated by the differential opti-
mization to derivatives of the object parameters.

The basic building blocks of graphical interaction tecluais| are controllers and
connectors. For the purposes of interaction, the set ofhgrapobjects appears as a
set of connectors, any of which can serve as controls by bavaontroller attached to
them. The chapter begins by showing how basic methods switagging are created
by attaching controllers to connectors for periods of ti@ebsequent sections explain
how the continuous model of time is coupled with events arstidees the details of
the controllers themselves. Some details of creating cexnpbntrollers that switch
controls on and off are discussed in the chapter’s final @ecti

93

94 CHAPTER 6. CONTROLLERS

center center angle
L | n e State Vector State Vector

Figure 6.1: A schematic “wiring diagram” of two line segments with areatiment constraint
between their endpoints. For the purposes of defining méatipaos, these objects appear as a
set of connectors awaiting controllers to be plugged ingorth

6.1 Example Interactions

To show how the machinery of the differential approach astio manipulating graph-
ical objects, we consider some concrete examples. For éxaseples, our model will
consist of 3 graphical objects: two line segments, and aclattent object that is con-
nected to one endpoint of each line segment. A schematieafdta structures is given
in Figure 6.1.

6.1.1 Specifying Values

A basic operation is to specify a value for a connector, fanegle to specify a position
for an endpoint of a line segment. This cannot be done dyr@ath the differential
approach: only rates of change can be specified. In orderieaa desired value,
we must specify the derivative over a period of time, and feaithe object to achieve
the desired value.

TheGoTowards controller makes a connector’s value move towards a tafget.
each instant, it computes a derivative that moves the valards the desired goal,
as will be discussed in more detail in Section 6.3.GATowards controller does
not specify its attached connector’s value. However, byhpggits value in the right
direction, over time the connector will reach its targetassl something impedes its
progress. In order to specify a target value, we plaGo@owards and wait for the

6.1. EXAMPLE INTERACTIONS 95

value to reach its target.

If the GoTowards controller is left attached after the attached connectaches
its target, the controller will continue to drive the valwsverds the target, holding it
in place. This is how constraints are created. Becaus&ti®owards continually
pushes toward the goal, the constraint will be restoreddfiits. TheGoTowards
controller, therefore, include constraint stabilizatlixe that proposed by Baumgarte
[Bau72].

To create a constraint, a controller must be applied to sorneector. The at-
tachment object which simply provides the connector is mgg@metric constraint by
itself. However, a geometric connection constraint objemtld be a version of the at-
tachment object that creat&@bTowards 0 controllers on its connectors when it was
placed, and removed these controllers when it was removed.

6.1.2 Dragging

To drag an object, we can permit the user to specify where tcpkar point on it
should be positioned. When the mouse button is pressed t@agraimt on an object, a
differential controller is attached to the output that cangs the position of the point.
This controller guides the point to follow the mouse. Whenlib#on is released, the
controller is removed from the output connector of the deagoint. The addition of
an optimization objective term with the mouse position toyidle manipulation of a
graphical object is first presented in [KWT88].

The Follow controller provides derivative values that cause its agdccon-
troller to move towards tracking a moving target. It is samnito aGoTowards , with
the exception that rather than having a fixed target, it ha®wang target. This be-
havior could be created with@oTowards controller that periodically has its target
value updated. HowevefFollow controllers can sometimes provide better tracking
behavior by using information about the motion of its targetthe case of tracking
an input device, where derivative information is difficdtastimate for lack of a good
predictive model, &ollow controller is typically implemented as@oTowards .
More details about thEollow controller are provided in Section 6.3.

For many reasons, it is unlikely that the point being draggélitrack the cursor
exactly. When the cursor moves quickly, it might take theesysa few steps for the
dragged object catch up, and even then, if the cursor movesifeng the step, the two
will separate. Also, the rates at which graphical objectsmave is sometimes limited
by how well the ODE solver can solve for the motion; if the abpmoves too quickly,
the ODE solver will be unable to accurately compute its nrotieaster steps and better
algorithms can reduce the separation, however the moudd stillj separate from the
object being dragged if the motion is restricted by a coidtra

When the cursor and dragged point diverge, it is importantéwide visual feed-
back to connect them. Typically, a line is drawn between thear and the point being

96 CHAPTER 6. CONTROLLERS

Figure 6.2: A small line is used to connect the mouse pointer to the oftjeirtg dragged.
This feedback is important because the cursor locationdaittrge from the location of the
object because of lag, integration error, or restrictiom$he@ object’s motion.

dragged, as shown in Figure 6.2. Metaphorically the cussoonnected to the dragged
point with a rubber band. This metaphor is a pretty accunag¢dar the spring attraction
techniques introduced in Section 3.5.1.

The generality of the differential approach is apparentm simple example of
dragging. Graphical objects provide point position aspethe dragging behavior can
be plugged into any objects’ output. The differential sofyprocess will compute how
to control the objects’ parameters in order to achieve tis&el@ motion. If a different
pointing device, for example a 3D tracker, is availablegda tould be plugged in to the
same places.

6.1.3 Constrained Dragging

The ability to mix constraints and controls is important be effective use of con-
straints. The constraints permit the user to drag objedisowt violating any previ-
ously established relationships. User defined persistargtaints can provide many
services, including helping to avoid redundant work, hedio explore a constrained
space, or helping to construct compound objects.

Because constraints are easy to attach and detach, theyecasetd with drag-
ging controls to define interaction techniques. In additmgreating aFollow or
GoTowards controller to cause the mouse to be tracked, additionaltints are
simultaneously added. These constraints are removed \kairagging controller is
removed.

For an example, consider rotating a graphical object. Tatera rotation, the object
could be dragged subject to a constraint that nails theiposif its center in place.
Dragging points on the object will then cause the object tateg assuming the object
has that degree of freedom. Dragging might also cause thexiotg stretch, if the
dragging motion is not circular about the center of rotatidhis can be combatted by
keeping the cursor on a circular track or by using anothesitamt to keep the size
constant. In the latter case, some mechanism that makesdaginlg constraint break
rather than the others will be required. The dragging coémast be subject to the
other constraints. Techniques for achieving this are dised in Section 3.5.

The ability to combine constraints and controls allows a$btilding blocks to be

6.2. CONTINUOUS TIME 97

Mouse Down Mouse Up
ETnt Event
A
Object Moves
Follow Controllers Follow Controllers
Created Removed

Figure 6.3: A timeline of an interaction in the differential approactheTarrow symbolizes
the flow of time. At discrete instants, such as when the mousats are received, the set
of differential controllers is altered. The effects of thasver time causes changes in object
configurations.

provided for constructing interaction techniques. Fomepke, it provides a constraint-
based strategy for developing 3D manipulation technigasgjiscussed in Chapter
8. The basic idea is that enough constraints are provideatdtte input device is
sufficient to fully determine the motion. This strategy i¢ nolike what we employ in
the real world where we use things such as jigs and bracesgabenanipulate hard
to handle objects.

6.2 Continuous Time

As illustrated by the above examples, object configuratavesaltered by having con-
trollers specify their behaviors over a period of time. Thetesof objects cannot be
changed instantaneously. Instead, it changes over tiraeydly an object in the real
world does. This is quite different than traditional methddr constructing interac-
tive systems, where the state of objects is updated at tesastants corresponding to
events or polling increments.

In concept, time in the differential approach continuousliyves forward. While
time progresses, any active differential controllers aasing the objects they affect
to change. At discrete instants, such as a window systent,es@ntrollers may be
created, destroyed or altered, however, the state of @habt changed. To change
the configuration of an object, a controller must be createbitame must pass so that
the object can adjust itself accordingly. A time line of suchrocess is depicted in
Figure 6.3.

Since a controller can be plugged into any connector at amg;, folacing a controller
can be asynchronous with the placement of other controll€hss makes it easy to

98 CHAPTER 6. CONTROLLERS

Mouse Down Mouse Up
Event Event

l

[] L] [.

A
>
Object Moves
Follow Controllers Follow Controllers
Created Removed

Figure 6.4: A timeline of interaction in the differential approach, agually implemented.
The arrow symbolizes the flow of time. Time is discretizedisteps. A discrete event is
deferred until the end of the step it occurs in.

perform concurrent operations, such as allowing for assorabus two-handed input.

In practice, we can only approximate the continuous flow ietidiscretely. As
discussed in Section 3.3, we must treat the ordinary difteakequations describing
object trajectories as a sequence of steps in order to dodwve. tDuring each step, time
is advanced a small amount. By making these steps small Bntheguser is given the
illusion of continuous motion.

As implemented in the differential approach, events arerded until the end of the
step, as depicted in the timeline of Figure 6.4. If the doratf the steps is very small,
the delays will not have an effect. If avoiding this lag is@al, the approach can be
modified slightly to trade total number of steps for reducagl |For example, when
an event occurs, the current step could be aborted and >arted after the event
is processed. Also, time may be stopped during periods whesbjects are moving
and user events are expected. For example, in a standactl dia@ipulation system,
when the user is not dragging an object, nothing is movingféerential time may be
stopped and the system may spend its full effort respondiryénts. An event may
need to start time, for example if it initiates a draggingragien.

After each step, the system must redraw the displays. Foprititetypes of this
thesis, screen update always redraws the entire displdaer @ystems might attempt
to speed redraw by selectively updating only objects thaeldhanged. | have not
taken such an approach because:

1. Selective redisplay is more difficult with the differaadtapproach since many ob-
jects may be moving at once. In fact, the system must be abletevmine when
selective redraw is appropriate, and when it would simplfalséer to redraw the
entire view.

2. Selective redraw is difficult to implement for 3D applicais when using a Z-

6.2. CONTINUOUS TIME 99

buffer hidden surface removal algorithm, because the efatee Z-buffer must
be restored when objects are removed from the display.

3. The differential approach has been based on the assuntptb fast drawing
hardware is available.

6.2.1 Differential Time and Clock Time

The time in the differential approach is advanced at each &&h\er step. There is no
assurance that the “clock” in the differential approacht th the time that passes from
solver steps, will correspond to wall-clock real time. lotfamaking differential and
real time correspond would be difficult: a system would havké able to accurately
predict how long (in real time) it will take to do the compudais required for each step,
and make sure the proper amount of differential time adwaoneach step. This rules
out the possibility of the system adaptively controllingné steps when things grow
difficult, and would require complicated synchronizatiohem the real world clock
and the differential time differ.

Rather than coupling differential time and real time, weeas let the clocks float.
The differential “clock” can be thought of as a dimensioslgaantity: it's mapping to
“wall clock” time is unknown, and unimportant. Whether theakt moves quickly and
velocities are low, or the clock moves slowly and velocites high, the same effects
can be achieved. It becomes impossible to express controdésms of real time, for
example to say that an object moves across the screen at&sipehn second, or that
a point reaches its target in 250 milliseconds. Howevegmithprecisions also make
this impossible, both spatially (how far is 3 inches whenuber can scale the window
or run on a different monitor) and temporally (how can we beeghat in that 250
milliseconds the system will not have to swap or process ldrigriority job). While
multi-media systems researchers, such as [D83], are beginning to study with such
real-time issues, the differential approach, like mosriattive graphics systems, is not
concerned with real-time performance. Coupling with reaktis left for future work
in Section 10.3, but a simple approach would take a step asdgzsossible and then
wait for the real time clock to catch up.

6.2.2 Breakdown of Interactivity

The differential approach relies on being able to providargd number of steps per
second. Thisis needed both to provide the illusion of cartirs motion to the user, and
to insure events are processed without too much lag singatkaleferred to the end of
a step. As the introduction to this thesis states, moderrpotens continue to provide
increasing amounts of graphical and numerical processipglalities. However, even
though the capabilities of computers may continue to gropoerntially, the types of

100 CHAPTER 6. CONTROLLERS

problems that users are interested in tackling may singigmbw without bound. As

the task grows, the amount of computation required to supjiiberential interaction

also grows. At some point, processing each step requirgatich time and the quality
of interaction suffers. This is calledteractive breakdown.

It is difficult to determine precisely the rate at which iratetive breakdown oc-
curs. Even when the motion appears jerky, it can sometimesdteptable, depending
on the user and the problem. For some applications, highefnate is crucial, for
example when the motion is needed to help the user compreherigehavior of ob-
jects. Similarly, event delay lag is most bothersome wheruser is generating many
events in rapid succession or that are time critical, sudebeting a moving object.
As described in Section 6.2, event processing lag can beeedat the expense of
throughput.

As the complexity of the problem goes up, so does the timamedto do each step.
The immense scale of the objects that people design — a mdetinplane may have
millions of components[Hei93] — makes keeping interactive ratesaetal for some
problems. However, the limitations of the human cognitine @erceptual abilities
make it unlikely that a user would want to operate a model af sitale interactively.
The prototype implementations show that models of reademraimplexity can be han-
dled on the current generation of computers. Performaniteeqrototypes is discussed
in Appendix B.

6.3 Basic Controllers

Controllers are objects which attach to connectors andfypedues for their deriva-
tives. The examples of Section 6.1 briefly introduced sorpesyof controllers. Here,
we examine these controllers in more detail, introduce aencomplete set of con-
trollers, and discuss how they compute the derivative \&lue

Since a controller’s sole function is to provide a derivatialue, deciding what
values to specify is the critical issue in designing a cdl@roThis is complicated by
the fact that interface elements are traditionally not aefiby derivatives, but rather by
positions. Another issue in picking velocities is that siation time is not coupled to
real time in a meaningful way, as discussed in Section 6This makes it impossible
to specify velocities in terms of apparent velocities, althh this would be attractive
to insure that the user can follow the motion. However, theemelevant speed limit
is typically given by the ODE solver, as discussed in Sec3i@n

The simplest controller provides a constant derivativei®al TheseConstant
controllers are rarely used because attributes typicallyat move at fixed veloci-
ties regardless of other factors, and determining speafizcity constants is difficult
because time and space do not precisely correspond to celml-guantities. In the
cases where they are uséthnstant controllers are typically given values which

6.3. BASIC CONTROLLERS 101

are found empirically to produce a desired rate in certduraions. The more com-
mon controllers do not inherently specify a time, but ratheéarget and provide the
controller with flexibility in choosing the velocity that beves it.

More useful controllers examine the value of the connedtey tare attached to
in order to select a derivative value. The two basic varsetiesuch controllers are
GoTowards andFollow . Each of these picks derivative values to make its attached
connector achieve a target value. The difference is tab&owards has a fixed
target, whileFollow has a moving target such as a motion path or an input device.
An important distinction is that Bollow may be able to use information about the
motion of its target in order to track better.

A GoTowards controller picks its control velocity to get its value to ttesired
target. The value of the velocity must be related to the disteof the control from
the target. There are several ways to choose the value. Qogisk a velocity that
gets the control to its target in a set amount of time. The arhoitime must be long
enough to encompass a sufficient number of solver steps, @nm fast such that
ODE solver inaccuracies cause the control to overshodriget.

An alternate method of choosing the velocity for@aTowards controller is to
make it a scaled factor of the displacement. This createsgsfike attraction. When
the control is far away it moves quickly, facilitating coagsositioning. As it gets close,
it moves more slowly for precise positioning. One drawbatthe technique is that
it is hard to achieve target exactly: when the control is \®@oge, its velocity is very
low. One solution used in the prototypes is to switch betwsging attraction and
the constant rate scheme described above. When a contralufitsently close to its
target, its velocity is chosen so that it would achieve thal gxactly in a step. This
works well because for these small displacements, the appations that the ODE
solver makes may be sufficiently accurate.

An important attribute oGoTowards controllers is that they implicitly incorpo-
rate feedback. That is, they are continually adjusting #leaities to correct for any
errors. If numerical drift or some other problem causes drobto make a turn for the
worse, the error will be corrected in subsequent steps. iecaf this, constraints will
almost always use@oTowards controller rather than @onstant controller with
constant derivative O.

An approximation to &ollow controller can be created with@oTowards
controller whose target is periodically updated. HoweWallow controllers not
only build in this continual update, but provide an oppottyito incorporate knowledge
of the target’s trajectory to improve tracking.Follow controller effectively drives
its value towards where its target will be, rather than wlitdee In order to do this, the
time derivative information of the target must be known. tagtice, we rarely have
good enough predictive models of input devices for this tokywbowever, it is useful
for tracking key-framed motion paths, as described by [WW90].

102 CHAPTER 6. CONTROLLERS

6.4 Switching Controllers

The controllers we have discussed so far continuously partbe same simple task
while plugged in. In this section we consider some more cemgbntrollers that
switch themselves on and off based on the values of the ctomibey are attached
to and some measures of how hard they are working. In effeesetcomplex con-
trollers simply plug and unplug more basiloTowards controllers as needed. These
behaviors are encapsulated as new controller types bedheseare widely useful, so
a simple encapsulation is handy; they can continuouslywite values, potentially
switching more often than just at step boundaries; and thiéyoek at internal solver
guantities, the Lagrange multipliers, that we might pref&rto expose to system com-
ponents outside of the solver.

By being clever about when controls are switched on and afédan the value
of the connector they are attached to, a variety of intargdbehaviors can be cre-
ated. One behavior that this allows creating is an inequedibstraint or boundary on
a value. Switching of equality constraints is a standartiniepie for implementing
inequality constraints, and is referred to asdah#ve setmethod by the numerical anal-
ysis literature as it keeps a subset of all the constrairisgeaat any given time. For the
differential approach, we use similar techniques to cretiter behaviors as well. This
section begins by describing three different variatiorsabive set techniques, and then
discuss some of the challenges in implementing them cdyrect

6.4.1 Bounding

Placing boundaries or inequalities on aspect values ia oeful, for example when a
range of values is illegal, or only an approximate range a¥m ABound controller
Is created by enabling@oTowards controller whenever the value has moved past
the boundary. Th&oTowards controller is used to move the value back within the
boundary. When the output is within the legal region, the lolauy constraint does
nothing. The other major complication is that the boundamystraint should never
pull the value further into the violated region, as depiatedrigure 6.5. That is, if
another controller is trying to pull the value out of the g region, the boundary
controller should not fight it. This case must be handled iwithe differential solver,
as discussed in Section 6.4.4.

Inequality constraints operate by first being violated asidgiaGoTowards to
fix themselves. If a value is moving towards a boundary,Glod owards does not
enable until after it has violated the boundary. One satutiothis problem is that if
such aviolation is detected, back time up until the valugasdy at the boundary. This
procedure is often done for physical simulation of colli&pas discussed in [Bar92b].
Such backing up could be used with the differential apprpaold is discussed more
fully in Section 6.4.5.

6.4. SWITCHING CONTROLLERS 103

N

Figure 6.5: The point is bound to remain inside the rectangle. Left: wthenpoint is in
an illegal position &oTowards controller pulls it back to the boundary of the legal region.
Right: if some other controller will pull the point back intbe legal region, &oTowards
controller that attempts to pull the point to the boundartheflegal region would pull against
the other controller, and is therefore disabled.

6.4.2 Snapping

One of the fundamental issues in direct manipulation isipi@t. how can exact val-
ues be specified when they are required. This problem arnsesny situations, for
example when attempting to establish a precise geometatiarship in a drawing,
when picking a small object, or when attempting to hold arecbgteadily in place
with a noisy input device. One solution that has been empldy@rovide precision in
direct manipulation is known gravity fields or snapping.

Gravity fields were first introduced in Sketchpad[Sut63ietasting points have a
gravity field that draws the cursor in when it is close. Thesourfollows the pointing
device, however, when it is close to an interesting locaitiésnaps” precisely there.
Many varieties of snapping have been used to help in direcipn&ation. The most
common are grids, which snap the cursor to points on a grigti#er important variety
is object gravity, in which the cursor is drawn towards thapdrical objects.

Just as we rely on tools such as straight-edges, rulers cangpasses to aid a pencil
in drawing a precise drawing, gravity or snapping servestasldor creating precise
graphical manipulations. Rather than having to manipudajects to exact positions,
the user can simply get them close, and the gravity take®thefjprecisely position-
ing the cursor. This allows drawings to be created with moeeigion than the input
device has, or to have precision even if the input device isyndnterface issues in
snapping, such as providing feedback so the user can be eonfitht the correct re-
lationship is being established and selecting among marsediogether snap targets,
can be handled, as shown in tBear drawing program of Section 9.1.

One obvious way to incorporate snapping with differentialnipulation is to use
the snap target as the goal for dragging. This approach vemkingheBriar drawing
program, described in Section 9.1. One complication isgshate the dragged object

104 CHAPTER 6. CONTROLLERS

does not follow the cursor exactly, the object may not eghlbhe relationship that the
cursor does. This can be combatted with feedback to infoenusler when the dragged
point establishes the relationship that the cursor hadypnthking the snapping persist
long enough to allow the dragged point to catch up with theaur

It is also possible to use the differential approach to imq@at snapping. A con-
troller is connected to drive the output to a precise valuemthe output gets close. If
another controller attempts to pull the connected atteliigm its target, the snapping
controller is disabled. An analogy for this is pushing a nedround on a grooved
table. When the marble is close to a groove it falls into th@gep and will roll around
inside of it until pushed hard enough that it escapes fronslbie

A Snap controller is implemented using a variant of the active selhhique used
for Bound controllers. By default, the controller is inactive. If thalue of its at-
tached connector gets within a specified distance of thepgngparget, the controller
is activated and switches on@oTowards controller to drive the connector to the
target value. If the magnitude of the Lagrange multipliartfee GoTowards ever
exceeds a limit value, the controller is pulling too hardiagiother controllers and
must be deactivated.

The key intuition behin@nap controllers is that the Lagrange multiplier is a mea-
sure of how hard a control is pulling. Since the “pull” of a tatler is actually deter-
mined by the product of the Lagrange multiplier and the grativf the control function,
the magnitude of this vector is actually used to determieethount of effort the con-
troller is applying. One difficulty wititSnap controllers is that the parameters that
determine their behavior, most specifically the limit magde, must be determined
empirically.

A Snap controller can be attached to any object output, not justtipos. For
instance, &nap controller on a line segment’s orientation could make a seyrhat
was easy to place into a precisely horizontal configurafidre differential implemen-
tation provides more flexibility than traditional methods fmplementing snapping.
We therefore call the differential snappiggneralized snappingn Section 8.4.1 we
discuss some applications of generalized snapping.

6.4.3 Click Stops

Another way to combat the precision problem with direct rpafation is to require a
value to have one of a discrete set of values, for examplesttera grid for dragging.
This is easy to do with the traditional implementations a&di manipulation, which
often use integer representations anyway. However, tifieréliftial approach operates
on continuous values. One way to implement an interactiah lthits a value to a
discrete set islicking.

Clicking is a variant of snapping that effectively constisaa connector output to
have a discrete value, either from a finite set, or to be amganter multiple.Click

6.4. SWITCHING CONTROLLERS 105

() (b) (c)
JQ»R Q—»% QA

1 2 1 2 1 2

Figure 6.6: Clicking forces a value to be in a discrete set. The valudiigdase the horizontal
position of the circle, is constrained to have the value 1.0G2y arrows represent the pull
of the mouse control, black arrows represent the pull ofGhek controller. Initially (a) it

has value 1, so @oTowards controller pulls to maintain this value as the mouse attesmpt
to drag it with a pull labeled\. At some point, the mouse pulls hard enough so that the pull
vector's magnitude exceeds a limit value causing the cetrto advance to the next click
stop (b), causing the point to attain the next value in théet

controllers work by constraining the output to have a vatuthe set. If the constraint
is pulling too hard, the value is changed to another elenmetiita set, as illustrated in
Figure 6.6.

6.4.4 Implementing Active Set Methods

The Bound, Snap, and Click controllers all operate by switching simpler
GoTowards controllers on and off. They are all variants of the activersethods
commonly used for realizing inequality constraints. Aetset algorithms are detailed
in standard textbooks such as [GMW81] and [Fle87]. The diffioart of such algo-
rithms is determining which constraints to enable and diésabcombinatorial problem.
The simple method discussed here tries a few guesses atrtbetet, and then gives
up, selecting a solution that fails to satisfy all the regments. The solver will be likely
to provide an acceptable interactive behavior. We willr¢f@re, begin by examining
the active set problem in the context of the differentialrapgh, and then described
a simple algorithm. While the simple technique does guaestfie correct answers to
the problems, it has the following advantages:

e The methods always fail in ways that can be corrected later.

e The methods are easy to implement as extensions to thengx@stierential op-
timization.

e The methods do not access any of the matrices, except bygtie differential
optimization. Therefore, as with the differential optimin techniques, we can
use any linear system solver.

106 CHAPTER 6. CONTROLLERS

(@) (b) (©

AM ta_o M

/ / /

Figure 6.7: An inequality constraing, > 0 keeps the block above the floor. The inequality
is implemented by switching an equality constrajpt= 0 on and off. When the block is
above the floor (a), the equality constraint is inactiveh# block is on or under the floor (b),
the constraint pushes the block towards being on the floantesacting any controls that are
pulling the block downwards. However, if other controlseatpts to pull the block above the
floor (c), the control used for the inequality would pull domard, causing sticking. Therefore,
it is deactivated.

Recently, an inequality solver specifically designed foeiactive systems was de-
veloped by David Baraff [Bar94]. The algorithm was desigfdmplementing phys-
ical simulations of collisions, a problem very similar toplamenting graphical manip-
ulation with the differential approach. Baraff’s algonticould be used in computing
the differential optimization. Application of this algtiim to implementing the dif-
ferential approach is left as a topic for future study (Sectid0.3). However, without
significant work, such algorithms do not have many of the athges of the iterative
solvers discussed in Section 4.3.2, such as the abilitypo@sparsity.

Active Set Methods in the Differential Approach

To introduce the basic idea of an active set method, con#iidesimple example of
Figure 6.7. The example has a single state varighlinat measures the block’s height
above the floor. An inequality constraint is used to keep tlhekbabove the floor,
¢, > 0. An active set method implements this inequality by switghihe equality
constrainty, = 0, or in differential termsg;, GoTowards 0, on and off as needed.

If the block is above the floor, the inequality constraintsloething. It isinactive.
The more interesting case is when the block either sits ofidbe or has fallen below
the floor. In this case, th@oTowards controller is activated to either push the block
towards sitting exactly on the floor, or to prevent the bloakt sinking underneath

6.4. SWITCHING CONTROLLERS 107

the floor. When the constraint works to keep the block abovédlte, its Lagrange
multiplier will be positive, that is, the constraint is purstp upwards.

Consider a case where the block is sitting on the floor, wigtttimstraint activated.
Suppose another control, such as connection to the motesmjs to pull the block off
the floor. TheGoTowards controller will attempt to keep the block on the floor, with
anegative Lagrange multiplier pulling downwards. In essethe inequality constraint
will be sticky. The solution to this is to disallow negativadrange multipliers. When
one is found, the constraint must be deactivated.

When there are multiple inequality constraints couplingeoty, deciding which
Lagrange multipliers to deactivate becomes more complitaConsider the example
of Figure 6.8. Two keep the two blocks stacked, one inequadihstraint keeps block B
above the ground, while the other keeps block A above blodikiB.former constraint
is implemented by switching the equaligy = 0 on and off, the latter by switching
q» — g, = h. For each solution of the Lagrange multipliers, the solveshagtermine
which of the two constraints should be activated. If a cdnsased to pull block
A upwards and both constraints are active, the equalitytcaings would maintain
the stacked configuration, causing the blocks to stick ieglay pulling downward
on them. Since the inqualities can only push upwards, we hagactivate the ones
pulling downwards (e.g. both of them). However, deactivgiall of the constraints
pulling in illegal directions is unnecessary, and wrongh#re is a soft control pulling
B downwards, that constraint should stay active.

The process of determining the active set is iterative: tiees must determine
which ways the constraints are pulling, deactivate any ttaimgs pulling in illegal
directions, reactivate any constraints that should noeHhseen disabled, and repeat.
Determining the correct active set can be difficult, and rigljuire many attempts.

If the correct active set is not found, there are two typesfre possible for any
particular constraint. Either a constraint that should ¢cieva is deactivated, or a con-
straint that should be inactive is activated. This lattevecs extremely problematic.
Consider what would happen in the example of Figure 6.7: siee would not be able
to lift the block off the floor. If the algorithm made this eriia one step, it would make
the same error in subsequent steps since the configuratésndo chande

Deactivating too many constraints is less of a concern. idenshe example of
Figure 6.8. If both constraints are deactivated, the lovieckowill not be prevented
from moving downward for the step. However, in the next sthp,algorithm could
correct for this error. It is unlikely to make an error acting the constraint because
the block will be separated from the upper block, which is tdaased the confusion.

If we resign ourselves to not always being able to find theemractive set, we
must at least make sure to always err on the side of deaciyaido many constraints.
Such an algorithm is simple to devise. An example algoritepresented in the next

I Assuming the algorithm is deterministic and it bases desissolely on the configuration, which
the differential methods do.

108 CHAPTER 6. CONTROLLERS

@ (b) © (@
e
A - v P e
— —) —) (—) f
qp=0 gv=0
N— N—
v v v v

Figure 6.8: Multiple blocks are kept stacked on the floor by inequalitpstoaints. (a) One
constraint keeps block B above the floor, the other keepskitoabove block B. (b) If a
control pulls upwards on block A, the active constraintsasgequalities that cause the blocks
to stick in place. (¢) Removing all inequalities that arelipgl downward in (b) would cause
the constraint on block B to be erroneously removed. If amotontrol were pulling down on
it, no constraint would keep B above the table. (d) The coselution reenables constraint B.

section.

It is important to notice that excess deactivations are antyoblem when there
are many interacting inequality constraints. There arer@#ting applications, such
as collision simulation, where this occurs. In such apgilce, these errors might be
problematic. However, there are other potentially moraificant sources of errors
in such applications, such as improperly handling the pws® continuous nature of
the ODEs, as discussed later in this section. In Sectio,8m will look at using the
differential approach for collisions, and consider thelppems.

An Active Set Algorithm

The basic outline of a simple active set technique is asvi@io

1. Select an initial active set by activated any inequalitystraints that may be ac-
tive. Candidate constraints are those whose values eiiblate/their boundaries
or are within a tolerance of the boundaries.

2. Select some deactivated constraints that are potsgrd@lye and reactivate them.

3. Solve for the Lagrange multipliers.

6.4. SWITCHING CONTROLLERS 109

4. Deactivate any constraints with negative Lagrange pligts.
5. If the active set was changed, return to step 2.

The simplest method omits step 2. This leads to a method thetigthe requirement
that it will always err on the side of having too few active straints. It also is guar-
anteed to terminate because on each iteration the size attive set must decrease,
since there is no step inside the iteration that adds contsrdt has the disadvantage
that it often removes too many constraints.

A constraint is a candidate for reactivation in step 2 if teewhtive of the function
is negative. A constrainf;(q) > k is a candidate for reactivation Wf; - ¢ < 0.
Implementing reactivation can be complicated. The methadtmot to cycle, that
is to infinitely loop among several active sets. A method theve used to prevent
looping is to permit a given constraint to be reactivated asinonce. While this falls
far short of a reliable inequality solver, it gets corredusons on many problems on
which the simpler method fails, for example the problem gfufe 6.8.

6.4.5 Piecewise Continuous ODE Solving

Solving the ODE is difficult because the derivatives are iomilly changing. In Sec-

tion 3.3, we were concerned about them changing due to tloéidums being non-linear.

However, the derivatives might also change discontinyowslen the set of controls
change. Such ODEs are callpécewise continuouas they consist of continuous
pieces between breaks. Note that the discontinuities ateeiderivatives, not in the

values. Methods for solving piecewise continuous ODEs m@udsed in an appendix
of [Bar92c].

An ODE solving technique such as Runge-Kutta attempts tocfitreinuous func-
tion (a polynomial) to the ODE over a step. If the ODE is diggmmous, this may be
problematic. Even if multiple smaller steps are taken tdBtfunction with piecewise
polynomial segments, methods that take fixed step sizesadrikaly to have their
discontinuities match the discontinuities in the derivasi.

Many of the discontinuities are avoided in the differenéipproach, since events
that change the set of controls are deferred until the enddeps. The ODEs are
therefore step-piecewise continuous, or continuous withe steps. This means that
techniques such as Runge-Kutta are acceptable, becayseilleot see the disconti-
nuities. Techniques that require continuity between steysh as Predictor Corrector
methods, may have more problems.

Active set methods may change the set of controls duringm stsing a dis-
continuity in the derivatives. This is potentially problatic. However, the alternative
would involve finding the precise time that the controls stiand adapting the step
sizes so that the step boundaries occur exactly at thisinsta

110 CHAPTER 6. CONTROLLERS

The most severe symptom of not finding discontinuities is the system can re-
spond to changes only after they happen. For example, anafiggconstraint acti-
vates after it is violated. Therefore, there will be a brieftant when the constraint is
violated. Subsequent steps will move to a it valid state. ilHe#fects of an ODE solver
misfitting a continuous polynomial will similarly be repad by subsequent steps. If
such error is unacceptable, cleanup steps can be used.

Piecewise ODE solving by backing up can be used with theréifigal approach.
| have instead used the approach of letting later stepsadoeany errors caused by
violations. There are many reasons to prefer such an aguroac

e The general root finding problem of determining when to bazkaus difficult.

e The ill-effects of adaptive step sizes, as described in@e&t3.1 are applicable
- possibly even more so as adjusting the step size requiredeatmlly time
consuming root finding operation.

¢ When there are many changes close together in time, a baakisgstem can
take only tiny steps between them. In a cleanup afterwargsoaph, many can
be cleaned up simultaneously.

¢ With the cleanup approach, objects not affected by the dismaity continue to
move as they otherwise would. If the step size were adaplieof, the objects
would slow down whenever any discontinuities occurred.

For certain applications, such as collision simulationih@ instants of violated in-
equalities will be unacceptable, and piecewise ODE methaltibe required.

Chapter 7

But the ancient debate on emergence, whether indeed
wholes may have properties not intrinsic to the parts, is
besides the point. The fact is, that parts have properties
that are characteristic of them only as they are parts of
wholes; the properties come into existence in the interac-
tion that makes the whole.
— Richard Levins and Richard Lewontin
The Dialectical Biologistp 273

A Graphics Toolkit

To this point, we have introduced the machinery of the difféial approach, the meth-
ods for its realization, and the structure of a general pggpmplementation. In this
chapter, we consider how the approach can be encapsulatedgdort the construction
of graphical editing applications. Graphical applicasdypically share a wide variety
of functionality, so their construction is often faciligat by the creation of toolkits that
encapsulate the common needs. This chapter discusses samkigbuilt on top of
the differential approachBrambleis an object-oriented graphics toolkit, built on the
infrastructure of the previous chapters.

Bramble has much in common with other object-oriented graytbolkits designed
to support direct manipulation graphical editors, such amé& [MGD"90], Inventor
[SC92], GROOP [KW93], and Alice [PT94]. Bramble’s primarystinction is that it
is designed on top of the differential approach. The majoasequences of this are:

The differential approach is used to create almost all gcapmanipulations.

Graphical objects have connectors that compute theirwaatributes, and often
provide these standardized connectors in lieu of speciféraction code.

Snap-Together Mathematics is used to connect objectshegahd to connect
interactive controls to objects.

Bramble provides support for application features sucheasrgptric constraints
that are easy to create with the differential approach, Bfitualt to implement
in standard toolkits.

Bramble’s control flow is dictated by the differential apach. The model of an
ODE solver with events interleaved between steps, as thescim Section 6.2,

111

112

CHAPTER 7. A GRAPHICS TOOLKIT

provides a centralized main loop that calls applicationecathen needed. The
differential approach allows continuous motion direct mpatation to fit nicely
into such a scheme. callback style architecture as mechar@sist that permit
direct manipulation to fit in such a scheme.

Bramble not only shows how the machinery of the differergigproach can be
applied to the construction of graphical applications,ddsb how the approach’s ma-
chinery can be encapsulated and hidden from the applicatimgrammer. My goals
in constructing Bramble were:

To make it possible to quickly prototype a number of appiaad to illustrate
and explore the differential approach. The emphasis is eadgpf construction
and extensibility, rather than on industrial strength sodfiuch of this goal was
pragmatic: | needed to construct enough examples to sufiy@oconjectures of
this thesis in a reasonable amount of time.

To support a variety of applications. It was important thearBble could sup-
port both 2D and 3D applications. While the focus is on graghedlitors and
modelers, Bramble also supports other applications sucibjast viewers and
visualization tools.

To support the basic services of graphical applicationsc@jty provided by
toolkits.

To facilitate building applications that provide the feasi that the differential
approach supports, such as geometric constraints.

To facilitate experimenting with interaction techniquesl &valuating them in
context within applications.

To show how the architectural features of the differentmdraach could impact
applications architecture. In particular, the approacher@able increased mod-
ularity, since Snap-Together Math provides a common cadioremechanism
between parts, and separation of manipulation and repgetgemaids encapsu-
lation.

To show that the machinery of the approach can be sufficientgpsulated. The
application programmer does not need to see the mathenrabeder to make

use of the approach’s features. Bramble is designed to \etlolgers program

with the familiar abstractions of graphical applicationhey see the abstrac-
tions of the approach only when defining new interaction nepines. Bramble

programmers never need see the inner workings of the solver.

7.1. THE BRAMBLE APPLICATION MODEL 113

7.1 The Bramble Application Model

The flow of control in Bramble is dictated by the differentegdproach, as described
in Section 6.2. Time flows forward as the ODE solver steps &dy continuously
evolving the state of the objects. By continuously viewing world as it evolves, we
can see objects move according to their controls. At disénstants, such as when an
event occurs, changes to the objects in the world can be niémigever, such events
are instantaneous impulses: all changes to the confignsatibobjects must happen
via the passage of time by the ODE solver.

The differential approach’s model of time is significant aolkit design for two
related reasons:

1. It provides a uniform “main loop” for all applications.

2. It provides a way to incorporate simultaneous, contisteretions such as drag-
ging into an event driven architecture. Events can asymdusly begin and
end continuous motion actions, concurrency is handled &galver: there is no
need for multi-threading or other time sharing mechanisnashieve concurrent,
asynchronous actions.

These two elements make it practical for Bramble to use ewalittacks as its sole
application control mechanism. A Bramble application degscontain a “main” loop,
but rather, after the application concludes its initialupetit simply call a function
defining a standard loop that runs the ODE solver, keeps #esvof the world up
to date, and calls appropriate fragments of applicatiorea@den needed. Code to be
called is specified in hooks, variables that can be boundafgnients of code that are
accessed at defined times. Hooks are discussed in moreidedaittion 7.6.

The overall structure of Bramble is shown in the schematkeigd@ire 7.1. Bramble
is built on top of the Silicon Graphics GL graphics libraryif8] and the Snap-Together
Math toolkit, discussed in Chapter 5. Bramble itself caomaio solver code and does
not even provide access to the solver’s internal structusesmble also includes the
Whisper embedded interpreter, described in Appendix A. Fnabsosis of Bramble
and Whisper will be discussed in Section 7.1.1.

A Bramble application consists of two parts:

e Code implementing any custom classes.

e A program that is run to execute the application. This progtgpically sets up
the application, doing tasks like opening windows, cragtmtial objects and
widgets, and defining hooks. After initialization, the pra starts the differen-
tial process’ time flowing. Once time is started, applicatode is only executed
when a hook is called.

114 CHAPTER 7. A GRAPHICS TOOLKIT

ApplicationJ [Application} [Application} [Application} [Application

\. /

-
. 1. . Application
[Standard Objects] épplmaﬂo@ Specﬂléobjecﬂs Ssgport

windows
widgets
standard interaction

[Object Management } :
B ram b I e _ techniques)

Snap Together Math Whisper interpreter toolkit GL
(includes differential solver)

\. /

Figure 7.1: The pieces of the Bramble toolkit. Bramble is built on top ofaf-Together
Math and the Whisper interpreter. It contains a variety ef@efined object classes, support
for managing sets of graphical objects, and other misoediaa pieces needed by graphical
applications. A Bramble application typically consistsaofVhisper driver program and (op-
tionally) C++ definitions of new object types.

The major pieces of Bramble are akin to other similar toslkifach is affected by
the use of the differential approach:

Object Management — Bramble’s mechanisms for managing sets of objects, disduss
in Section 7.3, provide access to the features relevanetditferential approach,
such as keeping track of state variables and connectorbfdtts, even win-
dows and widgets, can have state and connectors.

Standard Object Types — Bramble’s standard object types, discussed in Section 7.5
provide a wide range of connectors to support graphical pudation.

Hooks — Bramble provides a set of hooks that aim to be sufficient toi§pa range of
interaction techniques. These are chosen to provide a n@mneset of opportu-
nities to alter the controllers and objects of the diffel@rdpproach. Bramble’s
hooks are discussed in Section 7.6.

Windows and Widgets — Bramble’s windows can contain views of the world that are
automatically kept consistent, and many of the supportedeis, such as sliders,
are designed to manipulate their targets using the diffedempproach. These
features are described in Section 7.7.

7.1. THE BRAMBLE APPLICATION MODEL 115

Standard Interaction Techniques — Bramble contains many basic graphical manip-
ulation techniques in its library, all of which are definedtwihe differential
approach. Picking and snapping services are tuned towaedetection of con-
nectors for manipulation.

This chapter will discuss these various pieces of Bramblgwing a discussion of an
important part of Bramble’s structure, and a simple exarpleow Bramble is used.

7.1.1 Whisper and Bramble

The Whisper embedded interpreter, described in Appendis Aniimportant part of
Bramble. An embedded interpreter is a useful feature foplycal applications as it
provides support for features such as saving and loadinglase files and user exten-
sions. However, Whisper plays an even more significant roramble. Internally,
the Whisper interpreter’s implementation is used by Branfidmesupport, and exter-
nally, much of the application programming in Bramble is amWhisper.

As discussed in Section 2.3, using an embedded interpretegiaphics toolkit is
a common technique. However, the differential approactoras some of the draw-
backs. The speed-critical computations occur as part afniematics; all standard
pieces can be written in the compiled host language. Thealea®d main loop pro-
vided by the ODE solver also interacts nicely with the emieedihterpreter. Most
application behavior is defined by hooks. Bramble’s hook maacsm, discussed in
Section 7.6, permits pointers to C++ functions, text fragteef Whisper code, and
Whisper closures to be dynamically assigned.

Like other similar languages, Whisper has a runtime suppstes for memory
and object management. Bramble also uses these facilitietsfheeds. The advan-
tages are twofold: first, it provides Bramble with a dynamigmory managed object
system; and second, it means that Bramble’s objects arg aasessible from the in-
terpreter.

The majority of Bramble application programming is done iniSyer. Bramble
is designed such that applications are constructed by @ixigithe generic default ap-
plication. Constructing applications in the extensiorglaage is, therefore, sensible.
Application programming in Whisper has many advantages:

e The interpretive nature of Whisper leads to faster turnaddban the statically
compiled C++ environment.

e The interactive loop of the interpreter provides a usefbludgying environment,
whereas the complexity of the entire C++ system makes ubmgtandard C++
debuggers awkward.

IThis is more a statement about the C++ programming envirahatehe present time than about
Bramble.

116 CHAPTER 7. A GRAPHICS TOOLKIT

e Whisper’s abstraction mechanisms, notably first-classtions and dynamic ob-
jects, are useful in the design of interactive systems.

e Many of the details of the system are hidden from a Whispernaragier. For
example, window management and refresh, and the solvenaiseare hidden.
In fact, there are no mechanisms provided in Whisper to adoemsal solver
data structures. The language does not even have vectortiax oanstructs!

There is nothing thatnustbe done in Whisper. However, almost all application pro-
grammingcanbe done in whisper.

Bramble is actually wired into the Whisper interpreter as semsion. The C++
“main” of a Bramble application is a Whisper read—eval—plaaip, typically that can
select files to read from the command line. For my work, thera single Whis-
per/Bramble executable and each application differs optyné Whisper program used
to run the application. For many applications, howeverffedint version of the inter-
preter, with custom sets of extensions wired in, would beaw@sirable.

The interpreter-based organization of Bramble empha#iize$t meets its goals of
insulating the application from the mathematics. The défftial optimization is com-
pletely encapsulated inside tl®nstEngine object as described in Section 5.4.5.
Nowhere in the Bramble toolkit source code or applicatiathere mention of the
internals of the solver process.

7.2 A Simple Example

In order to introduce the basic concepts of Bramble, a siexdenple will be presented.
This example is designed to be similar to that used to inttedlue Inventor toolkit. In
the Inventor book [Wer94], a program called “hello cone”iigam as a first introduction
to Inventor. Here is the same program, one that displays a itoa window, written
with Bramble:

(1) (set my-view (make-view "Hello Cone"))
(2) (set my-cam (make-la-camera))
(3) (view-cam my-view my-cam)

(4) (set c (make-cone))
(5) (c (set material shiny-red-material))

(6) (90)
This simple example brings out the basic notions of BramBlgrogram places

graphical objects in the world, and does not worry about ldexee| details such as how
they are drawn or how the windows are managed. The first lie&tes a window that

7.2. A SIMPLE EXAMPLE 117

Figure 7.2: The simple “Hello Cone” program in Bramble.

views Bramble’s world. Line 2 creates a default “lookat” gy and line 3 specifies
that the view created on line 1 should look at the world thirotinge lens of this camera.

Lines 4 and 5 of the program create the cone object, and chatsgeolor to red.
The color is changed by setting the property of the cone othjatspecifies the surface
properties to be a predefined material that is shiny red. Uiisual syntax for access-
ing object fields is described in Appendix A. Notice that whieecone is created, it is
by default created in the world and is therefore visible twers of the world.

The “action” of the program takes place in the last line. Hoe routine begins
the interactive loop which is in the toolkit proper. In diféatial terms, time is started.
Steps are continually taken, and in between any events agdidth The interactive
loop runs continuously until either the program is killedadlag is set.

The simple 3D example receives a lot of a 3D interface fronnitia’s defaults, as
shown in Figure 7.2. By default, Bramble creates a numbartefface elements such
as the ground plane, some lights, and the shadows dropptchilgronto the ground
as if the sun were at high noon. These defaults can easilydreidden. In a sense, the
Bramble program simply modifies the default application ants it.

The most obvious difference between this program and thenftov equivalent is
that it is written in Whisper, not C++. This difference can bgphasized by adding the
line

(add-key dev-esckey k-any k-down
(lambda (v) (set bramble-going nil)))

which attaches a procedure that sets a flag to the escape lkisyflah signals thgo
routine to stop the interactive loop and return. Since themo code after the call
to go, Bramble will return to an interactive Whisper prompt. Thias a user to
interactively alter the program. The differential interae loop can be restarted with
another call to thgo routine.

118 CHAPTER 7. A GRAPHICS TOOLKIT

To get elements of a standard 3D interface, some standarddeytions can be
read by replacing lines 1 through 3 with

(read std-world.wh)
(set v (make-standard-view "Hello Cone"))

at the top of the file. The Bramble standard 3D interface, ril@sd in Section 7.8
binds the mouse buttons to routines that permit objects tgrétgbed and dragged and
the viewpoint to be controlled.

With the 3D interface, we would notice that when we grab theecm the simple
program, it does not move. The primitive cone from the liprigra rigid body that
has no degrees of freedom. To make it movable, we place thein@transformation
group with the lines

(set g (make-gs-group))
(add-to-group g c)

somewhere after the cone is created, but bejore Themake-gs-group function
creates an empty group that can rotate and scale (gs starglsaternion and scale).

We might want to have the cone begin pointing upwards. Sinisenill require a
non-differential change (i.e. we want it to instantanepagipear in the right orienta-
tion), we cannot use the differential machinery. This meaasnust actually directly
access and modify the state variable of the object. Thisng dy

(set-qvar (get-q g) 'sy -1)

that sets they (scale in y) variable of the group to -1. We might then wantrevpnt
the object from scaling as it is manipulated, which can besxaished by

(freeze-scale g)

which is a special operation for groups.

The cone can now be grabbed and dragged using the standanthlBraousepole
manipulation technique, as described in Section 7.8. Weneiv add some other
functionality that uses Bramble to operate the differémtiachinery. Suppose that we
want to have the top of the cone fly towards the left. This i®agaished by taking a
connector that computes the position of the top of the codeattiaching a controller
to it. Since the cone object has a predefined “top” connetiiroperation is as easy
as

(controller (signal (c top) 'x) '= 5)

that finds the x coordinate output of the top connector of theecand creates a con-

7.2. A SIMPLE EXAMPLE 119

troller that drives it towards the value 5. We might want tst@ad bind this operation
to a key so it happens only when we’re ready

(add-key dev-gkey k-none k-down
(lambda (v) (controller (signal (c top) 'x) '= 5))).

Notice how this example maps exactly to the abstractionsetitfferential approach.

We manipulate an object by attaching controllers to its eators. The actual change
itself happens as time passes after the discrete instamt thieecontroller is created.

The manipulation is done completely in terms of the conrreatbthe objects, without

regard for what parameters inside make them actually change

Suppose we want to make a chain of cones. Here, we add a sewwadrad connect
it to the first.

(set c2 (make-cone))

(set g2 (make-g-group))
(add-to-group g2 c2)
(pt-eq (c bottom) (c2 top))

The important thing to notice from this example is that we evable to create the
connection by talking in terms of geometric or graphicakelsg, not mathematics. The
constraint is created to connect the bottom of one cone antbfhof the other.

The lack of mathematics in the last example is a result of ugydertunate that the
cones had the connectors we desired. However, adding a magctor is easy enough.
Suppose we wanted to add a new “horizontal” connector to dhe that measured if
the cone was horizontal (i.e. that the y coordinate of itsang bottom are equal, as
Bramble’s coordinate systems defines the y axis to meanteifis can be done as

(¢ (bind horiz (minus-block (signal top 'y)
(signal bottom 'y))))

This code fragment uses the Whisper/Snap-Together Matiheniatierface to create a
Snap-Together Mathematics output that computes a newwttrcallechoriz . The
attribute is computed by subtracting the height of the bottd the cone from the top.
A function block is used to perform the subtraction. Whispmsng rules cause the
code fragment that creates the block to be executed in the8scenvironment, so that
top andbottom refer to the cone. The code fragment stores stores the @umiglock
as a field in the cone object’s environment permitting othgeas to access it to use
it as a connector. This code fragment could be written as eeglitwre that could be
applied to other cones

120 CHAPTER 7. A GRAPHICS TOOLKIT

(define add-horiz (a-cone)
(a-cone (bind horiz (minus-block (signal top 'y)
(signal bottom 'y)))))

These connectors could be used just as any others, for ezampl

(add-horiz c2)
(controller (c2 horiz) '= 0)

7.3 Bramble’s World

The focus of Bramble is on building object-oriented graph&pplications. One of
Bramble’s central roles is to help maintain the set of olgj¢lcat are being presented
to the user. In Bramble, there is a single, implicit “world’which all objects exist.
By default, when objects are created they are placed in tidwdhe concept of
the world is implicit in Bramble, unlike Inventor which reiges explicit creation of
“scene graphs.” The advantage of this is simplicity, altffotine ability to have multiple
simultaneous worlds is sacrificed.

The world provides a uniform 3D coordinate system for allealtg. The world is
always 3D, even for 2D applications. In such applicatiorigects ignore the third
dimension. This has a small cost, for example in doing t@nsations. The benefits
include avoiding redundant code and the ability to place BJeds in 3D worlds. The
underlying GL graphics toolkit takes a similar approach.

In Bramble, the programming model is not of screens that@méruously redrawn.
Instead, the model is of a time continuous world into whicleots are placed and
manipulated. Images on the screen provide views of thisdvorl

7.3.1 The Bramble Object System

The mechanisms that support state variables, connectastlaer object management
are implemented at a general level. This permits all majgeattiypes in Bramble,
including windows and widgets, to support features thatusteally associated with
graphical objects, such as having state and connectors.

All major types of objects in Bramble are subclasses of tpe ipObj . Having a
common base allows common functionality to be shared amibtygpas of objects. For
example, each object has the ability to be named, and isreessayunique ID number
that serves as a soft pointer (hence the ndd@bj). EachlDObj has a field that
allows its major subtype to be determined dynamically. Aigobmanager keeps track
of all IDObj s created. The major subclasses@®bj are:

7.3. BRAMBLE'S WORLD 121

Drawable - agraphical objectinworld space. Thisincludes not onlyuther created
scene objects, but lights, cameras, hierarchy elemerdsyard space interface
elements such as 3D widgets.

IDrawable — a special object that exists in screen space, rather thaarid space.
Effectively, these objects are attached to lenses of canera

View — an object representing a view of the world on the screen. Wascally a
pairing of a camera and a window, with added responsitslifie determining
drawing parameters.

DistinguishedPoint — an important type of connector that represents a specific
point on some object.

Imagepoint — a special type of connector that represents the positioh@adreen
of a point.

SubWin — a subwindow of a screen window. Subclasses include widdetbuttons
and sliders.

Frame — the “physical” GL window on the screen. May contain sev&abWins,
one of which may be &iew.

Material — a set of surface properties.
Demon- a special object that performs its hooks when triggeringnesveccur.

One of the key ideas behind Bramble’s object managemerdatig#th IDObj con-
tains a Whisper environment. In Whisper, environments sesva dynamic object
system (see Appendix A). Using Whisper environments as agcbbystem for C++
has several advantages:

e It provides easy access to the object from Whisper.

By defining methods as values in the Whisper object, they catybamically
altered.

Fields and methods can be added and removed dynamicallydsadhe

Objects can inquire about which fields and methods othercth@ntain.

Whisper environments, to a certain extent, are automaticaimory-managed.

The dynamic nature of objects is important: fields and methody be added in re-
sponse to user actions. It also allows experimentation apghlication behavior: ob-
jects can be interactively modified while the applicatioruisning.

122 CHAPTER 7. A GRAPHICS TOOLKIT

Any IDObj can have state variables and connectors. The base cladesharah-
agement of these differential features. It also permiteatjto create differential con-
trollers or employ function blocks. These are automatycamoved when the object
is deleted. Object deletion is also handled by the base ukisg lists of hooks. This
permits an object to define work that must be done when thebisiegemoved. Dy-
namic definition of deleters, very much in contrast to thésta++ notion of a deleter
method, is a very useful feature.

Memory management can be a difficult task in an interactistesy. Bramble
uses a variety of manual techniques to automatically mansgaory without using
a garbage collector. Bramble contains mechanisms to dé¢altiae inverse garbage
collection problem. An inverse garbage collector actisatden an object must be
deleted, for example in response to a user command, ancesstiner objects that
refer to it are appropriately altered or deleted. A garbalector does not provide this
behavior. Infact, in a system that was simply garbage dalte¢he object would not be
deleted until all references to it were removed. Intercatina of objects is pervasive
in and central to the differential approach, so handlingeise garbage collection is
important in Bramble. The mechanism used to handle thislenolis to have each
object maintain lists of other objects that should be natifiedeleted when the object
is deleted.

7.3.2 Graphical Objects

The graphical objects in Bramble’s world are derived from¢kasdDrawable . This
class requires only a few methods. Subclassddrafvable define a draw method
that needs only to operate in the object’s local coordinat®é. Objects may also pro-
vide other functionality. For example, most objects willide at least a few connectors
so they can be manipulated, and will allocate a state vegtstore their configuration.
Other examples of option&@lrawable functionality include ray intersection, bound-
ing box computation and generation of external representat Almost all methods
apply in local coordinates. Hierarchy mechanisms perfaquired conversions auto-
matically.

Bramble keeps all of the instancesfawable on a list. The list of “the stuff”
is Bramble’s notion of a scene. Only one list is kept by thegpan. Selective draw-
ing can effectively provide multiple scenes. Although tist ils a flat representation,
hierarchies are supported by the grouping mechanism,ideddn Section 7.5.3.

The graphical objects are not unlike their counterpartgheiobject-oriented graph-
ics toolkits. One difference in Bramble is that each obje&d€does not have to provide
methods for interaction. An object need only provide cotmsthat the more general
manipulation techniques can connect to. “Object-censigles of interaction are pos-
sible with Bramble. For example, an application can havé edgect define methods
which are called by a dispatcher that receives events.nagiate styles, for example

7.4. CONNECTORS IN BRAMBLE 123

having an object use hooks to alter general manipulatidmigaes, are also possible.
Another distinction of Bramble’s graphical objects is thay must also manage
state and connectors in ways that permit the differentipk@gch to manipulate the
object. Bramble’s object system provides a uniform plageofgects to keep a state
vector. Once a graphical object registers that it has a s&at®r, Bramble automati-
cally insures that the variables are managed correctly.
Connectors are handled in aless uniform manner. In Braralolennector is simply
a Snap-Together MathematiPert that an object stores in a way that other objects
can gain access to it. Standard mechanisms exist for cartportant types of connec-
tors, as discussed in Section 7.4.

7.4 Connectors in Bramble

In Bramble, a connector is simply a Snap-Together MathesBtrt that an object
exposes in a way that other interested objects can gainsatés The most common
way to do this is for the object to place tRPort in a field of its kept environment.
Objects are free to create any types of connectors they wabjects often provide
special purpose connectors tuned to compute their spegpfgstof attributes. Many
specific examples are given in Section 8.1.

The most important type of connector in Bramble is thstinguished point.A
DistinguishedPoint represents a particular point on a graphical object. The
primary output of eDistinguishedPoint object is its position in space, but in-
stances usually provide other attributes, such as surfageats and tangents, when
they are known.

Distinguished points are first class Bramble objects urgoigelves, that also hap-
pen to bePort objects as well. By being a redObj a distinguished point can:

e be accessed by standard object naming and reference taeblniq
e store state, permitting the point to be moved around on thexgb
¢ define hooks to specify its behavior;

e have other connectors associated with it, for example, ngpeae the position of
its shadow on the floor or wall.

To standardize access, each object keeps a list of its glissined points. Similarly, a
global list of all distinguished points is kept to aid in suakks as picking and snapping.
Registry in this global list is automatically handled by tistinguishedPoint
creation process, and permits points to be found by name larclagion.

The position and orientation of a distinguished point aresnoply a function of
the graphical object the point is on, but also the transfdiona applied to the object.

124 CHAPTER 7. A GRAPHICS TOOLKIT

However, the hierarchy mechanisms automatically handiegthransformations. A
point must provide only methods for computing its connectorthe object’s local
coordinate frame. Jacobians are also composed for poihistiarchies.

Standard subclassesbistinguishedPoint include:

Fixed Points that are a fixed position in the object’s local coordinatdesys

Point on Point that connect directly to a set of object variables that regmea posi-
tion.

Free Points that store their position in the object’s local coordingiace as their own
state vector. Constraints are often used to keep such poittie volume of or
on the surface of an object.

Different types of objects may also define special typd3isfinguishedPoint

For example, a parametric surface might define a type of plugtistores its parameter
values as state. Such a point can slide along the surfades patameters can be frozen
to create a fixed point.

7.5 Graphical Objects

Bramble supports a wide range of graphical objects. Mangdstal subtypes of
Drawable are provided, and new application-specific types can beeatkfin

7.5.1 Standard Object Types

Bramble predefines a variety of basic object types, alonig sténdard connectors with
which to manipulate them. For example, the 2D set includeslicircles, rectangles,
ellipses, and polygons. A general parametric curve cldswalthe definition of new
object types by simply providing the parametric functioron@ectors and a drawing
function are defined automatically from this as describeSdaantion 8.1.1.

Most of the standard 3D objects are defined as rigid bodidgsntiiat be placed
inside of groups to be moved. Most standard shapes, suctas,dori, cylinders, and
spheres are provided. Polyhedra can be defined in several wajuding readers for
several data file formats.

A planar mirror is provided as a 3D rigid object. In terms efgeometry, the mirror
is simply a rigid square. However, the mirror’s draw funaotaalls other objects’ draw
function with a new transformation that draws the object loa mirror’s surface to
simulate reflection. Mirrors define special connectors geainit the reflections to be
directly manipulated.

Geometric constraints are representeddogwable objects which create asso-
ciated controllers on some of their connectors. For exangp®nnection constraint

7.5. GRAPHICAL OBJECTS 125

would take twaDistinguishedPoint position connectors, and compute the dif-
ference as a connector. When created, it would also cre@terawards controller
on the distance connector to maintain the constraint. Thectdbthat represent con-
straints may provide drawing methods that provide feedba¢ke user. Bramble in-
cludes many basic constraint objects in two and three dimessncluding point con-
nection, distance, collinearity, normal or tangent aligmt and parallel. Inequality
constraints in the basic set include constraints to keeptpaiside many of the basic
shapes. All of these constraints operate generically oacblgpnnectors so they can
be attached to many types of objects.

7.5.2 Defining New Object Types

Many applications will need special purpose object typdsmauded in the standard
set. For example, the planar mechanisms simulator of Segtdefines special ob-
jects for mechanical parts such as motors, linkage rodsslatets. Often these objects
are simply slight variations on the standard toolkit okge&tor example, a linkage rod
is simply a line segment that is drawn in a different way anglitelength constrained
to be fixed at creation.

Most of the standard functionality @rawable objects can be implemented in
Whisper, allowing new types of objects to be dynamically definFor example, the
following code defines a new type Drawable that is a simple 2D line segment.

1) (defun make-line (x1 y1 x2 y2)
) (let* ((obj (wh-drawable 'line))

procedureto createaline
create an empty object

(3) (g (make-stobj 4))) ; make a 4 place state vector
(4) (set-gvar g 0 x1 yl1 x2 y2) ; put initial values into state
(5) (caste-vars g vc-sceneobj) ; declare type of variables
(6) (brobj -add-vars obj q) ; install variables in object
(7) (poi nt-on-vars-2d obj 0 1) ; create point connectors

(8) (poi nt-on-vars-2d obj 2 3) ; one for each endpoint

(9) (bind-in (get-env obj) length ; define alength connector
(10) (dist2d-block (signal g 0) (signal g 1) ; compute with distance block
(11) (signal g 2) (signal g 3)))

(12) (bind-in (get-env obj) drawf ; define draw method

(13) (1 anbda (draw-fl ags) ; function of draw params
(14) (prog (nove (val q 0) (val q 1)) ; use GL move/draw commands
(15) (draw (val g 2) (val g 3))))) ; todraw line

(16) obj)) ; return created object

This defines a procedure that creates an instance of the pewdiven initial po-
sitions for its endpoints. It first creates an “empty” objdote 2) and a state vector

126 CHAPTER 7. A GRAPHICS TOOLKIT

(line 3) that contains space for 4 variables. The objectasgmts the line by the po-
sitions of the endpoints, so the initial values can be platisgttly into the variables
(line 4). Lines 5 and 6 declare the type of the variables asthilthem into the object.
Lines 7 and 8 creatBistinguishedPoint connectors for the endpoints. These
connectors can obtain their values directly from varialmethe state vector. Lines 9
through 11 create a length connector by computing the distbatween the two end-
points. Lines 12 through 15 define a draw method for the limgrs:t. The method
takes a single argument, the drawing mode, that it ignore®st uses the defaults.

To facilitate the creation of new 2D objects types, Bramhievigles a special
define-shape function, detailed in Section A.2.1. It provides a concigetax for
specifying how the shape is drawn and placing connectors. ohhie syntax permits
intermediate variables to be specified for convenience atairial constraints on the
object to be defined.

7.5.3 Groups

Bramble supports object hierarchies with @soup class. AGroup is a subclass
of Drawable which contains a list of other objects and a transformatioagply to
them. Like the hardware and graphics library it has beer bail Bramble presently
supports only linear transformations. E&@loup has a connector that computes its
transformation matrix from its state variables. Differ@roup types define different
functions, for example to employ a quaternion or an Euleleangpresentations for
rotation.

TheGroup class automates the process of building graphical hieesoBroup
objects manage the hierarchy for their member objects. kample, the members
need only draw in their local coordinates as the group essina the proper trans-
formations are applied before the object draws itself, p#gimg the graphics hard-
ware to handle the transformation hierarchy. Making suaéttie correct results occur
when position or surface orientation connectors are coetpig more complicated.
TheDistinguishedPoint class handles this automatically.

Bramble’s grouping mechanisms make it simple to build harizs. Adding an
object to a group requires simply

(add-to-group group obj)
and everything is configured correctly. Similarly the ungymg operation
(remove-from-group group obj)

does all of the required hierarchy management. One contigiicavith ungrouping
is that when the transformation is removed, the child oljeigiht jump in space. To
prevent this, each object keeps a matrix that contains awiqusly applied transfor-

7.5. GRAPHICAL OBJECTS 127

mation. This matrix is calleteftStuff since it represents what was to “the left” of
the object when it was drawnWhen an object is removed from a group, the group’s
transformation is premultiplied into the object&ftStuff matrix. This way the
object does not jump when ungrouped. Te#Stuff matrix is inserted into the
matrix stack as each object is drawn.

Each different type oGGroup needs only to define its function that computes its
matrix from its state variables. Some auxiliary informatidenoting which variables,
if any, correspond to rotation, translation, scaling, ontee may also be provided.
Bramble’s standard set @roup types include rigid body transformations (translate
and rotate) with both quaternions and Euler angles, rotateslate/scale transforma-
tions, and a slider transformation that restricts objextsanslate along a vertical line
from the normal of a given point.

7.5.4 Cameras and Lights

A camera in Bramble is not just a 3D element. It is used forrath$formations be-
tween the world coordinate system and screen coordinaties.alGroup , a Bramble
Camera’s primary distinction is a function that maps from its stateiafales to a
transformation matrix. In the case oCamera, however, this transformation is from
world space to screen space. The inverse of this matrix @ tasgraw the camera, for
example when another camera is looking at it.

The computer graphics literature is filled with many camedets. However,
Bramble does not need to support a huge variety because ftaeedtial approach
makes them unnecessary. As best exemplified by Blinn’s workpacecraft fly-bys
[Bli88b], alternate formulations of a camera model are uge@rovide parameters
which serve as convenient controls for the user. With thfeidihtial approach, a single
camera model can be used with a variety of interactive ctstBy mixing and match-
ing controls, the user can specify camera positions as coevity as with special pur-
pose formulations. The through-the-lens camera contrfoection 8.1.4 provide a
building block from which many camera manipulations canteated, including those
of Blinn’s paper as well as the more common LOOKFROM/LOOKA®d®I.

Bramble provides a small number of standard camera transfolOrthographic
transformations are provided to produce 2D images, as wélbat, top, or side views
of 3D scenes. The most common models in computer graphicsededimera position
by a rotation about the eye point. Models differ in how thegresent the rigid body
configuration of the camera. Bramble provides camera reptasons based on quater-
nions and Euler Angles. Usually, the quaternion representzgs used because of its
attractive mathematical properties, but an Euler angleesgmtation is also available,
mainly for expository purposes.

2| use the postmultiply or function application notation,ev the point to be transformed is written
to the right of the list of matrices.

128 CHAPTER 7. A GRAPHICS TOOLKIT

A common representation of the orientation of a camera inprdar graphics is to
store a “look at” point that is to appear in the center of thage. A camera parameter-
ized by LOOKFROM/LOOKAT is provided by Bramble. Howevergtfunctionality
is typically obtained by employing a Quaternion camera atitt@ugh-the-lens con-
trol, because the representation has better mathemataa¢nies. The primary use
of the LookAtCam is when the configuration of the camera is going to be stdyical
configured in a program, rather than manipulated. In suclse, the programmer will
type the numbers that configure the camera, and thereforeagyilire an easy to type
representation.

Like cameras, lights are represented by graphical objathgwhe scene. Aight
object is a special type drawable that has an extra method which initializes the
graphics hardware to use the light. Lights provide infoiorator optional shadow
generation as a special connector which denotes the “budi@d’ in homogeneous
coordinates to allow for distant light sources.

Bramble supports several types of light sources, corregipgnwith the capabilities
of the GL graphics library and some of the renderers used.Bfamble light classes
are: point lights, distant lights, directional spot ligrasd ambient light. As graphical
objects in the scene, point and spot light sources can bepmated and transformed
as other graphical objects. This allows placing lights irttfres,” like the Luxo lamp
of Section 1.1. Special connectors for manipulating lightsbe described in Section
8.1.5.

7.6 Hooks

Bramble’s interaction model most closely resembles a disiea or notifier model
[FYDFH90] where an application registers callback procedwvith a centralized dis-
patcher that calls the appropriate procedures at the apatefimes. Bramble uses this
model for most application behavior, permitting an apglarato specify functionality
and then delegate the flow of control to the main ODE solvep.loo

The callback mechanism in Bramble is through Whidpeoks. Like their LISP
namesakes, Whisper hooks are variables that can be giveadumat values that are
called at appropriate times. In Bramble, the hook mechaaitmws either a pointer to
a C++ function or a whisper closure. Often a variable stotes af hooks to be called,
rather than just a single hook.

By defining behavior with hooks, rather than hard-codedinest the behavior of
an application can be dynamically altered. A goal in the glesif Bramble was to
provide a sufficient set of hooks such that all post-setugiegtpn behavior can be
defined with hooks. This is more practical with the differah@pproach because time
continuous activities are taken care of by the passage ef smmanipulation actions
are discrete events that can be tied to hooks. Only in extyeraee cases do hook

7.6. HOOKS 129

functions not act instantaneously. Because the main logpomales control for short
instants, processes such as screen update, window maioéraad object animation
can be maintained.

Many of Bramble’s hooks are similar to those provided byeiyst not built with the
differential approach. Having the right set of hooks to@ttand detach controllers at
the appropriate moments is essential to creating graptmiaalpulation. In this section,
we summarize the most important of Bramble’s hooks, andigeosimple examples
of how they can be used with the differential approach. Thesehanisms will be used
in Chapter 8 to define specific interaction techniques.

7.6.1 Events

An event in Bramble corresponds to a GL input device everth $$ a key press or
mouse click. Separate events are generated for both byitamdidown, allowing each
to be handled differently. Bramble keeps a dispatch taldedhksigns a hook to each
event. The dispatcher permits defining modifier selectdiswang different sets of
modifier keys to cause events to be interpreted differeBtnt hooks are called with
the current view as an argument.

The following code implements a 2D dragging behavior. Thaecfragment at-
taches a hook that handles left mouse-button down eventsaddirkey function
takes an event name, a set of modifier keys, an event type, faindtzon to call when
this event occurs. When it gets the currently selected poam the snap server (Sec-
tion 7.7.3) and creates a constraint that equates thisywamthe position of the mouse,
which is provided by the view as a connector.

(1) (add-key k-1eftnmouse k-none k-down ; left-mouse down definition

(2) (1 anbda (view) ; attach a procedure, called with view
(3) (i f (snapdp) ; if there is a selected point

(4) (let ((c (pt-eqg-2d (snapdp) ; create a constraint attaching

(5) (vi ew nouse-port)))); selected point to mouse

(6) (add- key k-1eftnouse k-any k-up ; redefine left-mouse button up

(7) (lambda (v) (delete c))))))) ; remove the attachment constraint

When the left mouse button is pressed, the procedure usssdpep function to get
the currently snapped-to point (line 3). If there is a s&dgioint, a constraint is cre-
ated that attaches the point to the position of the mouse 4liand 5). The procedure
also redefines the button up event to delete the constraet@land 7). Notice how
the use of Whisper’s lexical scoping rules keeps the intetata of this operation, the
constraint, localized and how the code for the draggingaas only executed at the
beginning and end of the operation.

Bramble automatically handles GL window events, such a&esaifocus changes,
and window removal.

130 CHAPTER 7. A GRAPHICS TOOLKIT

7.6.2 Object Hooks

Event hooks are defined on a per-application basis. By detaukvent handler does
not provide different behavior based on the object beingrezfced. However, it is
often useful to provide behavior on a per-object basis. Swolkits, such as Inventor
[SC92], dispatch events directly to objects to facilitdte diversity of object behavior.

To support diversity of object behavior, Bramble permitgects to specify hooks
that are called when certain operations are performed an.tMost of these, such as
the save hook, the draw hook, or the deleter hook are priynasiéful for dynamically
creating a new class of graphical object, as shown in Se¢tm@. Certain applications
permit objects to define specific event hooks and perform iggatching themselves.
For example, the Showoff application, described in Secigh permits each object
to define a method to be called when the right mouse buttoridkedl on it. The
application defines the right mouse event handler to deternvhich object should be
notified of the event, and to call the appropriate hook.

One set of standard event handling hooks that is partiguleséful for defining
interactive behaviors with the differential approach s ¢fnab/ungrab pair. Unlike the
example code of the previous section, the standard builtaig handlers permit objects
and specific points to specify hooks that are called beforagging operation is begun
and after it has ended. This is often used to apply conssrthiat should act during the
dragging. Some examples of how this is used are provideddtdeB.3.6.

Object hooks can be defined on a per instance basis, pewgnittividual instances
to each have their own behavior. Because hooks can be defymednitally, the be-
havior of an object can be altered while the program runs.

7.6.3 Demons

A Demon is a special class of object that causes hooks to be called egr&ain condi-
tions occur. The common condition foll®mon is that a signal is within a threshold
of a desired value. Eadbemon can define three main hooks:

do which is called when the condition the demon is looking focwos. The demon
removes itself after calling this hook.

fails which is called if the demon is removed before its condit®ratisfied.
done which is called when the demon is removed.

Demons have an optional timeout which causes them to be removedafipecified
number of steps, whether or not their conditions have bekieaed.

Demons are useful for creating a variety of behaviors. One use Deaon is
to create a non-persistent constraint by removingad owards controller after it
achieves its goal. For example, to make example of Sect®nah-persistent so that

7.7. OTHER APPLICATION COMPONENTS 131

the cone can be freely manipulated after its top reachesthedge of the table, we
could

(set cl (controller (signal (c top) 'x) '= 5))
((demon) (bind done (lambda (x) (delete cl)))
(bind tolerance .2)
(bind lifetime 50)
(bind possessed cl))

In this example, after creating the controller, a demon éatgd that “possesses” it.
When the controller gets within tolerance of its target, oewlthe demon’s specified
lifetime of 50 steps times out, the demon’s done hook is datleleting the controller.

Demons are also often used to remove constraints that atdeuttabe satisfied, per-
mitting the application to give up.

7.6.4 Other Hooks

Much of the behavior of an application is defined by hooks. Mdthese hooks are
used for tasks not particular to the differential approa€lor example, eacNiew
defines a hook that draws the background of the image whetrésrsis cleared. Any
of these hooksould contain code that alters the set of controllers. Howevemalls
set seems useful for defining interaction techniques. Thededes:

sub-step-hook is called before each call to the differential solver (eaghesubstep of
the ODE solver). This hook could be used to create active s#tads, although
hooks do not have access to solver internals to access tharigggmultipliers.

step-hook is called after each step. One common use of the step-hoak sefi-
odically altering aGoTowards controller to achieve the effect offeollow
controller.

add-obj-hook is called each time a new graphical object is added to thesysthis
can be used to permit automatic registering of new conngctor

redraw-hook is called each time a view is redrawn. This is called once pavyper
step as all views are updated each step in Bramble. Thisds afted to provide
feedback to the user by drawing an overlay.

7.7 Other Application Components

Most of Bramble is concerned with providing support for tleghical objects which
the user will actually place into models. However, thereaher supporting objects,
such as windows and buttons, which applications requiredBaachble supports. Many

132 CHAPTER 7. A GRAPHICS TOOLKIT

other toolkits provide similar support for these thing¢evant aspects of how they are
handled in Bramble will be mentioned briefly. The emphasithandevelopment of
these objects is in providing tools which will allow thesetpaof applications to be
built quickly, so that more effort can be concentrated ondéneelopment of graphical
manipulation techniques with the differential approach.

7.7.1 Windows, Views, and Widgets

Bramble contains an object type calleéfleame which represents a window system
window object. A frame can contain many subwindows. One ef¢hsubwindows
may be &view where Bramble draws a depiction of the current state of thplycal
objects. Eachiew has an associated camera and attributes which determine how
the image is rendered. There can be many views at once, duthaast have its own
camera and frame.

Frames andViews are first class objects in Bramble. In fagtews always have
connectors that provide the position of the mouse relabvié coordinate frame of
the window. This simplifies attaching other connectors ®rtiouse.

A Frame can contain other subwindows besidegiaw . These are used to pro-
vide buttons and other widgets around the edges oiVika/ . All behavior of the
widgets is defined by hooks, including the widget’s appeaganThese subwindow
hooks include methods for drawing, handling mouse clickd, @"tick” function that
is called periodically. Like the graphical objects, theqeBned subwindow widgets
are designed to automatically update themselves to maiataonsistent view of the
values that they access. The provided set includes:

Buttons that watch the value of a Whisper variable, and update autoatigt
Radio Buttons that watch a variable and allow its value to be selected frasta

Differential Sliders that can attach to connectors and create controllers ilonsgxo
mouse clicks. These sliders permit not only dragging a cciens value, but
also nailing or bounding it, as discussed in Section 8.2.1.

Color Sliders that create a set of differential sliders for RGB values glaith feed-
back for what the color is.

Text Elements that allow static display of information.

A special type of widget is provided to help watch the statigroobject’s state
vector. ThevarWatcher is a separate window that contains sliders for each variable
in a particular state vector. The special sliders depicgtitber state of the variables
as well as permitting their values to be displayed and ctiattovVarWarchers are
particularly useful for debugging. A programmer can monéto object’s state with a
single function call.

7.7. OTHER APPLICATION COMPONENTS 133

7.7.2 External Representations

Bramble provides rudimentary features for reading andmgitepresentations of mod-
els outside of Bramble. For example, save and load is handied Whisper, the saved
representations are Whisper programs that recreate thel.mgglgications augment
objects to write Whisper code to recreate themselves wheadetl. Objects have
hooks that are called during the save process, allowingagtns to specify this be-
havior.

Other external file representations are handled by BranSadene descriptions for
renderers, including Renderman [Ups89] and Rayshade [Kot@n be generated, as
well as PostScript pictures. In each case, objects definelathat is called whenever
the object needs to be written to a file. By defining this betveas a hook, applications
can alter the way that objects are written on either a pesgclaseven a per instance
basis. Bramble also has support for writing bitmapped ireajeiews to disk.

7.7.3 Picking and Snapping

Picking is a fundamental operation in any graphical edBoamble contains methods
for easily using the standard Iris GL pick by redraw mechaniBicking by ray casting
is also supported for object classes that provide a raysettion routine.

The most commonly used picking mechanism is cursor snapfingsor snapping
continuously locates the cursor near important points énvilew. It is used to aid in
object selection and precision cursor positioning. Cussaipping was first introduced
in Sketchpad [Sut63], and has since been further extendeetter support precision
manipulation (as in Snap-Dragging [Bie89]), infer conistis(as in Briar [GW94]), or
provide feedback to the user as to the range of availablermpi{Hud90].

In Bramble, cursor snapping is handled separately from temteprocess. The
model for cursor snapping is also continuous, but in pradtics updated only at the
end of each step. Event actions can inquire about the statgapping at any time. A
single Whisper call returns the object currently snappedrtee snap server actually
keeps a list of targets that are near the mouse, to perméiegis and cycling between
objects that are close to one another. At present, the Beasmalp server snaps only to
existing DistinguishedPoint connectors. It has been designed to be extended
to support the range of snapping seen in Snap-Dragging (BBS86].

Facilities are provided to control the scope of snappingniiéing techniques such
as Semantic Snapping [Hud90]. By using either a hook or staits in each potential
target, the snap server is able to cull objects based omiaréher than being close
to the mouse. One common use of this is to limit snap-targeesgal choices for the
current operation. Bramble automatically provides the usth feedback of the snap-
ping state. Applications can provide more than just theauiesedback, for example
highlighting objects that are snapped to.

134 CHAPTER 7. A GRAPHICS TOOLKIT

Constraint inferencing from snapping is supported by BiamiBy using snap-
server accesses in object creation and manipulation ewentlér hooks, augmented
snapping [GW94] can be implemented easily. Augmented sngpgiscussed in Sec-
tion 9.1, automatically generates constraints from srappperations in order to make
the positioning operation of the snap persistent. For exantipe dragging handler of
Section 7.6.1, might be extended to

(1) (add-key k-1eftnouse k-none k-down ; left-mouse down definition

(2) (lanmbda (view) ; attach a procedure, called with view
(3) (i f (snapdp) ; if there is a selected point

(4) (let* ((p (snapdp)) store selected point

(5) (c (pt-eg-2d p (view nouse- port)))) ; attach point to mouse

(6) (add- key k-1eftnouse k-any k-up ; redefine left-mouse button up

(7) (lambda (v) ; now also infers constraint

(8) (prog (delete c) ; remove the attachment constraint
(9) (i f (snapdp) ; if there'sa point to connect to

(10) (pt-eqg-2d p (snapdp)))))))))) ; infer aconstraint

The code has two differences from the earlier example. ,Rhstpoint that is being
dragged is stored in line 4. Secondly, when the mouse butarigased, line 9 checks
to see if the cursor is snapped to a point. If it is, a constiigioreated in line 10 that
connects it to the point that was dragged. In Section A.2da é@gment demonstrates
the addition of augmented snapping to the creation of a Bge®nt by rubber banding.

7.8 The Bramble Standard 3D Interface

Bramble provides a standard set of objects and connectagpimort basic 3D inter-
action. The goal is to provide a fast and easy interface foegperimentation. The
basic interface, shown in Figure 7.3, has a particular stgleved from systems built
in the CMU Animation Lab over the past few years. Applicaiaan use or ignore
these interface elements.

An important part of Bramble’s 3D interface is a floor calléé groundplaneand
an optional back wall. This reference object defines thedinate system and gives the
user a reference frame called a stage[H2R]. To further aid the user’s perception of
3D objects, Bramble can draw shadows on these referencetebjehese plane shad-
ows can be easily generated with the available hardwareg uschniques described
in [Bli88a]. Bramble’s shadows can either be simple dropdshies that are directly
below the objects as if the light was the sun at high noon, adstvs computed from
the positions of the light sources.

A Follow controller couples the motion of a connector to the motioaroinput
device. Any connector which represents a position in 3-espaald be connected to a
3D input device. Bramble’s standard 3D input device is angiltlevice that uses the

7.8. THE BRAMBLE STANDARD 3D INTERFACE 135

gr
point

nal

dist

unit—dist

spin

i i i

pan

Figure 7.3: ThePoint Tinkertoysapplication demonstrates Bramble’s standard 3D interface
The user manipulates the point objects using the mousefaleoundplane and shadows are
provided to help depth perception. This application is uésed in Section 9.6.

mouse along with a special graphical object calledtiveisepolé. The mousepole is
a vertical line which extends from the floor to the mouse parsitThe line is used to
provide feedback of the 3D cursor location. As the mouse igadpthe pole tracks it,
with the top point moving parallel to the groundplane. Whenause button that has
been designated as the “elevator” button is held down, thetpp moves in a vertical
plane instead of a horizontal one. The tip of a mouse pole earabked by a controller.

A standard 3D interface package can be loaded from any Beaapplication. It
provides a standard set of key bindings and object manipualé&chniques includ-
ing mousepole manipulation of scene objects, virtual fbatidike manipulation of
the viewpoint by grabbing the corners of the groundpland,\aewpoint panning by
grabbing the center of the groundplane.

In addition to its standard 3D interface, Bramble providesport for developing
other types of 3D interactions. Objects provide a varietgafnectors which serve as
building blocks for creating interaction techniques. Mahyhese will be described in
Chapter 8.

3Although the mousepole is unpublished to date, | credit Andy Witkin.

136 CHAPTER 7. A GRAPHICS TOOLKIT

The material object of observation, the bicycle or the
rotisserie, cant be right or wrong. Molecules are
molecules. They dont have any ethical codes to follow
except those people give them. The test of the machine is
the satisfaction it gives you.
— Robert Pirsig
Zen and the Art of Motorcycle Maintenangel 46

Chapter 8

Interaction Techniques

The differential approach allows a range of interactiorhtegues to be created by
defining connectors which compute interesting attributeshgects, attaching con-
trollers to these connectors at the proper times to causetijeet which they depend
on to move, and by using combinations of these controllecsdate more complicated
behaviors. This chapter discusses these topics in that orde

Throughoutthis chapter, the differential approach wilapelied to specific interac-
tion problems. In many cases, we will simply recreate previmteraction techniques
on top of the new abstractions, often in a way that allows tteebe extended, general-
ized, or at leastimplemented with fewer of the typical hessEeveral of the interaction
techniques, however, would be difficult or impossible taateewithout the approach.

8.1 Attributes to Control

Animportant feature of the differential approach is theifddity it provides in the types
of attributes that can be controlled. In this section, wevjgle examples of attributes
which potentially make interesting connectors to contll of these examples are
available in Bramble’s standard library.

One consideration is that some attributes work better thhars, either from a
mathematical or user interface perspective. While devetppiethods for determining
the effectiveness of an attribute as a control is left fonfetwork in Section 10.3, here
are some intuitions developed from experience:

1. Simpler functions work better.

2. One constraint should remove one degree of freedom. ludmbetter to use
multiple equations than to combine multiple constrainte & single equation.

137

138 CHAPTER 8. INTERACTION TECHNIQUES

For example, it is better to hawe= 0 andy = 0 thanz? + 2 = 0.

3. The derivatives should not vanish when the constraints mhis often relates
to 2. In the example, the derivatives:of + 3? are 0 whenr = (0 andy = 0.

4. Normalizations throw away information, and thereforewdt be avoided.

5. Controls with physical analogies are easier to explaitnéouser and to under-
stand the mathematical behavior.

6. Controls that are positional (e.g. compute a positiorpacs) are easier to con-
nect to input devices and to understand.

Each of these issues will be discussed in the specific exantplehich they apply.

8.1.1 2D Obiject Controls

The most basic attributes are the positions of points on ZBotdd These can be di-
rectly controlled by attaching their values to the mouse@sifion. Since the system
must be able to compute points in order to draw the objectfuithetions required for
manipulation are known. Often, points are placed at intergpoints such as the cen-
ter of an object, in addition to places distributed aroureddhject.

Thedefine-shape function in Bramble, detailed in Section A.2.1, provides a
mechanism for defining 2D objects. It demonstrates how threesaformation used to
draw an object is used to control it.

For parametric curves, the simplicity of the differentippaoach is especially ap-
parent. A parametric curve is defined by a function

{z,y} =f(u, q). (8.1)

This function computes the position of a point of the curveeg a value for the free
parameter and the parameters defining the configuration.abitiey to compute this
function is necessary to draw the curve. Just as we draw tive by specifying: val-
ues for specific points, we can create connectors to marnéithla curve by specifying
u values. Using the parametric function for a connector neguhe derivatives of the
function that can be obtained easily and automaticallynife function is provided
only as a black box that can be evaluated, the derivativebeastimated numerically
using finite differences.

The use of connectors from the parametric function provashesutomatic and uni-
form methods for providing interfaces. All that is requitedlefine an object type is the
parametric function. Connectors can be placed along thgtHesf the object, permit-
ting the user to grab the object at various points. Each typéject is manipulated in
exactly the same way: the user can grab any point on it andt pAll parameters of the

8.1. ATTRIBUTES TO CONTROL 139

RK4 Solver .
Damping = 0.0 Megig
Gravity = 0.0 flon

Aritsotle Physics L: Grab M:Hook R:Create

Figure 8.1: A simple curve editor showing a variety of parametric cugpyeess. New types can
be defined simply by providing the parametric function usedraw the objects. All objects
are manipulated uniformly: pulling a point on the objectases all of the object’'s parameters
to be adjusted accordingly.

object are affected, not just their translations. The maasirmetric of Section 3.4.1
provides a uniform metric for curves as well, as first demm@tstl in the FF system by
Witkin [Wit89b]. A later implementation that | wrote is shomin Figure 8.1, and was
presented in [GW91a]. These systems both permitted the tilefiraf new types of
objects at compile time by specifying a parametric functma symbolic mathematics
package that automatically generated the code for the bl#jdater version, described
in Section 9.4, permits new functions to be defined dynaryical

For a specific object, the uniform interface may not be béktan a hand-crafted
one. However, it may not always be practical or possible tdsgegood interfaces
for all object types. For a parametric curve in the differ@mpproach, interfaces do
not need to be defined for each object type. Given the paranfetrction used to
draw the object, the code to compute the connectors can benatitally generated.
In fact, to add a new curve type to a drawing editor, all thadseto be provided by the
programmer is the parametric function and a little auxylisnformation such as how
finely to sample the curve and initial values for the paramnsetéverything else can be
generated automatically. A prototype system, describegkiction 9.3, even adds an
icon creating instances of the object to the program’s fatex.

A connector for a particulat value provides a point on the curve that can control

140 CHAPTER 8. INTERACTION TECHNIQUES

Figure 8.2: A crowbar point is computed by an offset of the normal to a pomthe curve.
The crowbar provides a handle to control the normal of thatdbat is positional, and therefore
can be directly coupled to the pointing device.

the parameters. If the connector storeas a modifiable state variable, the point can
slide along the curve as well as to move the curve. We call aymtint that can slide
around on its parent objectdaad.

Normals and tangents can also be computed for points on 2[2€uf he functions
to compute them can be determined automatically from tharpatric function used
to draw the curve by symbolic differentiation. One way togamt the position of the
normal or tangent to the user is by showing a “crowbar” pdiat ts a point offset from
an original point on the curve by the tangent or normal, asvshia Figure 8.2. This
attribute provides a connector that can be grabbed just amagn the curve can. Itis
computed by simply adding the tangent and position attetgether.

8.1.2 2D Geometric Relationships

A wide variety of attributes express geometric relatiopst@mong objects. Very often,
these relationships can be expressed as functions of a mwhpeints, permitting
modularity: any point provided by any type of object can beggled in. There is
no need for special types of controls for each object varidtyributes that compute
geometric relationships are typically used as constraiittstheir values held constant,
rather than being directly controlled by the user.

The most basic 2D geometric relationship is attachment orcatence of two
points. An attribute for attachment is computed by subimngcthe positions of the
two points. The distance between two 2D points is also a uséfibute. However,
using a single distance constraint driven to a driven vabesahot function well as an
attachment constraint. This case violates two of the rdesttributes: it uses a sin-
gle constraint to remove two degrees of freedom; and theateres vanish when the
constraint is met. An attachment constraint that uses aesttluin for each coordinate
functions much better.

Collinearity of three points is a useful constraint. In 2Disi straightforward to
create by computing an attribute that is the area (detemt)irwd the triangle formed

8.1. ATTRIBUTES TO CONTROL 141

by the points, or the distance of one point to the line formgthle other two. Driving
either of these two attributes to zero creates the collityear

The simplest implementation of a point-on-curve constrages an implicit for-
mula for the curve. While this works for a small class of olgesmiich as circles, an
alternative approach can be used for the general case ohptara curves. A “bead”
point on the curve is created by creating a new point connaditawing its free param-
eter to be a variable. This bead is attached to the pointghatlie on the object. The
point is therefore attached to the object, but free to mogegailts length.

Relative orientations of objects can be controlled by latikees involving dot prod-
ucts. For example, driving the dot product of two vectors éocozmakes them per-
pendicular. Such a control might also simply drive the léngftone (or both) of the
vectors to 0, also achieving the desired dot product valaevbid this, the vectors are
typically normalized before the dot product. Inverse tngmetric functions typically
have singularities in their derivatives making angle cotapans using them difficult
to use in defining connectors, so it is difficult to place comists on absolute angles.

The constraint that two line segments, or four points, arealfgh can be expressed
as the normal of one segment dotted with the other segmerdtion vector must be
zero.

An attribute that computes the depth of a point into a hadfplis computed by
taking the dot product of the normal to the half-plane with thiference vector of the
point and a point on the dividing line. This signed distarscageful for creating point
inside polygon constraints, which are easily created fovea polygons by a conjunc-
tion of point half-plane constraints, or to make point-adgspolygon constraints, as
will be described in Section 8.4.2.

8.1.3 3D Obijects and Constraints

As in 2D, point positions are the main connectors for mamipog 3D objects. Points
in 3D can define not only their positions, but also their ndenaad two tangent vectors
to define a coordinate frame.

The position of a point is not only a function of the objecsipart of, but also, the
transformation hierarchy “above” the object. Surface getvymust be similarly trans-
formed. The same transformation applied to points is aggbeangent vectors, and
the inverse transpose is applied to the normal vector. Réthe compute the deriva-
tives of the inverse transformistinguishedPoint connectors transform their
tangent vectors and then take the cross product. TypBsstihguishedPoint
do not compute normal vectors themselves.

The basic 2D constraints also transfer to 3D. Nailing a paittaching points, and
controlling distances are equally simple. A collinearibnstraint is more problematic.
The constraint removes two degrees of freedom. Point todistance with driven to
a zero value has the same problems as a 2D distance condtraért to zero. Point

142 CHAPTER 8. INTERACTION TECHNIQUES

to line distance is a useful constraint for expressing thadiat is on a cylinder with a
non-zero radius. A better way to constrain a given pointémh a line is by creating
a connector with a free parameter inside it that specifiess#ipo on the line, and
constraining this connector to be coincident with the gipeimt. The “bead” connector
can be computed byp; + (1 —u)p2. Such an approach uses two constraints to remove
the two degrees of freedom (actually, it uses three comésrddut adds an extra degree
of freedom sliding along the line, so the net result is twostmints).

Aligning two coordinate frames requires 6 constraints: 8ddocate the origins,
and 3 to equate the orientations. A related constraintaligepositions and the normal
vectors of two coordinate frames. This uses five individaaistraints: 3 for position,
and two that compute the dot product of the normal vector efamnt with both tangent
vectors of the other. The constraints express a contaetdilationship that allows the
objects to slide along one another as if in contact. Such strint is best represented
by attributes that compute the dot products of one point'stabvector with the other
point’s tangent vectors.

Expressing that the two planes are parallel, as in the lasgpaph, can be done
in two ways: by maximizing the dot product of the normals, grdsiving the dot
products of the normal of one point and the tangent vectotiseo§econd to zero. The
former has the advantage that its sign can be used to insafréhlhnormals face the
same direction. However, it is a single constraint that reesdwo degrees of freedom.
Therefore, it does not work well to maintain that the plaresain parallel. It can be
used to establish the correct relative orientations iihytiand the other formulation can
be subsequently used when the planes are close to paraiierabof the systems | have
constructed use this strategy: a demon (see Section 7v@it8hes between a normal
dot product controller used to get the orientations clogilly, and the normal/tangent
dot products used to maintain the relative orientations.

Various point-on-object constraints can be representaging the implicit formu-
lation of the object. Constraining a point to lie on a plarene; cylinder or a sphere
can be easily achieved using an implicit representationfae beads permit point-
on-surface relations for parametric surfaces.

8.1.4 Camera Controls

The problem of specifying a viewing transformation or vataamera configuration is
a central problem for 3D graphics. Previous work on the mabbf camera control is
discussed in Section 2.4.2. My work on using the differemggroach for the problem
of camera control was first presented in [GW92], and a videorapanying the paper
[Gle92b] demonstrates the interaction.

Computer graphics viewing models are defined by linear toamsations in homo-
geneous coordinates. That is, a viewing transformatiorimed by a4 x 4 matrix,

8.1. ATTRIBUTES TO CONTROL 143

and the position that a point appears in the image is given by
p = h(Vx), (8.2)

wherex is the world-space point that projectspipV is a homogeneous matrix repre-
senting the combined projection and viewing transfornmej@ndh is a function that
converts homogeneous coordinates into 2-D image coosdindefined by

T1 T

h(x) = (8.3)

.’E4/ Ty

where ther;’s are components of homogeneous painThe matrixV is some function
of the camera model parameters.

A perspective camera transformation can be thought of aslimgdy camera object
that exists in the same world space as the objects it viewsagia camera in the real
world. If there are other views in which the camera objectissble, the camera can
be manipulated as any other object in the scene. The tranafan of the camera into
world space can be found by inverting the viewing transfontheut the perspective
projection. Because matrix inversion is difficult to ditéetiate, simply creating a con-
nector for the inverse transformation given the camerasfamation is impractical.
However, the function for the inverse transformation captovided easily for many
camera models. Rather than inverting the entire cameraxntiadt is the composition
of several simpler pieces, the pieces are inverted and cempo create the inverse
camera transform. Often the pieces are primitive transitions that are easy to in-
vert. Providing the inverse transform for cameras pernatsectors on a camera for
attributes such as the tip of the lens or the top of the can@rah points are not only
useful for dragging, but also for expressing constrainthsas the camera is always
relatively right side up.

Rather than controlling a camera by its position in the woaitlts often useful to
control it by manipulating what is seen in its image. We calils controlshrough-
the-lenscontrols. The most basic through-the-lens control is aibate that computes
the position where a point in the world projects onto the filane of the camera (the
image seen through the camera). Equation 8.2 is used to ¢erapuattribute that
serves as the control. These controls are independent ghtiety of camera model.
Any viewing transformation can be controlled, although &tipn 8.2 may be replaced
by some other function if a non-standard camera model is.used

It is important to realize that the image position of a poiepends on both the
camera and the point’s position in the world. A through-es control can be used
to affect either, or both, depending on which object’s patars are free to change.
Through-the-lens controls are a particularly importapetyf attribute because they
provide a way to couple the 3D world to the space of 2D inputiasy permitting
manipulation of 3D objects and viewpoints by pointing toeser positions.

144 CHAPTER 8. INTERACTION TECHNIQUES

A single through-the-lens control does not specify enoudbrimation to usefully
control a 3D object or camera transformation by itself. With many degrees of free-
dom involved, the 2 controls of a through-the-lens pointergerdetermined, and good
default behaviors are difficult to specify with the optintiba objectives. Typically,
other constraints are used in coordination with througdems controls to provide de-
sired behaviors. Many examples will be given in Section 8.2.

The same constraint relationships applied to points on ZBctdcan also be ap-
plied to through-the-lens controls. For example, an attdlmight measure the distance
between two image points. Placing constraints to keep tirdbe-lens point controls
within in a region, for example on the screen, is often useful

Through-the-lens controls are the most basic elemeappéarance-based manip-
ulation. Such an approach permits the user to control a 3D world byifyjreg what
is seen in a picture of it. It is useful because images are 2Dt tz@refore map nicely
to common input devices, and also because often an image ot of a graphical
application.

8.1.5 Manipulating Lights and Materials

The configuration of lighting and material properties casodle controlled by a va-
riety of attributes. Like cameras, lights are typically @tis in the scene and can be
manipulated as such. This is especially useful for pointgpat light sources. With
both types of lights, connectors for the position of the bslthe most obvious control.
For spotlights, points on the aperture, both in the centdraaaund the rim, are useful
not only for direct grabbing, but also for use in the shadowimalation techniques of
the next section.

Light intensity and material surface properties are patarsehat can be repre-
sented in the state vector. This permits their values to bstcained.

One appearance-based method for controlling lights aneémaiproperties is to
directly manipulate the color of points in the image, formyde by attaching a point’'s
color to a set of sliders. Techniques for manipulating powoibrs are presented for
changing material surface colors in [HH90] and for chandjigigt colors in [SDS 93].
Using the differential approach to control point colorsmis these techniques, but
also can be used to alter other parameters that affect apgpanters such as surface
orientations and light positions.

The equation that computes the color that a particular @gpears must be known
to the system so it can draw it. A shading model computes tlo flom the surface
geometry, lighting, and surface properties. The color ghabint appears is the result
of a physical process which has been modeled to varying ds@feaccuracy [Hal89].
Modeling and rendering systems most often use simpler ,sodeie parameters to
these models serve as the controls which are used to spadifgs properties. There-
fore, a user interested in the colors in an image must uratetshis model, even though

8.1. ATTRIBUTES TO CONTROL 145

it is merely a historical artifact of computer graphics aash.

The most commonly used shading model [FYDFH90, Sil91] disitighting into
three components, diffuse, specular, and ambient partarfAce is specified by three
colors which define how the surface reflects each of these aoemts. The color of a
point is

C=Cyxly+Cgxig+ c, * i, (8.4)

where the asterisk denotes component-wise multiplicatigme;, andc, are the surface
color properties, anil,, i;. andi, are the intensities of each type of light at the point.
Each is typically represented as a 3-vector containing R@&r wvalues.

If we know how much light is available at a poifit,, iz, i), we can manipulate
the color of the point in order to control the surface propsit(c,, ¢4, ¢5). This is
most interesting when we control the colors of multiple pewhich share the same
parameters. In the special case of fixed lighting and gegrradkiof the apparent colors
are linear functions of the surface properties. This is@xgd by the system described
in [SDS"93].

The amount of light which strikes a point can be computed lograing the contri-
butions of each light source. The amount of ambient lightis merely a scene-wide
constant. For other varieties of light, the contributioreath light source is summed.
The amount of diffuse illumination given by

ig= Y ij(d-1), (8.5)

i€lights

and the specular illumination by

= Y iR (86)

i€lights

wherei; is the intensity of light sourcg n is the point’s unit normal vectot; is the
normalized vector from the point to the light, and wheris the normalized vector that
bisects the vectors from the point to the eye and light, @nds a parameter which
controls the highlights size.

Controlling the colors of points is useful in controllingethighting. Manipulating
the color of a point can alter the intensities of the lightt ttontribute. This provides
a way of achieving desired color effects when multiple cedblights are used, as in
stage lighting. Colors can even be used to control the gegroétighting. Altering
the color can cause a face to turn to towards or away from & laglcause a light to
move so it provides the proper amount of illumination.

Using the lighting equation as a control has a great deal @frpial, but, it is prob-
lematic. Even simple lighting models are complicated esgiens of many parameters.
More complicated lighting models may not even be expressiblclosed form differ-
entiable expressions.

146 CHAPTER 8. INTERACTION TECHNIQUES

Even in the simple shading model used by the Iris hardwareraBcamble, many
terms of the equation do not function well as controls. Irtipalar, the specular com-
ponent of lighting is particularly problematic. The amoohspecularity at a point is
given by Equation 8.6. Most obviously, it involves an expatiegion which gives it
very non-linear behavior with rapidly changing derivasvélso, it involves normal-
izing a quantity twice in computing the normalized half angéctor. Although this
makes it difficult to use color control to position speculagttiights, the techniques of
the next section can handle such tasks by treating spedglaidits as the reflection
of the light source.

8.1.6 Shadows and Reflections

We treat reflections and shadows in a similar manner. we cteamphere the image
of a particular point appears on a particular surface. Sladoe the simpler case. A
point is the shadow of another if the two points and the lighiree are collinear. This
is typically implemented by creating a bead on the ray froeligiht source through the
shadowing point. The bead can either be attached to sometpatns to be shadowed
or constrained to lie on the surface of the shadowed objentadditional constraint
could be added that insures that the occluding object isd®tvwhe shadow and the
light source.

The explicit use of the ray between the light and the shadews#rves as a mecha-
nism to display the shadowing. With available graphics Wware, general inter-object
shadows cannot be drawn efficiently, so drawing the lineeseas a feedback device,
as shown in Figure 8.3. Manipulating the shadows can cotftegbosition of the light,
the shadowing object, or both.

When the shadow is cast onto a planar surface, its positioneaomputed directly.
The general projection matrix can be used to compute wherghiidow ray hits a plane.
This is a simple computation, given by

p = h(Sx), (8.7)

whereh is given by Equation 8.3, the function which converts frommiogeneous

coordinatesx is the position go the point to be projected, &1d the projection matrix.

In [Bli88a], the matrices are derived for projection frommtand distant light sources
onto a ground plane. More generally, the matrix can be coetpfdr a light source

pointl in homogeneous coordinates onto a pléRgr + Py + P.z + Py = 0) by*

Poly + Pcl, + Pyly, Pyl Pl —Pal,
S(l 73) _ —Paly Py + P, + Pyl -Pc, —Paly
’ —P.l, —Pl, Poly + Pply + Pyly, —Pal,
—Paly —Pulyy —P:ly Polz + Pply + Pcl.
(8.8)

IThanks to Pat Hanrahan for lending us this very useful matrix

8.1. ATTRIBUTES TO CONTROL 147

Figure 8.3: Lights and objects are manipulated by controlling a shad®eause inter-object
shadows cannot be drawn with the available graphics haejwadine is used to connect the
light, the shadowing point, and its image.

The shadow matrix is useful for drawing shadows using thedstal rendering
pipeline, as described by Blinn [Bli88a]. We merely conoate the shadow matrix and
the viewing transform, and redraw the scene in a dimmed gvky.cSimply drawing
a dark color on the ground plane fails when the shadows gdefféctangular stage
surface and seem to float in space. | have used two methodsedhg illusion of
dimming. One is to draw the shadows using a dither patterrttzdky color, which
is chosen to be darker than the ground color. An alternateoaph is to choose the
ground and sky colors such that turning a particular bitmthie ground color dims it,
but does not affect the sky color. Shadows are then drawmy @swrite mask so that
only this one bit is affected.

Positions of shadow beads can be computed using equatian8.@irectly con-
strained and controlled. A system can permit the user togftadow points and to drag
them. This permits not only the interaction techniques &R92], but manipulation
of lights as well.

The spot caused by a spotlight onto the reference planesisiaéful. Drawing this
spotin a bright color, using techniques like those usedhadsws, gives an indication
of where the spotlight is aimed. This ring is an important pasome lighting effects.
A spotlight can be manipulated by controlling the projestiof aperture points on the
ground. This is used in the Luxo lamp example of the introidunct

The same projection techniques apply to mirrors as well abadows. We use the
same matrix, except that we place the projection point avittieal eyepoint rather at
the light source. The virtual eyepoint is the place wheresaver would have to stand
to see the reflected image through the surface if the surfabetnansparent [Ups89],as

148 CHAPTER 8. INTERACTION TECHNIQUES

e < n D object
N

QN
TP

.
.
.
.
.
.
Q,<E'

Figure 8.4: An observer with eye poirg sees the reflection of an object at pgiran a shiny
surface with unit normal vectar. The virtual eyepoing, is where the eye would be located to
see the image of the object@if the surface were transparent.

shown in Figure 8.4. The position of this point is computed by
e, =e+2((e—p)-n)n, (8.9)

Wheree is the position of the eyepoinp, is the position of the surface point on the
mirror, andn is the surface normal at the point. Although there is potdigta dif-
ferent virtual eyepoint for each surface point, all pointseoplanar surface share the
same virtual eyepoint. Explicitly computirg is preferable to other reflection formu-
lations as it provides a geometric position as an intermedésult that can be examined
(guideline 6).

Computing the virtual eyepoint allows the projection matf Equation 8.8 to be
used to compute the transformations that place reflectiorssganar mirror. This al-
lows reflections to be drawn using the rendering pipelinegprowide proper occlusions
in a z-buffer, we draw the objects slightly above the surfafdbe mirror, with a height
equal to the inverse of the distance from the mirror so theder objects occlude ones
further from the mirror. Also, because all the objects in tigections are flat, their
normals are invalid, so lighting calculations cannot beeddfrhe positions of points in
planar mirrors can serve as controls to manipulate the mitie reflected point, and
even the camera.

The analogy of techniques for manipulating shadows andtteftes extends to non-
planar surfaces as well. Although there is no way to effityethtaw these reflections
with available graphics hardware, a line connecting objawge, and virtual eyepoint
serves for feedback. Similarly, enforcing collinearityteen these three points per-
mits using the manipulation of one to control the others. Aaneple of this is shown
in Figure 8.5.

Reflection techniques can be used to position specularigighlon surfaces. The
light source is placed such that it is seen in the reflectioa sarface point. By sliding
the point as a bead around on the surface, the highlight can$¥iBoned. This can be
used to position the light source or to alter the surface ggigm

8.1. ATTRIBUTES TO CONTROL 149

() <«—— virtual eyepoint

surface point

Figure 8.5: The cube is controlled by manipulating the position of ifse&tion in the cylinder.
Since the reflection in the curved surface cannot be drawerlirth connecting the point of the
cube, its reflection, and the virtual eyepoint is drawn.

150 CHAPTER 8. INTERACTION TECHNIQUES

8.1.7 Free Form Curves and Surfaces

Free-form curves and surfaces are traditionally a diffiptdblem for interface design.
Typical approaches to creating such objects require deyigpresentations that are
sufficiently expressive, are convenient for the user to maate directly, and have
good mathematical properties. This typically leads torfatees like the control points
of B-Splines, that sacrifice usability. Some of the diffigitdtems from the fact that the
representations also serve as the parameterizations objbaets. Because of this, it
would seem that the differential approach would be a nataotaition.

For many types of curve and surface representations, tfezetitial approach can
be applied. For many types of parametric surfaces such gdifes and NURBS,
the positions of points are simple functions of the paramsdteat can be computed as
connectors and manipulated differentially. Several ofghproaches in the literature
are variants of this, using different schemes for compupiagameters changes. For
example, Welch, Gleicher, and Witkin [WGW?91], Welch and WitRvVW92], Fowler
[Fow92], and Hsu et al.[HHK92] all use various constrain@tiraization techniques
to map manipulation of points on surfaces to the underlym@gmeters. This permits
the objects to be manipulated by controlling points on thextier than control points.
In some cases, users may prefer to use control points to olategurves or surfaces.
Since the positions of the control points can be computent fitee curve or surface,
control points can be provided even if another represemtasiused. This allows, for
example, to use Bezier control points to manipulate a BAgpiurve.

Unfortunately, the differential approach of this thesigwsufficient for adequately
addressing the issues in manipulating free form curves aridces for many reasons:

o free form objects have too many degrees of freedom,;

o free form objects require global control for effective mauration. Such control
can be provided only with attributes that compute propeudiehe entire surface,
or large regions of it;

¢ free form objects often need fine detail local control, reiggiadaptive subdivi-
sion;

e many of the constraints that are used to sculpt free formotdjare specialized
cases that can be handled more effectively for the large etsdf degrees of
freedom.

In short, the methods of this thesis do apply to the manimriaif curves and surfaces,
as we showed in [WGW91], but, by themselves, the methods dado¢ss many of the

difficult issues and more specialized methods apply. Cdimgdree form curves and

surfaces is a very important problem, and is therefore vetlied. Some interesting
optimization-based approaches are explored by CelnikéiGossard [CG91] and by
Welch and Witkin [WW92] and [WW94].

8.2. STRATEGIES FOR INTERACTION 151

8.2 Strategies for Interaction

The previous section described a large number of attridbsgscan be computed and
provided as connectors on objects. With the differentigirapch, we can control the
objects by attaching controllers to the connectors. In$bigtion, we consider some
strategies for determining what controllers to attach tactvisconnectors at what time.

8.2.1 Presenting the Abstractions to the User

The most obvious way to employ the differential approach govide the abstractions
to the user as directly as possible. At an extreme, the usad @@ presented with a
schematic representation, like the diagrams of Sectio31\While this graph editing
approach has been attempted in systems such as the SPARMoedtbed [FW88],
Condor [Kas92] and ThingLab [Bor86], | do not believe it isthe spirit of direct
manipulation, and prefer to hide such representations thenuser.

The direct application of the differential approach givies tiser a palette of con-
nectors to which controllers can be applied. Connectorsrdaesent positions can
be controlled by attaching them to the mouse. Non-geomedtiges can be controlled
with sliders or similar widgets. To specify multiple coriggthe user might either nalil
connectors to their current values, or place goal pointsdanectors to seek.

Presenting the abstractions directly to the user has a nuohbenefits. It permits
the user to select controls that are applicable to theirlpmpand to mix and match
controls as needed. It maximizes flexibility over what therusan do. Such a direct
approach is a useful strategy for testing out new types dfatsas shown in the scene
composition program of Section 9.7. By utilizing efficieneéamanisms for selection, a
large array of attribute types can be provided for control.

The advantages of this direct application are also its mersbiss problem. The
guestion of how to present the controls to the user can beuliffiespecially as the
number of types that are available grows. The interface melgtthe user understand
the potential choices and to find the controls that are agipliécto their task. While
the flexibility of a range of controls is useful, it also medhat a user might need
to spend time deciding which control to use and how to empioyAi system must
show the user what is being controlled and explain the behaifithe objects. The
issues of scalability also arise as the user adds more ¢®rdreating more complicated
behaviors and worse performance.

One variety of direct application of the differential apact is the “live world.” A
live world is an environment where just about any point cargtadbed and manip-
ulated. In such an application, objects, shadows, reflegtibghts, or just about any
other entity can be grabbed and dragged. This provides aramifterface for a wide
variety of tasks. However, it still does not solve the profide A user must be made
aware of what can be dragged and what cannot. Some mechamispetifying what

152 CHAPTER 8. INTERACTION TECHNIQUES

cursor position persistent upper bound

feedback Tk target mark
slider handle -
lower bound ==
mark |

Figure 8.6: A differential slider. Left: feedback shows not only thewakpecified by speci-
fying dragging, but also the actual value of the attachecheotor. Middle: theGoTowards
controller used to drive the connector toward the specifiddescan be retained after dragging
is completed to nail the value in place. The persistent vialdesplayed by the diamond. Right:
users can place boundary constraints with the sliders. tgopuelower bounds are displayed
as greyed regions.

might change when a point is grabbed is important for coltigthings like shadows,
where many things might be affected by a single control. Semm@ehanism for permit-
ting the user to specify the desired behavior in under-caimstd cases, for example by
permitting grabbable points or objects to be nailed in plaeeds to be provided.

Differential Sliders

To present controllers and connectors the user directhg theeds to be a mechanism
for controlling any connector output, even ones whose duiggimply a dimensionless
scalar value. The mechanism must permit the user to spdwfyarious controller
types, and provide values for those types that require tlBFamble has a widget called
differential sliderthat is a variant of a standard slider designed to controhaector
with the differential approach. A basic differential slideshown in Figure 8.6. Better
designs that are more self-revealing and easier to use dagntgpossible.

A standard slider converts the position of the mouse intolaevéor its attached
parameter. For the differential approach, such a slidenatabe attached to a con-
nector since the value cannot be set directly. To create ia bd&erential slider, a
GoTowards controller is connected to drive the value towards what ecgjgd by
the mouse, rather than directly specifying new values foaitached parameter when
dragged. Because the connector’s value may not perfeatl that of the mouse, both
values are displayed to the user.

The ability to nail a slider’s value in place is useful feator a differential slider.

8.2. STRATEGIES FOR INTERACTION 153

Such a facility can be implemented by simply retaining @@l owards controller
beyond the completion of the dragging operation. With thenfdsle differential slider,
this is done by holding a modifier key as the dragging buttoelsased. Key presses
can be used to create controllers that drive the slider tmitBmum, maximum, or
middle value.

A differential slider can be used to apply other controlessvell. For example, the
Bramble slider can place boundaries on the value by pressenthird mouse button
either above or below the present value. The slider dispglaysurrent boundaries, as
shown in Figure 8.6. Snaps can also be placed on the slidglgv The slider must
display where the snaps are and provide feedback for wheslitiez is snapped.

8.2.2 Drawing or Modelling with Constraints

Drawing or modelling with constraints can be seen as a vaahdirectly providing
the abstractions of the differential approach to the usesuch an approach, a user
declaratively specifies relationships among parts of thdehdDifferentially, this en-
tails creatingGoTowards controllers for selected attributes that compute the rela-
tionships. Often, this is coupled with dragging: the userarag pieces of the drawing
either by placing and dragging positional constraints,ragding the model subject to
the constraints.

The idea of using constraints in interactive drawing and efiod dates back to
Sketchpad[Sut63], the earliest system. Since then, tteerédéen considerable interest
in the approach of declaratively specifying parts of thending. Some of the advan-
tages of the constraint-based approach are:

¢ the user can specify what is most convenient, in any order;

¢ the constraints can give structure to the model, potepgaiibedding the seman-
tics of the thing being modelled;

¢ the constraints can be used to specify exact relationshijreimodel precisely;

¢ the constraints are persistent so they maintain previoestigblished relation-
ships to avoid redundant work in reestablishing them affémey.

Many difficult issues have limited the success of constraaged systems for draw-
ing. Not only must a system be able to solve constraint safiisin problems, but it
must make it easy for users to specify, debug, and edit ainett models. Constraints
change the nature of interaction in a graphical applicatithout them, actions only
affect the objects to which they refer. For example, drag@in object in a traditional
drawing program moves only the object. With constraints libcality is lost: alter-
ing one object may cause other objects to be affected. Tbmaghature of constraint
operations is at the core of many of the difficult issues in leipg constraints.

154 CHAPTER 8. INTERACTION TECHNIQUES

Without user specified constraints, graphical objects lixee behaviors. For in-
stance, an ellipse in a drawing program behaves like arsellifthe system designer
can design a good, usable behavior which the user can ledrapoty to all ellipses.
When user specified constraints among objects are introdtleegituation changes.
To begin with, the behaviors can become more complicatedusecof interactions
among objects. Each combination of objects and constraititeave its own behav-
ior. These behaviors are specified by the user in terms ofdhstints; the user is
effectively programming.

As in more traditional programming, complexity in the caasted behavior of a
graphical model becomes a problem when it has bugs, e.g. thledpehavior is not
what is desired or expected. The most obvious form of bug isnathe constraints
force the model into a configuration that is not what the ussirds, or the constraints
prevent the user from achieving a desired configuration. t@eroclass of constraint
bug stems from bad constraints where solutions cannot bedfaeither because of
conflicting specifications or solver failures.

Because constraint errors occur, interactive graphicalieaions which provide
constraints to users must deal gracefully with bad sitaatisuch as conflicting or re-
dundant constraints. Underdetermined models must alsarigidd, as it is impractical
to expect the user to specify all possible degrees of free®anause of the potential
for errors, it is crucial to aid the user in understandingadbmplex behaviors of con-
strained models.

The differential approach helps with some of the issuesaatang constraint-based
applications. Continuous motion facilitates understagdhe behavior since users are
able to employ their perceptual skills to help understanahgle. The methods for
implementing the differential approach handle under aret determined cases. The
dynamic implementation of the differential approach caweeas a backbone to pro-
viding a constraint-based system where users can expdnmtartheir models in order
to comprehend and debug them.

The Briar drawing program, described in Section 9.1, buwldshe differential ap-
proach to provide a strategy that addresses other issuamsiraint-based tools as
well. By using constraints only to maintain existing redaiships during direct manip-
ulation, Briar is able to avoid problems with conflicting araolvable constraints and
unpredictable selection of constraint solutions. A key iking systems like Briar pos-
sible is the ability to enforce constraints during continsiamotion, direct-manipulation
dragging, as provided by the differential approach.

Although many modern constraint-based systems, such asg Bhow promise in
addressing the issues of the approach, it is not certaititbassues can be sufficiently
resolved to become the standard and dominant tools. Ircpkatj issues of scalability
may be the ultimate Achilles heel for constraint-based drgwand modelling.

8.2. STRATEGIES FOR INTERACTION 155

8.2.3 Building Interaction Techniques

In the previous sections, we discussed how the abstraaifdahe differential approach
can be presented directly to the user. In this section, weidenleaving them in the
hands of the interaction technique designer. The idea iséocombinations of con-
trols in ways that define desirable behaviors for traditiahigect manipulation style
interactions.

The typical way the differential approach is employed is e a control to pro-
vide interactive dragging, but to define other constraiotshe correct behavior oc-
curs. Rather than having the user define the constraintantédace designer can
choose them. Objects or handles are predefined and can beagikefully designed
behaviors.

For the designer of direct interaction techniques, thestkffitial approach provides
a new set of abstractions. The approach can lead to techstigatecould not have been
implemented using traditional techniques. Other times atbstractions are applied to
more conventional interactions. In fact, most of the exasgiven later are simply
recreations of existing interaction techniques. The agpgianay be most practical
for prototyping interaction techniques: the technique lbardesigned using the tools
of the differential approach, permitting it to be quicklyfiled and evaluated. Then
the mathematics can be re-derived to compile the intema¢&ohnique into a more
traditional implementation.

Because controls are used in predefined combinations, nfaine anost serious
drawbacks of the differential approach and constrainetaystems are avoided:

¢ the number of controls is a small constant that does not geothe@model be-
comes larger;

e the combination of controls can be checked to insure thgtahe well behaved
before being handed to users;

¢ the behavior of objects is explicitly designed, rather tjumt coming about as a
byproduct of placing constraints. This can leave the smadin of interactive
behaviors in the hands of the “trained professionals.”

Many of the same arguments are given for the design of the&@nstraint-based pro-
gramming language [Hor93]. Siri uses constraint techrsquihin objects to help
define their behavior, but uses more conventional methadstier-object communi-
cation.

There are two main ways that the differential approach isl igedefining inter-
active behaviors. One is to define types of objects that le=hawesired. The other is
to define handles that have particular functionality. Tattelr, more common category
typically involves creating a number of constraints in aidaito the mouse attachment
during a dragging operation. Many examples are given latdris chapter.

156 CHAPTER 8. INTERACTION TECHNIQUES

Figure 8.7: A 3D image overlaid on top of a corresponding real image. @al @ to place
the virtual plant on the real table. In each image, thereabket(denoted by the white rectangle
for the graphics image). Initially, the images do not coomesd because the virtual camera is
not in the same place as the camera used to create the real.imag

To define the behavior of a object that will be manipulatechgighe traditional
direct manipulation interface of dragging the position diagle point at a time, the
differential approach offers advantages. First, constsatan be used internal to the
object to define relationships that must be maintained asltfext is dragged. Sec-
ondly, by providing a way to implement the dragging, it s;gafee object designer the
effort of mapping from position values to parameter valuealso permits a uniform
mechanism to be used to drag all points on all objects.

8.2.4 A Concrete Example: Aligning a Camera to an Image

We now consider a very specific interaction technique as amele, and discuss how
it can fit in with the strategies of this section. The problsrtoialign a synthetic image
of a 3D scene with a real image by configuring the virtual cancegating the synthetic
image. We assume that both the real scene and the synthastie each have a table of
identical size in them. An example is shown in Figure 8.7.

With through-the-lens controls and the differential agmin, the correspondence
problem can be solved easily. Through-the-lens contr@siaed to drag the corners
of the virtual table to their corresponding positions initn@ge, causing the camera to
be moved. Each control is locked as it is placed. Manipuigtie positions of the four
corners of the table causes the virtual camera to be plac@@asition where the two

8.2. STRATEGIES FOR INTERACTION 157

Figure 8.8: The synthetic and real images are registered by succegdnaglging the corners
of the table to their corresponding positions in the image.

images correspond. This process is shown in Figure 8.8.

The registration task is an excellent example of the beneffitise differential ap-
proach. It solves an important and useful task that wouldxXvemely difficult with
traditional interaction techniques. In order to define tiiteriaction technique without
the differential approach, the mathematics to determiae#imera configuration from
the corners of the rectangle would have to be derived. Whdk awderivation is possi-
ble, it would be extremely difficult to do in a robust manneitas an overdetermined
problem. With the differential approach, itis a straigimfard combination of four 2D
point controls. The method over-determines the solutipecgying eight controls for
a camera which has only seven degrees of freedom. Howeeanethods of Chapter
3 can handle these over-determined cases.

The table registration required the use of four throughktims point controls. Those
controls could have been specified either by the user, or bptaraction technique
designer building a mechanism for the particular task ofgeneegistration. If the ab-
stractions of the differential approach were directly pded to the user, the registration
task would require the user to freeze the position of theetabthe world, enable the
camera to be controlled, select through-the-lens posttmitrols for each corner of the
table, and then drag these controls. In a more constraseebiterface style, there
might be a command for dragging points with through the lemdrols, which the user
could successively apply to each corner of the table.

Because image registration is an important task, an itteratechnique designer
might want design an interface for it. For example, the designight create the virtual
table as a special object that when its corners are grabhedystem knows to apply
a through-the-lens control on the point to manipulate theara, and to leave these
controls locked in place even after they’ve been manipdlaféhe user would see a
command to create the alignment table, and would directlyipugate table corners,
but the abstractions of the differential approach would ideén, serving simply as a
tool for the interaction technique designer.

158 CHAPTER 8. INTERACTION TECHNIQUES

8.3 Sources of Constraints

The basic idea behind each of the strategies of the prevemi®s is to provide con-

straints so that manipulation operations like draggingehidne desired effects. The
major difference in the strategies is how these constraiats specified, whether they
were provided by the interaction technique designer or byuer. In this section, we
consider what constraints can be useful for manipulatiod feow they are used in con-
junction with dragging to create interaction techniquehbisTection is organized by
“sources” of constraints, the kinds of things that specdgstraints on manipulation.

The general problem in manipulation will be to handle thearddtermined nature
of dragging. Our input devices will undoubtedly specify fiawver degrees of freedom
than the model contains, or even than typical objects contador example we might
control an articulated figure with a 6 degree of freedom teack control a 3D position
with a mouse.

The large number of degrees of freedom problem is espedmajprtant in 3D
manipulation. Unlike in the real world, the objects we maitépe with a 3D user in-
terface can float freely in space, and therefore have exygeeds of freedom. The
problem of 3D manipulation is to somehow control these degyod freedom with the
limited input devices we have. One approach to this probketa develop better input
devices. For the work in this thesis, | have considered dmdymouse. However, the
differential approach is input-device-independent, areheawith better input devices,
the constraint-based approach applies — in the real worldtileise constraints for
manipulation even with our dextrous hands.

When we encounter an object with many degrees of freedom irettievorld we
employ a variety of tactics to manipulate it. We use manitoutain parallel, for ex-
ample by coordinating our hands or fingers, or we create cnst, either by using an
extra hand or finger or by using interactions between ohjéais example, we might
turn 3D problems into a 2D one by placing the objects on a fl€tsa, or for more
complex manipulations we might build a jig to limit the objgdehaviors to make it
easier to achieve the desired manipulations.

However, we normally design our objects so that they dorvetes many degrees
of freedom. The behaviors of most objects we manipulate anstcained by their
relationships with other objects or their structure canas them to move only in the
correct fashion. For example, operating a door requireg oné degree of freedom
(its hinge) or two (its knob and hinge) and car steering whagtl levers rotate only in
useful ways.

These real world tactics for manipulation all rely on coastts on object motion to
simplify the manipulation problem. The sources of thesestamts vary: they come
from the mechanical structure of the object, interactiam®g objects, conventions
on the uses of objects, or from other hands or fingers. In #gasan, we will use the
same approach to address the problem of manipulation irfacts. The general idea

8.3. SOURCES OF CONSTRAINTS 159

for creating an interaction technique will be to provide Hisient set of constraints so
that control of a single point defines a desired behavior. defining 3D interaction

techniques using the mouse, we will attempt to define a seifficget of constraints so
that the two degrees of freedom specified by a through-thedentrol are sufficient
to control the 3D object.

8.3.1 Intrinsically Constrained Problems

For some manipulation tasks, the object being manipulatedrinsically constrained
sufficiently. For example, even in a 3D world, dragging a paiong a fixed plane,
such as the floor, is a 2D problem. So, if a point is by definitioa fixed plane, it is

sufficiently constrained so that a 2D input device can be tsedntrol it. An example

of such a point would be shadows on the floor. This is part of¢hason for the interest
in shadow manipulation.

8.3.2 Artificial Constraints

A common way to create interactions is to create synthetisitaints based on some
user command. For example, based on the state of a modifier kegommand mode,
the system might constrain object motions to rotate aboairticplar axis or translate
in a particular direction.

An example 3D interaction technique using artificial coaisits is the mousepole,
introduced in Section 7.8. The mousepole allows the usepsitipn a point in 3D
using the mouse by constraining the point to lie in the plaaralel to the ground. The
ray cast from the mouse position defines a unique point orptaise. Depressing a
button switches the mousepole to operate in a plane pemadadio the ground. We
draw a vertical pole from the point to the ground in order widgate height, hence the
name mousepole.

The advantages of these artificial constraints are that ¢haybe applied to any
object and are easy to create. However, it is easy to makesiecfaces complicated
by including large numbers of modes, modifier keys, and contwalt can be difficult
to make such interfaces self-revealing. Using a standaadtiicial constraints on all
objects has the advantage of uniformity, but has the probenit does not permit
objects to special behavior.

8.3.3 Object Semantic Constraints

The graphical objects that we manipulate often have streausemantics that may
dictate how they should behave when manipulated. This behasan often be ex-

pressed as constraints, sometimes corresponding to theameal structure of the ob-
ject, and sometimes to the intended purpose or conventiamseoof the objects. For

160 CHAPTER 8. INTERACTION TECHNIQUES

example, the Luxo lamp of the introduction has many piecek ®ath many degrees
of freedom. However, the mechanical structure of the largpicantly reduces the
degrees of freedom in the lamp, making it much easier to obntr

Many of the objects we must manipulate have only a few degrefesedom: use-
less motions are constrained away. There are many examgigefts whose behavior
is sufficiently constrained so that one or two controls aféicsent, for example, steer-
ing wheels, airplane yokes, doors, levers, or the handlestdtamachine. There are
some implied assumptions in these manipulations, for el@ampen the handle of a
slot machine is grabbed, we assume that we are attemptinglting lever, not move
the machine.

Sometimes, the constraints on objects stem not from thesbjaechanical struc-
ture, but rather from conventions on how they are used. Faom@ke in moving a piece
of furniture, we are most typically interested in slidinglbng the floor or turning it,
not necessarily lifting it or flipping it over. In such casdésis conceivable to build
interfaces which imbue the objects with the constraints ¢thase the more common
behavior, and require some less direct method for otherpnéations. In analogy to
the real world, | can push the furniture around on my floor,tbuitt it or flip it, | need
to get some extra help. The desire to perform non-standanipmlations also exists
for mechanically constrained objects, for example, we inigdnt to rip the head off
the Luxo lamp.

Often, the manipulation task provides sufficient inforroatio adequately constrain
objects so that simple point manipulations suffice. For eganpositioning a picture
on a wall or a lamp on a desk are both 2D problems. Pulling theadra slot ma-
chine is a one dimensional problem if the model behaves ligtamachine. | call
the strategy of attempting to use the natural constraintseofask to create interaction
techniquesnanipulation from structureSuch constraints are called “context specific
constraints” by [Hou92]. These constraints that arise ftbenstructure of the model
are advantageous because they only restrict the user fndorpéng operations which
are typically undesirable, they are often already inheretite parameterization of the
model, and they are easily understood by the user.

There are many issues in employing manipulation from stinecin realistic sys-
tems. For one, it requires that the system have some knowletighat the objects
are, and how they should behave — a collection of polygonfithogk like a painting
which should remain hung on a wall to the user, but the systeist mot only know
how paintings are to behave, but also how to identify therme Sthucture of the model
must be created in a manner that has the proper semantics. MArgpulating such
models, it can be difficult to know if the model is sufficienttgnstrained such that
2D manipulations will provide enough control. While the diéntial approach does
not directly address these problems, it does make it faeetsexplore manipulation
from structure by providing a vocabulary with which the seti@constraints can be
expressed and by mapping controls to whatever parameterssad to represent the

8.3. SOURCES OF CONSTRAINTS 161

models.

8.3.4 Handles

Handles are particular points associated with objectscrabe grabbed. Handles are
often given specific meanings as to the manipulation that peeform. For example,
in a typical Macintosh direct manipulation interface, apginaal object has particular
handles that cause it to be scaled.

Handle behavior can be defined by associating each handi@wét of constraints
that are applied to the object as the object is manipulated ekample, to create the
Macintosh-style scale handles, the position of the oppasitner of the object must
be pinned down while the handle is dragged. Bramble’s grabuaigrab hooks were
specifically designed to help define handle behaviors wittstraints.

8.3.5 Widgets

Although building the constraints required for manipwatinto each graphical ob-
ject has many attractions, it does have some serious dr&aabktost obvious is that
behavior must be built into each object, and that each olopedt have sufficiently
well-designed behavior so that it is manipulable and thatcibnstraints are apparent
to the user.

An alternative to giving every object a behavior is to defipeasal objects which
have behaviors and to manipulate the other objects by atttem to theswidgets.
These widget objects can be specially designed to haveatisiand self-revealing
behaviors. A widget can be thought of as a tool for providirgpacific type of ma-
nipulation. Widgets have become ubiquitous in graphictriaces. Most graphical
user interfaces now have users specifying values with wsdgiech as sliders, dials,
and buttons.

With the differential approach, connections are bidikadl. If a widget displays a
value, it can also serve to control the value. The functibasiap from the screen po-
sition of the input device to the values stored by the widgatot need to be provided,
only the forward direction functions required for drawinbhis is exemplified in the
fuel gauge widget example shown in Figure 8.9. The complede ¢or this example
Is presented in Section A.2.1, but a simplified version isngefiusing the Bramble
define-shape function:

2The definition of widget here is slightly different than tlif CSH92]

162 CHAPTER 8. INTERACTION TECHNIQUES

Figure 8.9: A fuel gauge, define with Brambledefine-shape function.

(defi ne-shape gas-gauge (val) (0) ; object with 1 variable

((t (+ .2 (* 2.7 val))) ; convert percentage to angle

(x (- 0 (* .3 (cos t)))) ;X position (left is 0)

(y (* .3 (sint)))) ; Yy position

(dr awf : define draw method

(prog (color gl-black) (linewidth 3) ; setcolorandlinewidth
(arc 0 0 .3 0 1800) ; draw the shape of the gauge
(move -.3 0) (draw .3 0) ; and the bottom
(move 0 0) (draw x y))) ; draw the needle

(> val 0) ; limit the needle to valid

(< val 1) ; range

(handle x vy))) ; put ahandle on the needle

The values that are computed for the position of the hanpl@ised for drawing, also
serve as a handle. No code for mapping from the mouse positithe angular value
was required.

Bramble provides a small set of widgets that can be used idavis outside of the
views. However, widgets are often created as graphicattbjbat exist in the world
with the user objects. Because Bramble’s world is 3D, thegetis actually exist in
3D space, even though they are usually flat onto:the 0 plane. However, since the
widgets are 3D objects they can be transformed into otheeplaFor example, we
might place gauges on a model of an instrument panel as shokigure 8.10.

The behavior of a widget can be defined using the same teatmagused for other
objects. For example, to create a gauge with a dial, the aroud be constrained to
have its endpoint at the center of the dial, and its oriemagiqual to the value of the
widget.

An example of some experimental widgets in Bramble are tlogedt gauges. The
set of gauges include an altimeter, a heading indicatoraarattificial horizon, shown
in Figure 8.10. In each case, the gauges draw themselved baghe values of their
parameters, and provid¥stinguishedPoint connectors on their moving parts.
For example, either hand of the altimeter or many points enhiading indicator’s
compass ring can be grabbed.

This set of airplane gauges is potentially interesting beeat provides a 2D dis-
play, and therefore control, of the orientation of a 3D objétowever, | have not found

8.3. SOURCES OF CONSTRAINTS 163

Figure 8.10: Gauges serve as both displays and controls of the planefgyocation. Al-
though they are 2D objects, the gauges can be placed anyimttee3D scene.

the airplane gauges to be a useful interaction techniqueoiatrolling 3D objects.

8.3.6 3D Widgets

Traditional 2D widgets can be applied to 3D interfaces. Taidthe drawbacks of such
an approach, [CSHB2] introduces the notion of 3D widgets as tools in the ofgect
space.

The differential approach offers a mechanism for definiregltéhavior of 3D wid-
gets, which is a central difficulty in their design[ZFHB3]. With our approach, we
define the behavior of a 3D widget with a set of constraintsghéiciently restrict its
behavior so that a through-the-lens control can be usedseltenstraints are applied
while the widget is operated.

Figure 8.11 shows some example 3D widgets modelled aftesribe presented in
[CSHT92] and [SC92]. The “jack” widget on the leftis used to tratelan object along
an axis. Pulling a tip of the jack causes the widget and iecht#td object to move in
the direction shown by the arrow. When a handle is grabbed &éssprg the mouse
button, the object is constrained so it can only translaiagthe axis, and a through-
the-lens control is applied to the handle. When the mousddased, the constraints
are removed. Similar techniques are used to create widgetsthtion about a point
or axis, or to scale either uniformly or along an axis. Begephic design can make
the widgets more self-revealing.

Widgets to control the viewpoint, such as a virtual spheae,aso be created with
the differential approach. The exact virtual sphere tegimiof [CMS88] is harder to
create using the building blocks provided because the sghat the user grabs is in
screen space, rather than in object space. This has a nuftheadvantages as it loses
the kinesthetic coupling between dragging and the visielelior. The arcball method
of [Sho92] makes this problem worse by introducing a scalawgor to simplify the

164 CHAPTER 8. INTERACTION TECHNIQUES

Figure 8.11: 3D Widgets for translating an object, rotating an objectwlzovertical axis,
and rotating about a horizontal axis. The object is made-$@msparent to avoid obscuring
the widget. Notice that since the widget is an actual scejexglit casts a shadow on the floor.

derivation of the mathematics.

A virtual sphere variant that we prefer is the virtual tragkbThe virtual trackball
can be thought of as a glass sphere surrounding an objeat wdHd. To rotate an
object, the sphere is grabbed with a through the lens caartibls constrained so it can
rotate only around its center. To make the manipulation@bihject more “direct,” the
sphere is often omitted. Points on the object are grabbeddihrthe lens, the object’s
center of rotation is nailed in place, and the object is ma&gld so it revolves around
the center. One addition to the virtual trackball is the &ddiof an elevator key that
freezes the rotation but frees the uniform scaling of thecibjThis causes the virtual
trackball to work like a spherical coordinate mousepole.

To use the virtual trackball to control the viewpoint, we sigler the objects in the
world to be encased in the sphere that is dragged. In pragtiten the through the
lens control is applied, the distance between the camer#hancenter of the world is
constrained, as is the apparent position of the center attieen. This virtual trackball
behavior is part of the standard Bramble 3D interface ofiSe@t.8. Whenever a corner
of the groundplane is selected, the trackball behavioresiug dollying (sometimes
incorrectly referred to as panning) behavior, created loyahg the camera to translate
but not rotate, occurs when the center of the groundplanegoed.

There are several advantages to developing a 3D widget hathlifferential ap-
proach and through-the-lens controls. First, it permifindey the widget’s behavior
without deriving any of the mathematics for converting frima input device’s motion
to parameter changes. Secondly, it defines the widget in aendhat is independent
of the underlying representation of the object. Finallg tescriptions of the widget
in terms of constraints provides a concise, executablafsgmn of the widget’s be-
havior.

8.3. SOURCES OF CONSTRAINTS 165

8.3.7 Discussion

The differential approach lets us define and implement atyadf strategies for ma-
nipulating objects. The strategies are not mutually exe&ydor example we might
attach a widget to a part of a constrained object (partiul&it is not sufficiently
constrained) or use modifier keys to alter the behavior ofdget. As we experiment
with different strategies, we find that they all have advgesaand drawbacks. Here,
we discuss some considerations.

User provided vs. designer provided: Making the user responsible for providing
constraints may give the user more flexibility, but mightaisake them expend more
effort as they specify behavior in addition to geometryldbaxposes them to the range
of problems inherent in specifying behavior. Interfaceigiesrs are (hopefully) better
at devising good interactive behaviors, but cannot taiésighs to specific operations.
If the objects to be manipulated will be used often, or regtbd many times, it becomes
worthwhile to spend effort in building behavior into themhi3 might be done by the
user, the interface designer, or by someone else who issampbbject designer.

Smart objects vs. smart tools: Do we put lots of behavior into the objects, so that
they can be manipulated with simpler tools, or do we devekteb tools so that our
objects need less behavior? An extreme case of the formddwewan interface where
every object had sufficiently well defined behavior so that point could simply be
grabbed with a though-the-lens control. An extreme casé@fldtter would be to
have uniformly simple objects, for example ones that aragpsubject to the standard
translate, rotate, scale transformations, and provided sedgets or commands which
operate on them.

Context-sensitive vs. context-free: Is object behavior uniform, or do different ob-
jects (or even parts of objects) behave differently? Taifpbehaviors to objects has
advantages, as discussed by [Hou92], but uniformity daes to

Bounded scope vs. unlimited connection: Permitting arbitrary relationships among
objects can simplify manipulation by restricting unwanbethaviors, but when many
objects interact, their coordinated behaviors become &Goatpd as longer chains of
causality are possible. Strategies which manipulate sif@la small number of) ob-

jects, such as widgets, have the advantage of keeping thetesbehavior as the en-

vironment scales, but may grow tedious to use as the useraonsider an increasing

number of objects and interactions.

166 CHAPTER 8. INTERACTION TECHNIQUES

8.4 Employing Switching

In Section 6.4, controllers that operated by switching $éanpontrollers on and off
were presented. In this section, we examine how these sngtcontroller might be
used.

8.4.1 Generalized Snapping

In Section 6.4.2, a controller for snapping to values wasliged to aid in providing
accurate direct manipulation. TBmap controller causes a connector to be drivento a
particular value when it approaches that value. Becausedthieoller can be attached
to any connector, it provides a general method of snappidgtaruse is, therefore,
referred to as generalized snapping.

Generalized snapping can be used to recreate the typicarcsmapping by repre-
senting the cursor as a differentially controlled objeal areatingSnap controllers
that drive it towards desired snap targets.

Other behaviors can be created by placBmap controllers on connectors other
than those that are being directly manipulated. Becausgaitem handling happens
asynchronously in parallel with manipulation, precisatiehships can be established
away from where the cursor is. For example, if users ofteireléae segments to be
accurately vertical, that is when something appears \a&itishould be verticalSnap
controllers for the values/4 and3r /4 can be placed on the angle connectors of each
line segment. If a line segment is brought near being vewiEd is dragged, the con-
figuration of the line segment would “snap” to a configuratiamere it was vertical.
While this small jump may violate the continuous motion, itigially small and pre-
dictable enough that it is permissible, especially whermperdeedback is provided to
express what snapping operation has occurred.

With generalized snapping, the snapping can occur awaytierdragging action.
For example, if the line segment of the preceding paragragshattached to some link-
age mechanism, the user might be controlling the line seghyemanipulating some
other part of the mechanism, as shown in Figure 8.12. Thisesdleven more crucial
to provide proper feedback to the user to denote when songgithsnapped. Because
the focus of attention is possibly away from the snap, fongXa at the dragging site,
auditory cues might be useful as well.

The generalized snapping technique has many drawbacksdédtto be resolved.
First, it does not revert objects to their original configiom when unsnapped. Sec-
ondly, it needs to be connected to mechanisms that handteiewnap targets. To do
this properly might require the ability to determine whethwo constraints conflict.
Third, because the differential approach only drives cotors towards particular val-
ues, there is no guarantee that the snap controller acburaéehes its target. Finally,
the snap controller has a number of potentially sensitivarpaters that must be fine-

8.4. EMPLOYING SWITCHING 167

@

Figure 8.12: Generalized snapping can occur away from the draggingrac#s the user
drags the linkage mechanism, the left line segment getgpswkio the vertical position. Be-
cause such snapping can take place away from the focus ofiatigit is important to provide
proper feedback.

tuned to provide the correct “feel.”

8.4.2 Collisions

Non-interpenetration is a useful constraint on objectehSuconstraint causes objects
to collide and contact one another when they touch, ratlaer tin simply pass through.
A collision is the initial impact between two objects, whitlay remain in contact with
one another afterwards.

With the differential approach, it is possible to create 4merpenetration con-
straints using inequalities. While the methods are not abkistgated as the special
purpose collision simulation methods reviewed in Sectidh3, they are simple to
build with the abstractions of the differential approaatd are sufficiently effective to
be interesting.

A particularly simple case of collision avoidance is usedow-and-arrow diagram
creation, an application discussed in Section 9.3. Theqodat constraint we would
like to enforce is that two axis-aligned rectangles do nettap. This can be expressed
as a disjunction: if at least one of the following inequastihold, then the rectangles
do not overlap:

T1+ S, < Tg— Sy (8.10)
X1 — Sy > X9+ S,

Y1+sy < Ya— Sy

168 CHAPTER 8. INTERACTION TECHNIQUES

Y1 — Sy > Ya+ Sy,

wherex andy are the coordinates of the center of each rectangles exthe size. Each
clause represents one of the possible ways for the rectatogibee separated, either 1 is
above 2, below 2, left of 2, or right of 2. Alternatively, thisginction can be expressed
as a maximum operation of the four terms.

The differential approach permits conjunctions of constsao be handled easily,
however disjunctions are more difficult. Enforcing the disjtion is not a problem
when it is true, as each term can be checked until one thatessrfound. However,
when none of the expressions of the disjunction is true, &ehnust be made. As with
inequalities, when the constraint is violated it will beiaated in order to “pull” it back
to the admissible region. In the case of the disjunctioreasti one of the expressions
must be chosen and used as a constraint. Even though allinétingalities are violated,
all cannot be enabled because they would conflict.

The strategy for handling disjunctions of inequalities|\w# to select one of the
inequalities to enable when the disjunction is violated c&ese we are not backing
up the instant where the disjunction began to fail (see 8e&i4.5), we must resort
to enabling a violated inequality and permitting it to piiletconfiguration back to a
legal configuration. The difficulty is selecting the ineqtyalwhich must be done by
a heuristic. Although we would like to pull things out the samay they went in, the
lack of history makes it impossible to do exactly.

A heuristic used for the simple rectangle overlap probleto igick the inequality
that is least violated. This technique is used for object-oeerlap in the box and
arrow diagram editor program of Section 9.3. The heuristils in two cases depicted
in Figure 8.13. First, if the overlap is near a corner, an capeay be pushed out to
the side, rather than the way that it came in. Second, if th& @@ver step moves the
object too far through the second object, it might be closethe object to push out
the opposite side that it came in from.

The basic rectangle non-overlap can be extended to theaeraese of rigid (e.g.
rotatable) convex polygons. The basic element of a nonlayepnstraint for two such
objects is a point outside of polygon constraint. This isatgd by a disjunction, there
must be at least one edge of the polygon that the point'srdistaside the half-plane
defined by the edge is positive. A point outside polygon camstcan be created with
a similar heuristic as the rectangle non-overlap, with lsingelection problems.

Two convex polygons do not overlap if and only if all the pgioh each are outside
of the other. This makes it easy to break the polygon coligimblem into point out-
side of polygon problems. What a polygon collider must do i@ finints that are inside
the other polygon, called contact points, and enable cainssrto push them outside.
It will always be sufficient to choose at most two contact p&ias this will establish
a dividing edge between the polygons. After being sele&adh of the contact points
chooses an edge to be pulled out through. The heuristic malst sure that the points
both exit through the same edge, even if they are on differejeicts.

8.4. EMPLOYING SWITCHING 169

1 | 1

\ 1.
2 2
3 3

Figure 8.13: A disjunction of inequalities constrains two axis-aligrredtangles from over-
lapping. Because the selection of a direction to pull theblut is made without knowledge
of the direction it came in, two types of errors may be cau#fatie overlap is in a corner, the
distance out the side may be less than the distance backeotetithas shown in the sequence
on the left. Also, if the object moves too quickly it may pas®ugh the other object, as shown
in the sequence on the right.

170 CHAPTER 8. INTERACTION TECHNIQUES

B

Figure 8.14: Mechanisms that can simulated using the simple collisioethous of the dif-
ferential approach. The left shows a set of sawtooth “ggarsined with a square block, and
the right shows a block feeder.

While this simple method for collisions is not perfect, it idremely simple to im-
plement, and achieves good enough performance to allow sdenesting mechanisms
to be created with it. Two examples are shown in Figure 8.IdceSthese methods
were developed, techniques to permit robust simulatiomlisens interactively have
been developed by David Baraff [Bar94].

The philosopher’s have, in many ways, tried to interpret
the World. The point, however, is to change it.
— Karl Marx
11th thesis on Feurbach

Chapter 9

Example Applications

This chapter describes some sample applications built théhdifferential approach
and the tools developed in the previous chapters. The peampiodiscussing these ap-
plications is threefold:

¢ to show how the interaction techniques developed with tfieréntial approach
can be fit in the context of a realistic application.

¢ to show that the differential approach is viable.

¢ to show some of the range of the tools, particularly the Bianwolkit, giving
evidence of how the differential approach can be used to rea&ke tools more
general.

All of the example applications discussed, except for thaBirawing program,
were constructed using the Bramble toolkit.

9.1 A Drawing Program

Although constraint-based techniques have been usedSketehpad [Sut63], the ear-
liest drawing program, they have not been generally sutideddany difficult issues
have limited the success of constraint-based systems &vvidlg. Not only must a
system be able to solve constraint satisfaction problensit Inust make it easy for
users to specify, debug, and edit constrained models Bfiae' drawing program at-
tempts to address all of these issues. The issues of corndbased drawing that Briar
addresses apply more generally to interfaces built witldtfierential approach. Briar
is discussed in detail in [GW94] and [Gle92a], and illustdateFigure 9.1.

A major goal in the development of Briar was to build a systeithwonstraints
that provided users with the fluent interface that they haraecto expect from direct

Lt is called Briar because, like the plant it is named fomgs stick together inside of it.

171

CHAPTER 9. EXAMPLE APPLICATIONS

172

[S

I S

OlT

Figure 9.1: Briar editing a constrained drawing.

9.1. ADRAWING PROGRAM 173

manipulation drawing programs. The techniques in Briartaiadd at least some of the
advantages of constraints without detracting from whatrhade direct manipulation
drawing programs so successful. In short, they aim to make Bdirect manipulation
drawing program augmented with constraints, not a drawnogrnam with a primar-
ily constraint-based interface. The interface feels sintib other direct manipulation
drawing programs which provide snapping except that onapsed, things can stick
together.

The basic idea behind Briar is to enhance an existing, saftdedirect-manipulation
drawing technique with constraints. Briar separates thk td initially establishing
relationships in drawings from that of maintaining themidgrsubsequent editing.
It uses shap-dragging, a successful non-constraint-llaskdique introduced in Gar-
goyle [BS86], for initially establishing relationshipsdnawings. By augmenting snap-
dragging, Briar obtains the constraint specification witthel or no additional effort
from the user. The methods of the differential approachnatlze constrained draw-
ings to be be manipulated directly; as the user drags antlg@astraint techniques
adjust other objects to maintain relationships.

Combining snap-dragging with constraint techniques $icamtly changes the na-
ture of the constraints. Unlike most previous constraedea approaches that rely on
solving methods to initially satisfy the relationshipsnstraint methods in Briar are
used only to maintain relationships during dragging. Thesnmts using the differ-
ential approach, as objects move only during continuousemalragging. The pri-
mary benefits of using constraints only to maintain constsaduring dragging parallel
those that motivated the differential approach in Sectigh e can avoid solving
non-linear equations from arbitrary starting points; wedeot select configurations
in under-constrained cases, and we can aid the user in théeprof understanding
state transitions by always providing continuous motion.

In Section 8.2.2 discusses many of the challenges in creetinstraint-based draw-
ing editors. The differential approach addresses someeskthBriar includes tech-
niques designed to address many others including how tofgmenstraints, how to
edit them, and how to display them to the user. These issigsiara wide range of
applications. This section describes Briar in detail tasttate some possible solutions
to these problems.

9.1.1 Augmented Drawing Tools

Briar's approach only uses constraint techniques aftetiogiships are already estab-
lished. To establish the relationships initially, we usght@ques such as grids, gravity,
and snap-dragging [BS86] that have been employed by nostient based drawing
programs. To avoid giving the user the extra work of speagyoth the constraints
and an initial solution, Briar providesugmented snap-draggingdugmented snap-
dragging is a variant of snap-dragging that has been extielodspecify persistent con-

174 CHAPTER 9. EXAMPLE APPLICATIONS

straints as well as positions. The basic idea is that theocptacement operations of
shap-dragging contain information about why an object wasitipned where it was,
and therefore they can also provide a constraint spectitati addition to positional
information. The technique can also aid traditional canstrbased drawing programs
which require good starting points to prevent long jumpg #ra hard for solvers to
make and users to understand.

Ours is not the first attempt to spare users from additiofiatteequired to explic-
itly specify constraints. Previous systems have attemfuenfer relationships after
drawing operations by looking at the resulting drawing,raautomatic beautification
[PW85], sequences of drawings, as in Chimera’s snapshotanexh [KF93], or at a
trace of user actions, as in Metamouse [MKW89]. Because tifasrmation typically
does not specify the relationships unambiguously, thesesys relied on heuristics
or asked the user to resolve the ambiguity, as in Peridot [§B8d Druid [SKN90].
Our approach provides positioning methods which unamhiglyspecify constraints,
eliminating the need for inferences. We simply augment drguools to specify con-
straints as well.

In Briar, augmented snap-dragging is the only method focifgag constraints. It
provides a uniform method for creating a variety of constigisuch as controlling dis-
tances, positions and orientations. Other systems whiehgonstraints from snapping
either have a limited vocabulary of constraints, such agvthehattan gridding rules
of the interface builder of [HY91], or use other methods teafy the complete set
of constraints, as in Intellidraw [Ald92] and DesignViewd@92]. Rockit [KLW92]
also infers gridding constraints from drawing actions,dngs not avoid ambiguity, ac-
tually averaging multiple possibilities. Chimera [Kurd®s both snap-dragging and
constraints, but does not integrate the two.

Here is the basic idea behind snap-dragging. When drawirgydlitficult to posi-
tion a pencil precisely without using some form of aid. Samy, it is difficult to draw
precisely with a mouse or other pointing device unaided. Quter software can pro-
vide tools for precise placement by drawing from a softwawsitioned cursdrrather
than using the pointing device location. The software atsdocation is influenced by
the position of the pointing device, but determined by a fiamcwhich helps the user
position elements precisely.

The uniform grid is the most common function for mapping peitocation to cur-
sor position. It displaces the cursor to points on an equsdbced rectangular grid.
“Gravity” is another cursor positioning function. When theinger is brought suffi-
ciently close to an interesting element in the scene, theotwnaps to it. The idea of
gravity has existed for a long time, having been demonstraseearly as Sketchpad
[Sut63]. snap-dragging [Bie89, BS86] enhances the usefslof gravity. The cursor
snhaps not only to the edges of objects, but also to integeptimts in the scene such

2This differs from the original snap-dragging terminolo@yg89] where the position of the hardware
pointing device is known as the cursor and the software cissmown as the caret.

9.1. ADRAWING PROGRAM 175

as intersections and vertices of objects. The ability tgpdoantersections enables the
use of traditional drafting compass-and-straight edgeicoations.

Since cursor placement operations contain informatioruabdy an object was
positioned where it was, they can also provide a constraetification. Suppose the
user, while dragging an object, moves the pointer near anotbject so that the cursor,
and the point being dragged, snap to the second object. Hyiiave been an accident,
but the user might have been trying to achieve this relatigns\e provide the user
with the option of making the relationship persistent, sib\was intentional it can be
preserved during subsequent editing. We call the extendienapping to specify a
relationship in addition to a positicmugmented snapping.

When a new relationship is established by snapping, themyatknowledges it by
displaying a symbol indicating the constraints that thepginag operation implies. The
user can accept the new constraint, by pressing a key to rhpkesistent, or ignore
it. If this automatic constraint generation process worlel whe user will want to
accept most constraints so the option of making this theutte$hould be provided.
In such a mode, it must be easy for the user to reject an acdian accident. In Briar,
a key is used to toggle new relationships between the aatsfsee, in which they are
made into persistent constraints, and the ignore statdhichwhe symbols are removed
before the next drawing operation begins.

Snap-Dragging provides two basic operations for positigmioints in two dimen-
sions: snapping the cursor to a point, such as a vertex, appsmy the cursor to an
object’s edge or curve. These operations correspond ljitedhe constraints “points—
coincident” and “point—on—object” respectively. The twanestraint types work with
each object type that Briar supports. The set of objecteptBsincludes lines, circles,
ellipses, and rectangles.

Relations other than contact are created in snap-draggnegdhalignment ob-
jects: objects that are not part of the drawipgr se,but exist only to be snapped to.
The original snap-dragging work includes several typedighment objects, each cor-
responding to types of relationships which are useful imitrgs. For example, the
distance from a point can be specified by placing an alignciesie around that point.
Other alignment objects include slope lines, angle lined, distance lines. The use-
fulness of alignment objects is further enhanced by makiegiteasy to place. In fact,
heuristics can often automatically place alignment ojedtere needed.

The two simple snapping operations combined with alignrobjects allow a user
to establish a wide variety of relationships. The simple piag from snaps to con-
straints extends to a variety of constraints. For instasicgpping to an intersection is
a conjunction of the simpler constraints. By using the segolnstraints with alignment
objects, the relationships specified by snapping to thegemran be made persistent.
For example distance-from-point constraints are creayeshbpping to an alignment
circle. The Gargoyle editor [Bie89] shows how snap-draggian be used to create

3In our experience, the automatic constraint generatioa gosd that we make it the default.

176 CHAPTER 9. EXAMPLE APPLICATIONS

(@) (b)

(€))

Figure 9.2: Feedback mechanisms display exactly what is snapped tocdrser changes
shape depending on whether it is snapped to a curve or edyeqiea point such as an endpoint
or intersection (c,d). The object snapped to is brightlylfiseveral objects are close together,
the one desired can be selected by cycling (e,f). Color id fmdeedback when available.

most of the relationships which are needed in drawings. Aarged snap-dragging
extends this to inferring a similarly complete set of coaistis.

Hidden state is a fundamental problem in the interface betvmean and machine;
therefore, feedback is an important aspect of any userfate{Nor90]. To make
augmented snap-dragging work, feedback is crucial. Odbiaek mechanisms (Figure
9.2) ensure that the snapping state is not hidden from thighyskeighlighting the object
shapped to and changing the cursor’s shape to show if it [gp&th and whether it is
shapped to a point or an edge. Good feedback makes snapgieg teause because
the user never needs to guess what relationships the systestablishing, or which
relationships can be made persistent when the snappingtapers complete. The
other benefits of snapping feedback [Hud90] also apply agmng shows the user
what can be snapped to, not just what is snapped to.

There are many advantages to augmented snapping as aficbitd-a constraint
system. Augmented snapping is opportunistic, creatingtcaimts where it can. Con-
straints are specified with little additional user efforiybed what is required to ini-
tially establish them. The constraint creation processiiedransparent so it does not
interfere with the user’s drawing process. Since snapginagis used for all draw-
ing operations, including dragging and creating new objeminstraint creation is al-
ways available. Augmented snapping still provides the witrthe snapping interface

9.1. ADRAWING PROGRAM 177

@) (b) ©, |

Figure 9.3: Alignment circles help create an equilateral triangle aBglaces 3/4 inch align-
ment circles around points of interest. Snapping to thdeciceeated with the initial mouse
point sets the length of the first line (A). Snapping to theiséction of the circles created
around the ends of the newly created line segment consttansoint to be 3/4 inches from
each endpoint (b). Snapping the final segment in place letéives lines constrained to be
connected with their endpoints 3/4 inches apart (c). Theeaysan maintain these constraints
as as the user drags pieces of the triangle (d).

which has proved successful in systems without constraathat constraints need not
be used if they are not convenient for a particular drawingrafon. Briar augments
shap-dragging, which by itself is an extremely powerfuhdrey tool.

Removing Ambiguity

If multiple objects coincide when snapping, it might not lkeatc which object to snap
to. If we are only using snapping for positioning, the amitigis irrelevant: only the
target location is important. However, with persisteraitieins this distinction becomes
significant. If the two coincident points are later sepatatbe correct attachment re-
lationship must be maintained.

Feedback, along with snap-dragging’s cycling mechanisives the problem of
ambiguity. Feedback mechanisms clearly show the user vafigtt is being snapped
to and what relationships are being established. If thesmaorrect, the user can click
the cycle button and the system will snap to the next objetttivgravity range.

A related problem is that the user might construct a modelhraaner which does
not convey the desired constraints. As an example, contdi@eequilateral triangle
construction (Figure 9.3) which is used to demonstrate-sinagging [BS86]. In this
example, alignment circles @f/4 inch are used to create an equilateral triangle. The
user has specified a triangle with all sides equal/tbinch, not a triangle whose equal
sides can be scaled as well as rotated and translated. Tdgw@pronly knows what the
user has specified and, therefore, cannot guess anothen.opti

Briar does not attempt to guess the user’s intent. Instéaugs to keep the auto-
matic generation process predictable, to use feedbacktmdethe user exactly what
the system has been told, and to provide tools which conweydsired relations di-
rectly. Since our goal is to extract constraints withouta&xtork, it is wrong to require
users to expend extra effort to use constructions whichtetda@ correct constraints.

178 CHAPTER 9. EXAMPLE APPLICATIONS

Therefore, we must make it as easy as possible for the usenteyg what is really
intended.

The scalable equilateral triangle problem is solved usingeahanism from snap-
dragging. Rather than specifying that the alignment cic@d therefore the resulting
triangle, have siz&/4 inch, a length measurement tool is employed. The first line
segment is drawn and then measured. Circles are then crgitbeichdius equal to the
length of the line segment. In Briar, this construction fieggionly one more mouse
click than to construct the fixed sized triangle. Angle arampsl measurement tools
could also be provided to express other relationships.

As we find relationships that are needed in drawings but diiewudt to express di-
rectly with current tools, we can develop new tools to exptradset of relationships
that are easily specified. Expanding the vocabulary by addiwider assortment of
tools only makes modeling easier to a point, after which éingdr number of tools be-
comes unmanageable. User experience with Gargoyle [B&®8Ys that the standard
set of snap-dragging tools are sufficient to create a widgyat drawings.

Another complication in augmenting snap-dragging is ththd constraints already
imply that two objects are related, there is no reason to #rep together. Suppose the
user is dragging a point. Gravity snaps the cursor to nedmcts. If another object
is connected to the point, it will always be nearby and it migg snapped to. Since it
is already connected, this would create a redundant camstoarequire to the user to
cycle in order to snap to another object. Filtering the sefapécts that can be snapped
to eliminates this nuisance.

However, recognizing that a relationship is implied by a glegeometric con-
straints can require difficult geometric proofs as some dmaijgd mechanism might
imply additional relationships. From our experience, pagrs that handling the sim-
ple cases—not snapping to the object being dragged, chgefikimxisting connection
constraints, applying basic geometric identities, etclterf out the vast majority of
redundant snaps. Avoiding redundant snaps is an optiraizatiis not critical to the
correct functioning of snapping. However, not filteringradlundant snaps means that
the solving techniques must be robust in handling redunctamgtraints.

9.1.2 Constrained Direct Manipulation

Briar uses augmented snap-dragging to initially estalai@ststraints and then uses the
methods of the differential approach to maintain these tcaimss during subsequent
editing.

With constrained direct manipulation, objects are dragagdith standard direct
manipulation, except that relationships are maintainedragrthem. In Briar, direct
manipulation does not break persistent constraints, hatragging is subject to the
constraints. This allows the drawing process to be incréahkeeach new relationship
added to a drawing does not disturb previously establisimed.oThe existence of a

9.1. ADRAWING PROGRAM 179

direct manipulation facility means that all parts of the ralb not need to be specified
by constraints. If it is difficult to devise a way to describveaspect of a drawing with
constraints, direct manipulation can be used instead.

Dragging parts of drawings allows the user to experimenh \hie constrained
model. This interactive animation is a useful tool for ure@nding and debugging
constraints. It also opens up the possibilitydyhamic drawings:models which are
created to be dragged and played with. Such drawings coateionstrained degrees
of freedom, so they exhibit motion when their parts are dealgd he use of constraint-
based approaches to animate drawings dates back to Skae{&uyté&3] and special pur-
pose techniques for interactively simulating mechanisavetibeen developed [Kra90,
RK77, End90]. Differential constraint systems are alsd suted for such mechanical
simulation and animation tasks as well as interaction. i@e&.2 describes a special
purpose application for mechanism sketching.

The facility with which we handle constraints opens the gokty of using con-
straints to aid in manipulation. Most constraints are usepresent structure in the
drawing. However, temporary constraints that are easyeaterand destroy are useful
for making drawings easier to control. We call such constsaiwhich are meant to be
short-lived, “lightweight” constraints.

Dragging is one example of a lightweight constraint. It iniaged by temporarily
constraining the point being dragged to follow the mouseotAar useful lightweight
constraint is theack. A tack hold a particular point in place. It acts as an extradpan
making it easy to stretch or rotate an object. Nailing a patrd particular point in
space is a common facility in constraint-based systems.iMdak easy to place and
remove the nails easily enables new uses for them. For erartguks can perform
the tasks that anchors do in traditional snap-draggingg#iespecifying the center of
rotation and scaling.

9.1.3 Displaying And Editing Constraints

A constrained drawing has more state that must be display#tetuser than a non-
constrained one does. A system must convey to the user notlengeometry of the
model, but also its constraints. The user must be able tareslistructural information
as well as the geometry. Previous constraint-based systamesused three types of
techniques for displaying constraints to users: textuajleages, diagrammatic repre-
sentations, and graphical cues drawn directly on the model.

Textual languages for describing constraints, such agthployed in Juno [Nel85],
have the advantage that they are editable. Unfortunatety, are distinct from the
drawing and can be difficult to connect. Schematic repregiemis of constraints, such
as that presented by Borning [Bor86], are similar in thatdbwestraint display is sepa-
rate from the drawing.

Visual representations, such as in Converge [Sis91], GeD&o089], and Viking

180

CHAPTER 9. EXAMPLE APPLICATIONS

(@)

|

(©)

Q

o |

(d)

e

-

-

Figure 9.4: Snap-Dragging provides a basis for visual representafionmstraints. The two
basic constraints, point-on-object and point-to-poirg,drawn as an empty square and a filled
diamond (a) respectively. Other constraints are represdarging the basic ones and alignment
objects, for example, distance-between points (b), pailitmed (c), and orientation (d). Thin
wedges as seen in (b), emphasize distance constraintsr i€aleed for constraint display
when available.

[Pug92], superimpose constraints directly on the drawihige connections between
the relationships that will be maintained and the objecaty tffect are shown to the
user. Thisis particularly dramatic when the model is mowubgject to the constraints,
such as when it is being dragged.

Constraint representations that are superimposed onmigawlio have drawbacks.
Each type of constraint must be displayable in a manner tlakesiclear both what
the constraint is and what it effects. This can be partityldifficult in systems with
a large palette of constraints. Visual representationsatsmbe difficult to edit. The
tendency of constraints to cluster is one source of thiscditiy.

A Visual Representation of Constraints

Augmented snap-dragging provides a graphical method &mifging constraints. One
of its features is that it provides a uniform method for désog a wide variety of rela-
tionships. It can also be used as a representation for glisglaonstraints, providing
an equally uniform visual language for displaying consitaihat is the same as that
used to specify them.

Augmented snap-dragging specifies all relationships byobeo basic types of
shapping operations. The graphical depictions of thesetyywes of snaps becomes
a way to depict the constraints the snaps create. Alignmigetts are also part of
relationships and therefore they must also be made pearsistdike traditional snap-
dragging. The snapping symbols and alignment objects geowigraphical represen-
tation for a wide variety of constraints. Some examples hosva in Figure 9.4.

One factor which complicates visual display and editingaristraints is the ten-
dency of constraints to cluster, often being in exactly e place. The semantics
of constraints can be tuned lessen this problem. For examgthesr than using binary
relations to connect points to each other, linked pointpéaeed into an equivalence
class. If a set of points has been made equivalent, just thigagnce class needs to

9.1. ADRAWING PROGRAM 181

be shown, not the potentially large number of equality refeships all piled on top of
each other.

Editing Constraints

Ease of editing constraints is important; relations shbelds easy to break as to make.
Users may change their minds as to what relationships sloeula the model, or may
simply have made a mistake in specifying the constraintsidtsvisual representation
alleviates only part of the difficulty in deleting constranbefore being able to point at
a constraint, the user must know which constraint or comifr#o delete. To address
this, we allow users to remove constraints by referring edhbsired effects, not to
the constraints themselves. In fact, Briar provides no raeigdms for users to point
directly to constraints.

A direct method of removing constraints by referring to thgeots they influence
is to “rip” them. When an object is grabbed for dragging, hoiddown a modifier
key causes the grabbing operation to “grab hard,” removimganstraints on the
point grabbed. However, this method is often undesirableraay remove too many
constraints.

Another technique for deleting constraints without paigtat them is to allow the
user to temporarily disable constraint maintenance. Is thode, the user can ma-
nipulate the objects as if they did not have any constraintdhhem. When constraint
enforcement is re-enabled, constraints which the userhokeb are discarded. Feed-
back as to which constraints are broken and the ability tosnsg@ping operations to
reassemble things help make this a useful technique fangdibnstraints. A similar
mechanism for destroying unwanted constraints is provigedhimera [KF93], where
the user can create a new “snapshot” of the drawing which stioswonstraint broken.

9.1.4 Lessons from Briar

Briar was constructed as a testbed for ideas and techniquesristraint-based draw-
ing. It was developed in the autumn and winter of 1990, bafwwst of the work in this
thesis. Briar was built with a predecessor to Snap-Togeitathematics. It employed
a conjugate-gradient solver directly to handle under- argi-gonstrained cases, as de-
scribed in Section 3.6, and a “Briar-style” two pass soleesbft controls, as described
in Section 3.5.1.

Briar is an important demonstration of the differential eggrh because:

e it provides an example that shows the approach is viable;
¢ it shows that many of the difficult issues in using the appinazan be addressed;

e the techniques that it introduced, such as augmented sr@main be applied to
other applications;

182 CHAPTER 9. EXAMPLE APPLICATIONS

e it provided me with experience of what services constraaded graphical edi-
tors required, which influenced the design of subsequeliitep

¢ it showed how Snap-Together Mathematics could be incotpdiiato an appli-
cation, which led to alterations in the design of Snap-TogeMathematics;

e it inspired the Bramble toolkit because building a graphezhtor without sig-
nificant support to leverage off of was too much work;

e it emphasized many of the features required for the matheahaechniques,
such as continuous motion and redundancy handling;

e it provided an interface that permitted creating largenstmained models that
taxed the performance of implementations, providing irsmn and test cases
for exploring performance enhancements.

9.2 A Planar Mechanisms Sketcher

Creating drawings of mechanisms is a common use of a comisbased drawing pro-
gram. Not only do the constraints help accurately placeatdj® create the mech-
anism, but they also keep the mechanism together as it ispuated. This permits
the user to play with the mechanism to experiment with itsalvedr. Because mech-
anism creation was such a popular use of Briar, the first Blamapplication was a
special purpose drawing program designed especially Bawidig and experimenting
with planar linkage mechanisms. TheechToyapplication is illustrated in Figure 9.5.

Mechtoy defines a number of special purpose graphical otyjpes. Linkage rods
are line segments drawn to appear more like what is commadg to draw mecha-
nisms. The length of the rods are constrained like the rigchents that they model.
The point equality constraints used to connect pieces amwrdas hexagonal bolts to
look more like a mechanical object. The ground points thatigie fixed locations for
pivot points are drawn using the standard symbol from meackdexts.

Special adjuster objects permit altering the geometry ofhmrisms. When an
adjuster is dropped onto a linkage rod, the length of the sadthfrozen. Deleting the
adjuster re-freezes the rod’s length.

Several MechToy object types have points that are nailedacepexcept when
they are grabbed. For example, ground points are normalkelbin place, permitting
attached objects to pivot around them. However, if the ussvggthe ground point, it
is temporarily freed so it can be moved during dragging.

Special variants of objects permit creating a variety of Inaedical contraptions.
Sliders are line segments that have their endpoints nailpthce, and a floating bead
that is limited to sliding along the line’s length. Motorseaspecial variants of line

9.2. APLANAR MECHANISMS SKETCHER 183

Figure 9.5: TheMechtoyapplication is specifically designed for drawing and aningapla-
nar linkage mechanisms. This picture shows a mechanisng lagiimated, with smoke trails

tracing the motion.

184 CHAPTER 9. EXAMPLE APPLICATIONS

segments that have one endpoint nailed in place. When a bistjoressed, a soft
control is placed on the motor’s orientation that causes itotate. Motors permit
mechanisms to be animated.

Smoke trails are objects that can be drag-and-dropped atsgnithe mechanism.
They remember a history of the point’s position, and disjitlaya non-obtrusive fash-
ion as a decaying trail of dots, as seen in Figure 9.5.

Mechtoy uses augmented snapping to infer constraints @tisbas they are cre-
ated. If an objectis created in a position snapped to andtiestwo are bolted together.
This permits mechanisms to be sketched very rapidly. Mashaoan easily be disas-
sembled by deleting parts, such as the bolts between parts.

9.3 A Box-and-Arrow Diagram Editor

Another major use of a constraint-based drawing program @date diagrams with
arrows connecting the pieces. Constraints are partigulagful in such an application
because they permit the structure of the drawing to be edads the pieces are moved.
This can save a considerable amount of work of reestabfistonnections after each
edit.

Diagrams are an important enough class of drawings that ketiar specific tools
for creating diagrams exists. Such tools can maintain octiores without a general
purpose solving mechanism because of the simplicity offibeific constraint problem.
Simple dependencies suffice for keeping boxes and arroashatt. One of the many
successful commercial examples is Visio[Sha93]. Visio [gadicularly interesting
example because it permits users to define new types of slgadtconnections using
a spreadsheet interface.

A simple diagram editor calleBoxerhas been built with Bramble and is shown in
Figure 9.6. Boxer provides a few basic object types, eachirag connectors at points
around their periphery. Boxer objects automatically diggéxt inside themselves, al-
though text-editing is not supportedThe objects are constrained to be axis aligned.
They can be created and placed using a drag-and-drop iceefriam the palette pro-
vided at the top of the window. The drag-and-drop interfaggrpts users to select
icons from the palette and drag them onto the drawing area.tdd¢hnique, which is
also used in Visio, avoids separate modes for object creatio

Connecting lines are specified by providing two points ondsmbjects. Arrows
can be placed at either end. The connecting lines and araoksat the normals of
the points they are attached to in order to attach at a prapgea The connecting
arrows are drawn as Bezier segments to have a smooth appegetrapproach their
destinations with the correct orientations.

4Text handling facilities are conspicuously absent fromnBite.

9.4. ACURVE MODELLER 185

Figure 9.6: TheBoxerdiagram editor is designed for creating box and arrow diagra

Boxer was the first Bramble application to employ non-inéergtration constraints,
as described in Section 8.4.2. Boxer objects are constrainio overlap. As an object
is dragged, it pushes other objects out of the way, just asipalyobjects would. The
collision mechanism treats all boxer objects as rectanglbe simple collisions have
been useful for a variety of purposes, including movinglstaaf objects and clearing
space around an object by pushing neighboring objects away.

Boxer is designed to be extended easily. It defines a Whispeatiin called
install-shape that installs a new shape in the interface, adding a dragdaoyl
icon to the top area of the screen. Tihstall-shape function takes the output
provided bydefine-shape (Section A.2.1), or the functions to create instances and
draw icons can be created by hand.

9.4 A Curve Modeller

The NewFFprogram shown in Figure 9.7 is an application designed tmjexper-
imenting with 2D parametric curves and constraints. It isvad after Andy Witkin’s
original parametric curve manipulation program [Wit89hjke Witkin's original FF
system, and several generations of successors descripativw/90], [GW91b], and
[GW91la], NewFF provides a variety of curve and constrainesymnd offers easy
addition of new types.

As discussed in Section 8.1.1, all that is required to addwatgipe of parametric
curve is the parametric function used to draw the curve. Negklistinguished from

186 CHAPTER 9. EXAMPLE APPLICATIONS

|

] IOIN][-~]
101[=]ig)

5] =I31=]
NN

A
1]ﬂp_|

Figure 9.7: ThenewFFcurve modeller allows experimenting with a variety of typépara-
metric curves and constraints.

its ancestors by permitting new types to be defined dynaiyieddile the application
is running. The parametric function is given as a Whisperesgion, and a new curve
type is defined, including an icon for creating instancesmal amount of auxiliary
information is also required to specify the sampling of tbeve, and initial values for
the parameters. Because the dynamic addition of curve ipp&prets the function
using Whisper, performance (especially for redraw) is pdberefore, new curve types
are best added at compile time. A Mathematica program auicaiig generates C++
code for new Bramble object types from parametric functions

The standard creation mechanism in the curve modeller giotphtes an instance
of the object with its default initial values for the paraerst The initial values can be
defined in terms of an initial point value. When NewFF createslgect instance, it
sets these parameters equal to the position of the mousirCajects in NewFF have
more sophisticated creation mechanisms. For exampleségments and circles are
created with rubber banding and augmented snapping to éofamection constraints
on the object.

The curve modeler allows a variety of constraints to be plaweobjects. All con-
straint types attach to points, and therefore can be coadé¢otany object. Available
constraints include connection, distance, collineaaity] parallel-ness of four points.

9.5. ACOLLISION SIMULATOR 187

o Faiy! 5 0

OlAL vow wod wan [8 [T il 1w |

v
B ECJF-

8

Figure 9.8: ThePoly application for experimenting with planar collision siratibn.

9.5 A Collision Simulator

A simple application to experiment with the planar convexygon collision con-
straints of Section 8.4.2 has been built with Bramble andth@svs in Figure 9.8. The
Poly application permits several types of polygonal objectshsas blocks and saw-
tooth gears, to be created with a drag and drop interfaceobjdicts automatically are
constrained not to overlap other objects and to remain att@/8oor. Gravity, imple-
mented by a soft controlling pulling downwards, can optlniae placed on objects.

A major use of Poly is to create mechanisms, so some featufasilitate this are
provided. Using the drag and drop interface, the user cdrpoaits in place, freeze
objects, or place a torque source at the center of the olgegtt(rn it into a motor).
All of the Bramble functionality, including the objects aodnstraints from MechToy,
can be used in creating Poly models.

9.6 3D Construction Toys

Simulating Tinkertoyswas one of the original motivating applications for the ti@a

of the constraint technology that the differential apploacbuilt on. The idea is to
create a graphical modeling environment where pieces camteected together to
build more complicated objects that have interesting bielgavTinkertoys, with pieces
that can be plugged into one another to create mechanicakctian, was an direct

Tinkertoy is a registered trademark of PlaySchool, Inc.

188 CHAPTER 9. EXAMPLE APPLICATIONS

grab
point

hail

dist

unhit-dist

spin

pan

Figure 9.9: ThePtinkerapplication permits the user to build simple models frormpobjects
and constraints.

metaphor for constraint-based modeling. The freedom amibiléy needed to play
with Tinkertoy models had served as a touchstone for evialy8D interfaces.

One of the earliest applications built with the original griagether math imple-
mentation was a simple Tinkertoys like system which progidsimpler set of objects
that could be attached with point-to-point or distance tamsts. Although this ap-
plication was called Tinkertoys at the time[WGW90], it modalsimpler set of con-
structions. A version constructed with Bramble is showniguFe 9.9.Tinkeror Point
Tinkertoys recreates the functionality of the originalp@aling a user to create simple
objects, connect them with distance constraints, and ratigthem with the mouse-
pole.

Point objects in PTinker are denoted by small tetrahedrant®that have fixed
positions in space, called “Ethernails,”are denoted byesulistance constraints are
shown as lines between point objects. The interface pespésifying distance con-
straints by selecting two points to connect. When connetieddlistance can be con-
strained either to be a unit distance or to simply maintagdtstance between the
points.

TheToysapplication, depicted in Figure 9.10, is a more ambitioossation of tin-
kertoys. Toys includes pieces designed to mimic their cenpatrts in a real Tinkertoys
set. The sizes and colors of the objects are reproduced sirthdation. Connecting
pieces by plugging rods into holes on the yellow connectgeaib is modelled using

9.6. 3D CONSTRUCTION TOYS 189

HAAA C P |

&

Figure 9.10: The Tinkertoys simulation permits users to create objadtsfpieces modelled
after the real tinkertoys.

constraints.

In order to test if the abstractions of Bramble were suffictercreate the range of
behavior desired in a complicated application, no new fonetity in the toolkit was
added. Toys is written entirely in Whisper. The applicatioomMides a complete 3D sys-
tem, with a tuned interface. This was important to show thahsan application could
be constructed with the tools, but also to provide a realtsitbed for interface ideas.
The interface for Tinkertoy simulation provides a variefyrderface challenges. The
application must provide for the fluent manipulation of 30ewls, easy specification
of constraints, and quick control of the view. Because th@iegtion is designed to be
fun, itwould be unacceptable if the interface was not fluedt@xpressive. Personally,
| think the Toys application is a successkenjoy playing with it.

9.6.1 Tinkertoy Pieces

Toys models most of the objects in a Tinkertoy set. The dino@ssand colors of
the real parts are reproduced. The rods and connector spreoisade from standard
cylinder primitives. The dots for the holes on connectoradpare created by using

190 CHAPTER 9. EXAMPLE APPLICATIONS

a Bramble function that marks RistinguishedPoint with a circle in its tan-

gent plane. The connector spools usBistinguishedPoint on their surface

for drawing, but each hole also has a corresponding poiiderthe cylinder that is
used for connection. This is required to model the fact thatrbd pushes into the
hole.

Connections between pieces are specified by picking an encbdfand a hole. The
pieces then “self-assemble” to establish the connectidre self-assembly is phased
into several stages. First, the pieces orient themselkes, they fly together, and fi-
nally, the piece pushes into the hole (rods actually do gdéthe holes). The phasing
was created for purely aesthetic reasons, and is implehbgtdemons that wait until
one phase is complete before beginning the next. To makeotih@ection operation
seem more natural, Toys attempts to move only one objectdardp establish the
constraints. Heuristics are used to decide which objectdeemThe system prefers to
move pieces that have not been connected yet, and prefeeetefconnector spools
instead of rods. If both the rod and its target have other eotions, neither is frozen.

The Tinkertoy interface permits objects to be grabbed aadgid using the mouse-
pole, and the view to be controlled using a virtual trackbaligrabbing the ground-
plane. Rods are plugged into the holes on the connectorgi€dece connected, the
rod can rotate is the hole.

To aid in picking, Tinkertoys provides semantic snappinghsd only valid objects
can be picked when various operations are to be performedexample, when plug-
ging a rod into a hole, only unattached rod ends and emptyslaskesnapped to. For
unplugging, only rod ends that are plugged into holes ane bgé¢he snap server.

9.6.2 Performance of Tinkertoys

Simulating Tinkertoys provides difficult performance goaBecause of the complex
behavior of the 3D models, rapid refresh rates are impartdoivever, tinkertoy mod-
els have large numbers of constraints. Each rod into holeexiion requires 5 con-
straints. The total number of constraints to simulate cawdarge very quickly. For
the Toys application | set a specific performance goal: onthehine in our lab (an SGI
Indigo 2 Extreme), the program should achieve acceptabferpeance on objects that
were as complicated as those that could be built with thelsaabf real Tinkertoys.
The small jar of Tinkertoys contains roughly a dozen rodsahdlf-dozen connectors.

Meeting the performance goals for Toys pushed the limits rainible. The ob-
jects in Tinkertoys were all standard cylinders, quatertiansformations, and frame-
alignment constraints. Because these are often used shijeey were carefully opti-
mized. However, users of Toys quickly assembled modelsikes large enough that
thatO(n?) linear system solving dominated the performance. Theeefonumber of
implicit constraint methods were created to enhance thiepeance of Toys. All of
the methods use only standard Bramble features.

9.6. 3D CONSTRUCTION TOYS 191

The implicit constraint methods in Toys exploit the factttb@nnected pieces form
rigid bodies. Technically, a rod that plugged into a conogsthole has a degree of
freedom to rotate around its axis. However, since the rognssetric, this degree of
freedom is invisible to the user. Toys can, therefore, tiieattwo pieces as a single
rigid body. Rather than having two objects and 5 constraihis system need only
simulate a single rigid object. If the other end of the rodliggged into another con-
nector, the degree of freedom can be manipulated by the Tiserefore, Toys can use
implicit constraint techniques for at most one connectienrpd. Another case where
the symmetry of a rod permits implicit constraints is wherod is connected to the
ground. In such a case, the rod can be frozen.

When a connection between two parts is accomplished by ancitngdnstraint,
the connection must work the same way that it would if norreehhiques were used.
All connections must appear the same to the user; they amfispgeand deleted in
the same ways. This creates several complications. Formgamhen a connection
is deleted, there are no constraints to delete if the cantdrare implicit. Instead,
disconnection must ungroup the two objects. This is impleeeby having phantom
connection objects that represent implicit constraintse phantom objects specify a
deleter hook that performs the ungrouping. The phantomctdbpre also convenient
for implementing save and load.

Creating a connection with an implicit constraint also posehallenge as the con-
straint must self-assemble first. This is accomplished Hlially creating the connec-
tion with regular constraints. A demon waits for the conimtto be made. When
the two pieces are connected, the demon converts the cayméztuse implicit con-
straints. If the demon fails by timing out, it does not coriibe connection. In fact,
it takes a precaution against the constraint never beingfisat by adding additional
damping.

To demonstrate the benefits of the implicit constraint mé$hn Toys, we consider
building an example object. The merry-go-round objectwshan Figure 9.11, is a
model that is shown in the instructions to the real Tinkedey. It is made of four
small rods, four medium rods, a long rod, four connector &p@md a slider connector.
These pieces have a total of 93 variables. Toys running ordrireligo 2 Extreme
takes approximately 50 milliseconds to redraw the displdk these pieces, whether
they are attached or not.

Without the automatic implicit constraint techniques, therry-go-round requires
85 constraints Dragging this merry-go-round with the mousepole takes@pp
mately 320 milliseconds per 4th order Runge-Kutta steps phovides a frame rate of
little more than two frames per second. This performance&ceptable. However,
using the implicit constraint methods, the merry-go-roanty requires 40 constraints,
and has a much smaller number of variables. The frame rathi®omodel is over 6
frames per second, as each Runge-Kutta step requires qrtyamately 100 millisec-

5The slider is implicitly connected to the vertical pole.

192 CHAPTER 9. EXAMPLE APPLICATIONS

Figure 9.11: A Merry-Go-Round constructed in the toys application frono@s, 4 connector
spools, and a slider connector.

onds. While interaction is a little sluggish, it seems acaklet

The merry-go-round illustrates the limits of implicit cdresnt techniques as well.
The merry-go-round actually only has two degrees of freeddgman slide up and
down the pole, or spin around the pole. All of the parts exé¢epthe pole form a
single rigid body. The merry-go-round could be simulatedjlyuping these pieces as
one unit, rather than using constraints. ldentifying thatercomplex objects are rigid
is difficult, and is left for future work.

9.7 Scene Composition

A scene composition system permits a user to position abjach 3D space, assign
properties to them, light them, position the camera, and semodel off to a renderer
to have an image created. Scene composition is a good tdett&id methods because
it requires controlling objects, lights, and cameras, aadoids many of the issues of
how models are to be edited and represented.

The Bramble scene composition application is caldwwoff. The name comes
from the fact that it was originally intended as a viewer fbjects in a standafdile

7I don’t know how much of a standard it is, but a large numberaofigle models in this format can
be found in public archives.

9.7. SCENE COMPOSITION 193

format called OFF. Showoff is not an application in the ttadial sense, but rather, it
is a framework for building demonstrations of interactieattiniques for scene compo-
sition problems. Unlike other applications, Showoff doesareate windows or fill the
scene with graphical objects. Instead, it defines Whispeatioims that make it easy for
scripts to do these tasks. For instance, it defines a funttimrautomatically creates
a framed view, complete with a standard camera and buttong &he side to set var-
ious viewing modes. Showoff creates commands for findingraadipulating object
aspects.

Showoff’s mainrole is for testing and demonstrating atttés and interaction tech-
niques for 3D applications. The typical showoff script ¢esasome objects to provide
a sample scene, sets up some initial controls and constraimd begins the interactive
loop. Showoff binds keys and menus to commands for many atdmateraction tech-
niques. For example, mouse buttons can be used to grab aypthinhe mousepole or
through-the-lens with either soft or hard constraints.

Showoff has been the primary vehicle for experimentatiatiwontrols for posi-
tioning objects, lights and cameras. A wide variety of colstrare provided for the
user, or the script, to mix and match. Figures 8.3, 8.5, &at6,8.8 are all scenes from
Showoff demonstrations.

Showoff provides few features aside from those used to nuéatigp scene objects.
For example, the interface does not help the user createtspfleey must be created by
writing Whisper code. However, Showoff does contain an esitenset of commands
that allow the differential approach to be applied to thebpgm of scene composition
directly. Showoff presents the user with a large range otrots) including most of
the attributes of Section 8.1, that can be applied as nedciatrols are combined by
locking: any control can have its value nailed in place. Tdesiis that the user will
employ a set of constraints and controls that conveniergcdbed the image to be
created.

Showoff does not address the difficult problem of deternghiow to present a wide
range of controls to a user. A sufficient number of controésarailable in Showoff
that accessing them is a problem. Showoff uses a haphazardication of menus,
keys, and buttons to specify operations. The interfaceesigghed” to maximize the
number of controls made available to the user, even at thenmepof usability.

194 CHAPTER 9. EXAMPLE APPLICATIONS

There are two times in his life when a man should not
speculate: when he can afford to, and when he cannot.
— Mark Twain

Chapter 10
Evaluation and Future Work

In this thesis, | have presented a differential approachraplygcal interaction: a sys-
tematic approach to realizing graphical manipulation base numerical constraint
techniques. In this concluding chapter, | will review thenttdbutions of the thesis,
evaluate the work in light of the goals, and suggest sometitires for future work.

10.1 Contributions

The central contribution of this thesis is to develop and dlestrate an approach for
realizing graphical manipulation based on numerical qaingttechniques. The thesis
extends previous work in interactive physical simulatiotoia general approach for
graphical manipulation with contributions in the followiigeneral areas:

e abstractions for graphical interaction;

e numerical constraint techniques for graphical applicegjo
e implementation techniques for numerical computations;
¢ software architecture for graphical applications;

e interaction techniques;

e graphical applications.

This section reviews the specific contributions of the thesi

| feel that the biggest contribution of the thesis is not aithe individual pieces, but
rather, how all the pieces can be fit together. To create ffezeintial approach requires
anew set of abstractions that define graphical manipulas@onstrained optimization,
mathematical methods to solve the constraint problemsleimgntation methods to
address the practical issues in employing mathematicstémactive systems, and a
software architecture to enable applying the approach aitditg applications. Only
with all of these pieces can novel interaction techniquesapplications be created.
Here we discuss the specific contributions in more detalil.

195

196 CHAPTER 10. EVALUATION AND FUTURE WORK

10.1.1 New Abstractions for Graphical Manipulation

At the core of the differential approach is a view of graphioanipulation as a con-
straint solving problem. Interaction techniques are e@&bm connectors, controllers,
and the passage of time.

e Equation solving as a general abstraction of graphical maniplation: the dif-
ferential approach treats graphical manipulation as aatemusolving problem.
Previous work has used numerical equation solving and agdtion for inter-
active control in specific cases and non-interactive coofrgeometric objects
with general constraints. However, no one has previouspyoegd numerical
optimization methods as a general mechanism for implemgmiaphical ma-
nipulation.

e Connectors and controllers as basic abstractions for builoshg graphical ma-
nipulation techniques: the concise set of abstractions provided by the differen-
tial approach are quite different than any previous onegyan be combined
and composed. One key feature of the interactive contrdiseidifferential ap-
proach is that they are combinable: if we can control A, anccare control B,
then we can control A and B simultaneously.

e Application of numerical constraint solving to interaction technique design:
interaction techniques are described by sets of contralsanstraints that are
enabled and disabled at appropriate times. This leads toismrdirectly ex-
ecutable descriptions of classes of interaction techisigbat have been diffi-
cult to specify, such as 3D widgets. Freeman-Benson’s Hasgiope '91 system
[FBB92] defined interaction techniques and widgets by dyioalty switching
sets of constraints and previous work such as Olsen and KlA80] and the
Garnet system [MGD90] have used constraints to describe the behavior of 2D
widgets. However, by employing numerical techniques, tfieréntial approach
permits a richer set of constraints including inequaljtiesbe used to specify
widgets in a way that automatically defines its inverse magiom input to
variable.

¢ A method for describing interactions independent of the unddying repre-
sentations of the graphical objectsinteraction techniques are defined in terms
of the objects’ attributes. The equation solving mechasismp changes to the
underlying parameters.

10.1.2 Numerical constraint methods for graphical applicatbns

The use of numerical constraint techniques for graphicplieggtions began with the
relaxation techniques used in Sketchpad[Sut63]. Morentbgehere has been inter-
est in the related methods of non-linear constrained opétitn, non-linear equation

10.1. CONTRIBUTIONS 197

solving, and physical simulation. The problem solved by difeerential optimiza-
tion is very similar to the problems solved at the core of ¢he®thods. The solution
techniques discussed in this thesis are variants of stdmaathematical techniques for
solving relatively standard problems.

The methods used in the differential approach are the metheed for interactive
simulation. The techniques described in [WGW90] have beeanebetd by applying
some standard mathematical techniques, such as dampicigp(58.2.1). This thesis
brings these methods to the domain of user interface desdjn@nstruction. Previous
work attempting to apply numerical controls to the desigmtéractive systems has
been plagued by starting from inferior mathematical fouiaahes.

e Demonstrations of the practicality and utility of the differ ential approach:
the running systems show that general controls for grapheaipulation can
be implemented, and perform acceptably on existing comgute

e Application of damping to constraints in interactive graphics: the differen-
tial approach uses damping methods (Section 3.2.1) to gecstiability in ill-
conditioned cases, and to handle over-determined casesse®ingular cases
have plagued many previous systems. Damping methods ateknain in
the optimization community, and have been applied to smatamains, such
as animation and robotics. This thesis introduces the uselettive damping to
achieve constraint-hierarchies.

10.1.3 Implementation Techniques for Numerical Computatios in
Interactive Systems

Another contribution of this thesis is the methodology folveng the numerical com-
putations required for constraint approaches in a manrmraithdresses the issues of
interactive systems. The work of this thesis refines theezavirk on interactive phys-
ical simulation.

e Snap-Together Mathematics:the work described in Chapter 5 is a descendant
of earlier tools for dynamic function composition and dative evaluation. The
basic ideas behind Snap-Together Mathematics, such asiesgpresentation of
expression graphs, compile time definition of new functitocks using a sym-
bolic math system, and sparse-vector-passing, forwarcemengtomatic differ-
entiation remain from its earliest ancestor described in B8K Several details,
such as how variables are handled, have been refined withterl The current
implementation is the first to be incorporated into a higkeel toolkit, and the
first to exploit the generality in a range of applicationsafTogether Mathe-
matics and its ancestors are very different from most otbh&raatic differen-
tiation tools which focus on large, dense problems stdyicifined at compile
time[BGK93].

198 CHAPTER 10. EVALUATION AND FUTURE WORK

e Anencapsulation of numerical constraints: Snap-Together Math’s simple pro-
tocol for connector outputs, combined with its objects fonstraints and con-
straint engines, provide facilities for defining (and sob) constraints on equa-
tions without seeing the underlying mathematics. ToastEngine class has
been used with other solvers, such as Newton-Raphson.

e Generalization of performance methods for numerical constramts in inter-
active systems:the performance methods of Chapter 4 have they been used in
previous systems. However, the work of this thesis shows ddbwan be inte-
grated in a general fashion. In particular, the scattehaganechanism of Snap-
Together Mathematics, coupled with variable selectionlmraatsms and variable
merging mechanisms provides a generalized substrate émdspm numerical
computations through switching between explicit and igipkonstraints and
partitioning.

10.1.4 Software Architecture for Graphical Applications

This thesis described Bramble, an object-oriented toblksted on the differential ap-
proach. The main contributions of Bramble are:

e A graphics toolkit encapsulating numerical constraint methals: Bramble
encapsulates the differential approach in a manner thatqe®s services inside
the abstractions of an object-oriented graphics toolkit.fact, Bramble per-
mits building graphical applications with constraints lvatit referring to any-
thing other than the typical abstractions of an objectrigd graphics toolkit.
This is important because designers of interactive syssa@s to be resistant
to learning about mathematical techniques.

e Demonstrations of the impact of the differential approach on gplication ar-
chitecture: by providing generalized methods for mapping between otswénd
parameters and by permitting connectors to be attacheawittnowing what
is behind the connector, the differential approach fostevdularity, parameter
independence and common code. This is seen in Bramble shjeets, con-
straints, and interaction techniques can all be createzpendently and hooked
together as needed.

¢ A graphics toolkit that facilitates providing general condraints and controls
to users: Bramble aids applications in providing constraints andtipld con-
trols to the user. Previous toolkits have used constrag@smanternal abstraction
to aid the programmer, but Bramble’s focus is providing tlena user level ser-
vice.

10.1. CONTRIBUTIONS 199

e Use of a time continuous input model in a graphics toolkit: the differential
approach provides a continuous model of time, with evenégated as instan-
taneous impulses. For a graphics toolkit, the model allamsikaneous asyn-
chronous actions to be handled without explicitly progranmgrthem into each
event handler or providing for multi-threaded flow of comtry fundamental dif-
ference between this strategy and standard approaches isathdlers for con-
tinuous actions such as dragging are instantaneous evediens, they do not
remain active over the duration of the operation, for exanfigm mouse down
to mouse up.

e An object oriented graphics toolkit specifically designed dr prototyping of
2D and 3D applications and techniquesMuch of the rationale for Bramble is
based on the intention of its use for prototyping a varietyntéractive graph-
ical applications. This led to exploring a different pointthe design space of
interface toolkits. Because the art of toolkit design, esgly for 3D, is still
evolving, explorations of new points in the design spacesaheuseful. Inter-
estingly, other 3D-only graphics toolkits with emphasisrapid prototyping,
including UGA [CSH 92], MR [SLGS92], Alice [PT94], and VB2 [GBT93],
have independently made some similar choices.

10.1.5 New Interaction Techniques

In order to demonstrate the differential approach, thisithpresents a variety of in-
teraction techniques, many of which are novel enough to bsidered contributions.
Without user testing, it is in many cases difficult to claimttthese are clear improve-
ments over previous methods. In fact, some of the new teaksigqnay be unusable
in practice. However, | think that a few are interesting. lsthink the differential
approach will lead to many new good interaction technig@esibse it permits provid-
ing the advantages of direct manipulation, such as contimteedback and kinesthetic
coupling, to a broader class of interactions and objects.

e Through-the-lens camera controls:these techniques permit manipulating vir-
tual cameras and graphical objects by controlling and caimstg points in the
image seen through the cameras lens. The methods can beowsddiess im-
portant problems in computer graphics, such as the imagstraiipn problem
of Section 8.2.4.

e Generalized snapping:(Section 8.4.1) the snapping controller permits any at-
tribute of a graphical object to be snapped to precise vagyes if they are away
from the cursor.

¢ Interactive manipulation of color to control object and light geometry: the
use of the lighting model equation as a control permits maatpg light color,

200 CHAPTER 10. EVALUATION AND FUTURE WORK

light position, surface colors, and surface geometry. iBre/systems contain
special case code for such techniques for controlling laghors and surface
properties.

e Generalization of interactive control of reflections: the methods of Section
8.1.6 permit constraining and directly controlling the iioss of reflections on
planar and curved mirrors. The only previous technique wsisicted to manip-
ulating object translations by dragging reflections in plasurface[HZR 92].
The reflection controls also provide a generalization ofgpecular highlight
positioning methods of Poulin and Fournier[PF92], perimitthe positions of
specular highlights to be constraints, and to control trergery of the objects
in addition to that of the light source.

e Generalization of the use of shadows as controlsSection 8.1.6 introduced
techniques to constrain and control object geometry ard pgsitions by con-
trols placed on shadows on both plane surfaces and othestebjehis permits
a generalization of the Brown interactive shadow widgeZf92] and Poulin
and Fournier’s positioning of lights by moving shadows[RF-9

e Scene composition by mixing and matching controls:(Section 9.7) while
some of the scene composition controls have appeared aslgpapose hard-
coded controls, no previous system has allowed interdgpecifying and com-
bining constraints and controls for camera positionirghting specification, and
object manipulation.

e Augmented snap-dragging:Briar (Section 9.1) introduces an extension of pre-
vious constraint inferencing techniques that permits matoc generation of a
variety of geometric constraints from drawing operatiddsnversely, the draw-
ing methods of snap-dragging [BS86, Bie89], are augmentatsb specify con-
straints.

e Techniques for displaying and editing constraints in a congaint-based draw-
ing program: Briar (Section 9.1) introduces a number of novel methods for
displaying and editing constraints in a drawing progranintiioduces a visual
syntax for displaying constraints “in-place” in a mannattparallels their defi-
nitions, and two methods for deleting constraints.

10.1.6 Graphical Applications

The primary contribution of the applications describedhis thesis is to demonstrate
the viability of the differential approach, and the flexityilof the implementation. Al-
most all of the applications are re-implementations of pépgplications using the tech-
niques of the differential approach.

10.2. EVALUATION 201

¢ An interactive Tinkertoys application: the Tinkertoys application permits in-
teractive assembly and experimentation with 3D objectsiokimg the real toys,
including their kinematic behavior. Previous systemshsag those by Surles
[Sur92c] and Schroeder [SZ90], either do not provide foerattive editing of
the objects or they do not permit the simulation of the kingertzehavior.

e User defined shapes with constrained behaviordhedefine-shape facil-
ity in Bramble permits end users to dynamically define nevesypf shapes in a
2D drawing program, and have these objects be manipulatbdutispecifying
the inverse transformations. Some systems, like the comateirawing pack-
age Visio [Sha93], permit users to define shapes with equatimut do not allow
these shapes to be manipulated except by directly comgahie parameters, and
do not allow the use of constraints in defining shapes.

10.2 Evaluation

This thesis takes a step towards the goal of improving thétgw@and range of inter-
active graphical applications, by providing a substratevbith interaction techniques
and applications can be built.

10.2.1 Basic Questions

The central premise of this thesis is that the differentmdraach can provide an im-
plementation of direct manipulation that uses numericalst@int methods to map
controls to object parameters in a systematic fashion, lagidseveral issues in direct
manipulation interfaces can be addressed by such an ajpproac

The differential approach does provide a way to implemergaiimanipulation,
as shown by the recreations of other direct manipulatia@riates using the approach.
The approach uses a single numerical solver to map a widetyaficontrols to a wide
variety of objects. This thesis presents a sufficient setathematical and implemen-
tation techniques to realize the approach, as illustrayeithd prototype implementa-
tions. These prototypes show that the methods have acéepttiormance on current
computers. Traditional direct manipulation operatioh®tanly a few milliseconds of
computation per frame, and reasonable sized constraibtggns can be handled at
interactive rates (performance of the prototypes is dsedisn Appendix B).

The examples show that the differential approach is intexgsThe approach can
create desired interfaces, often in ways that are more feeribd general than tradi-
tional implementations. The approach also permits thetioreaf new interfaces that
would be difficult or impossible to create with conventionaans. For example, de-
spite the utility of methods like the image alignment tecjua of Section 8.2.4, users
are typically provided with controls less suited for thektdgcause of the difficulty

202 CHAPTER 10. EVALUATION AND FUTURE WORK

in deriving the mapping from the controls to the underlyiraggmeters. While the
special-case example of the table controls for image alegimmight have been derived
by hand, the more general approach of mixing and matchinggtmohe-lens controls
could not have been. In fact, without the view that anythimgt tan be computed can
be a control provided by the differential approach, techegjylike through-the-lens
camera control might never have been dreamed of.

10.2.2 Evaluating Abstractions

The abstractions for creating interfaces provided by thiterdintial approach have
many desirable properties:

e the set of abstractions is small;

they provide concise definitions for many interaction teghbas;

they describe manipulation without reference to the uydeglparameterization;

they can be combined and composed;

they allow modularity by permitting objects, constrairaad controls to be de-
fined independently and hooked together as needed;

they map directly to the data structures in the implemennati
¢ they foster a view of manipulation that helps lead to noviriaction techniques.

The abstractions have their problems and limitations, ivhidl be surveyed in Section
10.2.7.

10.2.3 Evaluating Differential Techniques

Mathematical and numerical methods are crucial to theraiffeal approach. Without
methods that solve the constrained optimization problenasmanner that meets the
demands of interaction, an approach to graphical manipual&iased on constrained
optimization is impossible. The prototypes show that méshexist that permit the
differential approach to be realized. Section 1.1.4 iniczatl a number of goals for the
methods. Here, we review them:

1. Flexibility in the types of controls: the methods permit the use of arbitrary
differentiable functions over continuous valued varialds controls. The range
of controls discussed in Section 8.1 illustrates this fléixyb In practice, the
range of controls is limited by numerical considerations.

10.2. EVALUATION 203

2. Freedom to combine controls arbitrarily and dynamically: the solver handles
arbitrary numbers of simultaneous controls, without conder what they are.
This allows controls to be combined arbitrarily. In conttasmany other meth-
ods, there are no restrictions on acyclic dependenciessieexe of a procedural
solving plan. Adding a new control requires only passingereguations to the
solver. The flexibility in combining controls is an essehpart of the approach.

3. Keep the good properties of direct manipulation: the differential approach
allows the creation of interfaces with the good featuresigdati manipulation
such as rapid feedback, continuous motion, and kinestbetiespondence.

4. Choose the “best” solution in under-determined cases, and ftha “reason-
able” answer if there is no exact solution: in underdetermined cases, the opti-
mization objective defines the “best” solution. The dampireghods of Section
3.2.1 handle overdetermined situations, providing ratess in ill-conditioned
cases, allowing for redundant controls, and blending aiinfty controls.

5. Provide freedom in picking representations independent fom user concerns:
because controls are defined in terms of object attribuadiser than their inter-
nal parameters, programmers have the freedom to seleesergations based
on other concerns.

6. Allow a standard procedure for defining new controls that minimizes the
amount of difficult mathematical work in defining a new type of cortrol:
to serve as a control, a function must compute its value aadi¢nivatives of
its value with respect to its variables. The derivatives lsarcomputed using
automatic methods given the attribute’s function, whickstrioe known anyway.

7. Allow a solving mechanism that is general purpose and encapkiable: the
solving mechanism for the differential approach works oata§functions, vari-
ables, and controllers that specify desired derivativaesl Therefore it applies
to problems of controlling differentiable functions of ¢muous variables. Snap-
Together Mathematics encapsulates the solving mechaprswiding the solver
as a black box object whose details are hidden from the progex using the
toolkit. Bramble demonstrates this: it does not even pr@tn application pro-
grammer with the ability to look at solver internal data strues.

8. Work in a variety of domains: the approach is not specific to any particular
domain. A wide range of graphical applications can make fige o

9. Be fast and scale well:as detailed in Appendix B, the prototype implementa-
tions show that the methods can provide sufficient perfonaam the present
generation of computers. The(n?) computational complexity is a potential

204 CHAPTER 10. EVALUATION AND FUTURE WORK

problem. At the present time, models with 50-100 simultarsezpnstraints can
be handled.

10. Not require sophisticated numerical techniquesithe methods only require nu-
merical algorithms to solve easy forms of standard numiepiczblems. Stan-
dard algorithms from textbooks were sufficient for the prgpe implementa-
tions. Fancier numerical algorithms, such as an efficieatsgpsingular-value
decomposition solver or a better ODE solver, may improvéoperance.

10.2.4 Evaluating the Interaction Techniques

This thesis provides tools for creating graphical intécactechniques. The tools do
not necessarily lead to better interfaces, in fact, thestgole interface designers new
ways to create bad interfaces, for example by applying otattioehind the users back.”
However, the differential approach would not be interagtint only permits the cre-
ation of bad interfaces.

The differential approach can be used to create good intenaiechniques. Al-
though no formal evaluations were done, the techniques dstrated with the ap-
proach include several time-tested standard interfacesel as some interfaces that
apply direct manipulation to problems that it previouslylktbnot be applied to.

Using the differential approach to recreate existing ext@on techniques is not
necessarily overkill: the methods provide a new way to ddfiese techniques in a
representation-independent fashion and permit the tqaksito be coupled with other
constraints. The approach can also make implementatioereasit does not require
the programmer to derive the mappings from controls to paters.

A more exciting use of the differential approach than retmgaexisting interfaces
Is creating of new interaction techniques and constraased interfaces. | believe that
the differential approach can often lead to interesting meshniques for graphical
manipulation tasks. The approach has the benefits that:

1. it preserves the continuous motion animation and radidack properties gen-
erally desired in graphical interfaces;

2. it permits the creation of controls directly relevanthe users task;

3. it speeds experimentation with new control types as thin@naatics does not
need to be derived for each new one;

4. it speeds experimentation by allowing controls to be doetdh

The image registration interface of Section 8.2.4 exenagliéill these points. It pro-
vides an interface to an important problem, for which conieral interactive controls
are not convenient. The through-the-lens controls aretlljreclevant to the task, as

10.2. EVALUATION 205

they permit directly specifying where in the image a pointhia 3D scene should ap-
pear. The creation of the through-the-lens control reguikieowing only functions
that were needed for drawihglnitial experimentation with the alignment technique
merely required applying 4 through-the-lens controls c8ithrough-the-lens controls
were already available in the toolkit, the only new code nexglto create the interaction
technique was code to place the video image as the screegrbackl.

The image alignment technique would have been very difficuttreate with tra-
ditional approaches for implementing direct manipulatiberiving the mapping from
controls to camera parameters is extremely difficult, asbeaseen in the photogram-
metry literature mentioned in Section 2.4.2. The more gdragaproach of mixing and
matching controls, used in Showoff (Section 9.7), wouldropassible because such
derivations must be done for every new combination of cdsitro

Unfortunately, the range of interaction techniques thaavehdeveloped with the
tools of this thesis is not as extensive as | had hoped. Muate witcthe effort of the
thesis research went into tool building. Through-the-leastrols were the biggest
success. Most other techniques, such as generalized sgafip scene composition
controls such as shadows and reflections, and 3D widgetsweexplored sufficiently
well to make persuasive evaluations of. The success of coldrols, something | had
high hopes for initially, was thwarted by technical probtenNumerical issues cause
the lighting equations not to serve well as controls. Furgx@loration of these controls
may find solutions to these difficulties, especially now ttheg solver has damping
correctly implemented.

Generalized snapping, described in Section 8.4.1, is anatteraction techniques
that | was unable to explore sufficiently. Some issues areritesl in Section 10.3.

10.2.5 Evaluating the Architecture and the Prototypes

The prototype implementations described in this thesisisbiof a few major parts.
Code sizes listed are for C++ source files, with comments;ownting headers.

e Math and Data Structures Library — (5K lines of C++ in 22 files) My C++
math and data structures library includes various basitemaatical elements
such as matrices, vectors, and ODE solvers as well as moeead€iata structures
such as lists, queues, and hash tables.

The math library has been used extensively over the pastrs yea variety of
applications. Particularly good design features were thead-oriented encap-
sulation of sparse matrices and ODE solvers. The code ipeetgble, and runs
on a range of machines from notebook PCs to high performaoncdestations.

! Arguably, the viewing transformations are in the graphicgkit, and therefore not known to the ap-
plications programmer. However, under this argumentudihethe-lens controls are also in the toolkit,
so their functions are not known to the programmer.

206

CHAPTER 10. EVALUATION AND FUTURE WORK

It is significant to note that despite the more than 50,00€sliof C++ code in the
complete system, for reasonable sized problems, the rmyagdriime is spent in
a few inner loops of the routines in the library. A fast andustamplementation
of basic mathematical data types such as vectors and nsaisicgucial to the
differential approach. Fortunately, such routines arehamt to create and can
be nicely encapsulated in a manner that allows reuse.

Snap-Together Math Library — (3K lines of C++ in 16 files, several hundred
automatically generated by BlockMaker, 300 lines of Math&oa to implement
BlockMaker) The Snap-Together Mathematics library is désed in Chapter 5.
It supports function composition and evaluation, the défeial solver, and a
number of predefined function blocks.

Snap-Together Mathematics has proven to work really wéié t6ol has evolved
since the earliest versions, but the basic design is the.s@pase sparse vector
passing, global time-stamps, and the minimal protocol felveemained. The
library has been used for a number of applications besidamBle, including
Spacetime motion control, physical simulation, and diaafdata fitting.

The biggest successes of Snap-Together Mathematics apdattess where it is
the simplest, such as the minimal protocol and the globa-stamp cache val-
idation. Better support for features like partitioning aeg@resentation switch-
ing should be easy to add. One design flaw is that Snap-Tagedthematics
objects, in particular function blocks, are a bit “heavy.’hal is, they can be
expensive to create and destroy.

Whisper Interpreter — (9K lines of C++ in 18 files, 3K of which were gener-
ated semi-automatically by EMACS macros to implement pruas for Snap-
Together Mathematics and GL, 800 lines for an interface tioreage processing
library) The Whisper interpreter is a C++ library for embedylin interactive
applications. The library contains interfaces for Snapefber Mathematics,
the GL graphics library, and a small image processing librarhere are ap-
proximately 400 built-in primitives and 20 predefined typast including what
Bramble adds.

Whisper has been a very useful tool for the research desadnltbds thesis. It
has been particularly pleasant to program in and to use asig foa Bramble.
Because it was designed for embedding, it provided the sghof functional-
ity to the systems it was put into. It is extremely easy to edteThe simple
dynamic object systems is particularly well suited for theds of exploratory
programming done in an experimental toolkit like Bramble.

Bramble — (40K lines of C++: including 15K lines of C++ for basic parts i
cluding some automatically generated code, 5K lines C+tHer2D library in-
cluding automatically generated code for a variety of atgjecK lines C++ for

10.2. EVALUATION 207

the 3D library, 7K lines of automatically generated funotidocks, 700 lines of
Whisper library code) Bramble is the C++ interactive graphemlkit described
in Chapter 7.

Bramble has been an interesting testbed for the developof¢né differential
approach. It has facilitated experimentation with theetgrof interaction tech-
niques and applications discussed in the thesis. | thinidéseggn of Bramble
is quite solid. However, the implementation itself was Magtut together, and
shows signs of its unusual evolution, for example before YWarisother mecha-
nisms for many of the object services had to be provided amiaats of these
still haunt Bramble.

The abstractions of Bramble were sufficient to create a tyagEapplications
without bypassing the approach. This is best illustrateddyys which contains
many features, but is written entirely in Whisper. Bramblaissing many of the
features of standard toolkits, such as text handling. Trakes it hard to build
complete applications.

e Applications — (230 lines of Whisper foBoxer , 800 lines of Whisper for
Mechtoy , 500 lines of Whisper foPoly , 500 lines of Whisper foBhowOff ,
several hundred lines Whisper f8howoff demos, 900 lines of Whisper for
Tinkertoys) The complaint with the applications is that there are tom, fe
that they are too small, and not “complete” enough. They duatestrate the
differential approach. However, there is much more to algcab application
than manipulating graphical objects. | have been disapedioy my inability to
find a “killer” 3D application.

| believe that the architectural organization of the systearks out very well. Snap-
Together Mathematics provides a good degree of separagiarebn the solver and the
client application. It also allows objects to be defined peledently, yet still connected
together, by providing a common protocol.

Besides Snap-Together Mathematics, the most significahitactural decision in
Bramble was the use of Whisper. | believe that this is a goadeggy. The dynamic
object system is extremely useful in a graphics toolkit. Tdwlity for rapid prototyp-
ing is extremely useful in an experimental system. The eméeédterpreter approach
also facilitated additions to the toolkit: each new featrebject type did not require
extensive installation into all of the applications. Ireteeach new feature simply de-
fined new primitive function calls that could be called asdeskfrom applications, or
even interactively from the interpreter prompt. The sanmefionality might have been
attainable if a development environment such as LISP orr8ehweere used, however,
such environments did not offer the floating point perforoeanf C++, the ease of
transporting executables, the availability of graphicd anmerics packages, nor were
good compilers available at the time that the project wasibeg

208

CHAPTER 10. EVALUATION AND FUTURE WORK

As in the process of constructing any system of this sizet afldesign decisions
were made along the way. Some of the best design decisionisrttzade were (in no
particular order):

the simple protocol for Snap-Together Mathematics;
using an embedded interpreter in the toolkit;

using the Whisper object system for graphical objects;
half sparse matrices;

using a conjugate-gradient solver;

the scatter gather handling of state variables.

Some of the worst design decisions | made were:

using the simple GL event model of handling events globadiiher than han-
dling events on a per-window or per-object basis. Also, Gegdioot time-stamp
events, nor record the mouse state when an event occurscauses problems
when event handling is delayed as the mouse may move betwesnthe event
happens and when the event is processed;

having a single world, rather than explicit scene graphs Iikventor [SC92].
This makes it impossible to edit multiple documents, an@iadilt to show dif-
ferent data in different views.

creating my own widget library. Many toolkits containingsiawidgets such
as buttons and sliders are available. Using these would diaee more attrac-
tive looking widgets, and probably some richer functiotyaduch as file-selector
dialogs.

10.2.6 Experience with the Implementations

Because of the large overhead of making tools availablenerst an explicit decision
was made in the research plan for this thesis not to make thedwailable to others.
After many requests, | have made the Snap-Together Matlesiarary publicly
available by anonymous FTP access. Because | did not ofipostior documentation,
| suspect that few people have made extensive use of it. Al sonalber have reported
successful experiments built with Snap-Together MatheEma®©ne CMU undergrad-
uate student was able to build a portable 2D version of PankeFtoys that ran under
the X window system, without learning anything about thest@int mathematics. |

10.2. EVALUATION 209

also know of at least three re-implementations of Snap-ffegeMathematics by re-
searchers who had access only to the papers. These ressavehne able to build 3D
constraint demonstrations.

Bramble was not offered to others because of the amount ptstipwould require.
Because of this, | cannot make any claims about how “usahiaiBle is. Personally,
| find Bramble a joy to use. Part of this may be attributablenefact that | designed
Bramble based on my personal tastes and program developtyént The interpre-
tive environment and high level language of Whisper extrgrapbealing compared
to C++. However, | believe that a good part of Bramble’s atican is how well the
abstractions fit the needs of graphical application devekg.

Other than myself, the main users of the applications in @re&phave been peo-
ple who have “taken over the drivers seat” during demos. hasallowed informal
assessments of how users react to interaction technigeatedrwith the differential
approach. Such users are atypical: since they are onlyngayith the applications for
a few minutes, their usage patterns are different than thiossers’ attempting to solve
real problems. For example, many people permitted to usgystems immediately to
try to torture the solver by making impossible connectiansde what happens.

Response to the applications has been very positive. Fewlagmabout the lag
between the pointer and the object being dragged. In factyro@amment on how they
like the feel of it. Some things, such as dragging the spir&8extion 8.1.1 generally
require alittle practice before people can achieve thetfthat they intend. However,
almost everybody has been able to figure it out without icsitbn. There is little else
to compare these systems to in terms of usage.

| am consistently impressed by how quickly people learn eothe mousepole after
getting past the initial issue of using multiple buttons lo@ inouse simultaneously. In
general, people seem to like the Bramble standard 3D imrf®art of this may be
attributed to relative novelty of interactive 3D graphiasd to the attention to aesthetic
details such as the use of shadows and the selection of colors

10.2.7 Limits and Drawbacks

The drawbacks of the differential approach, as seen in lieisis$, fall into three cate-
gories:

1. fundamental limitations or drawbacks of the approach;

2. limitations and drawbacks of the techniques that shoaldesolved by future
work;

3. artifacts of the prototype implementations.

The fundamental limitations of the approach are:

210 CHAPTER 10. EVALUATION AND FUTURE WORK

e The differential approach is time continuous. Things do not happen instanta-
neously. While this is generally a feature, some times we whjgcts to jump
to their destinations, for example, when a new object istetka

e The differential approach only is applicable to continuousy valued parame-
ters and attributes. The numerical methods do not apply to discrete data. Some
alternate mechanisms, such as propagation constrainss bawsed.

e The methods do not scale as well as those for other approachaaithout re-
stricting the problems, the complexity bound®@fr?) seems to be unavoidable.

Some major limitations that | think can be addressed in &utwork are:

e scalability: While O(n?) is the limiting factor, methods to redueeand the
constants can allow solving larger problems. Implicit ¢osiat methods can
potentially enhance scalability considerably, as dematedd in the Tinkertoys
application. Also, it is unclear how large the number of colsta system must
handle. For predefined objects and interaction technidguesumber of controls
will be a (usually small) fixed number (e.g. it will not growtviproblem size).
However, with a constraint-based interface, a user mayegeaitrary numbers
of controls. But, this number may not be unbounded as eviyttee limits of
how much simultaneous behavior a user can comprehend maablead.

e precision: Methods for more precisely achieving the user’s goals \atilitate
many applications. Generalized snapping is a first attempt.

e generality: Asdescribed in Section 8.1, mathematical consideratianseesome
functions to work better as controls than others. Some fbomaracterization
for which controls which and what do not would further sinfiypthe construction
of interfaces.

¢ real-time: Adding a coupling to real (e.g. wall-clock) time would inase the
expressibility of the abstractions. Interface designarsldigain control over the
time constants involved in the approach.

e integration: The differential approach applies only to the continuougiomo
dragging parts of applications. Therefore, integratiothwther techniques, such
as propagation constraints, to handle other parts of agifits is essential.

¢ hierarchy: The methods for differential constraints provide only twedls of
constraint hierarchy. The work of Borning et al.[BFBW92] slsthe usefulness
of more levels.

Many of the problems in the prototypes are artifacts of thel@mentations, rather
than problems with the approach. They fall into three gdreri@gories:

10.3. DIRECTIONS FOR FUTURE WORK 211

e Baddesign decisionsSeveral bad design decisions were listed in Section 10.2.5.

¢ Artifacts of evolution: The prototypes evolved from earlier versions, so in many
places there are leftovers from early versions. Brambledpgrty sheets and
Snap-Together Mathematics’s confusing mechanisms foicsotrols and gen-
eralized snapping are two examples.

e Incompleteness: The prototypes were built in time to finish a thesis, so many
features that are not essential to the points of the thesis I@en omitted, such
as text-handling in Bramble.

10.3 Directions for Future Work

This section discusses some topics to extend the diffedeapproach, make effective
use of it, or repair its deficiencies.

For this thesis, a number of prototype implementations werstructed. An en-
tire class of future work involves the creation of more “isthial strength” tools and
applications that can be widely distributed. For Snap-TogieMathematics, this may
mainly involve completion of some partially implementedtigres, documentation and
support. However, for Bramble, it is probably not worthvettib go through the effort
of making a distributable tool since too many design densiwere made with a “get
it done for the thesis” attitude. This section focusses daumré&work on the differential
approach more generally, rather than on the specific adite#dhe toolkit.

10.3.1 General Issues

The differential approach’s model of time does not correspwith real time. This
limits what can be expressed with the approach. For examph@kes itimpossible to
specify desired rates in a meaningful way. Some mechanisoofeelating simulation
time and real time would be a useful addition to the appro&tdwever, it would re-
quire tackling a number of difficult technical issues in dyrmnization, especially with
the variability of the solving methods. This issue will als® increasingly important
in future multi-media applications. Faster processorshringlp with synchronization
issues since programs will have the possibility of finishimgr work quickly and then
waiting for synchronization. However, such “busy waitihig, not the most effective
use of processor cycles, and fails to handle cases wheradt@bcessor’s performance
is needed to handle larger problems.

Future high-performance computers will make the lack oftie@e coupling diffi-
cult because things may happen too fast. It will be importamrovide the interface
designer with some control over the time constants of trexaations.

212 CHAPTER 10. EVALUATION AND FUTURE WORK

The approach lacks a good characterization for what makesaién work well
as a control. The rules of thumb from Section 8.1 need to beadbred. If the char-
acterization could be sufficiently codified it would allow enen more automated tool
for creating new controls to be created.

Precision in manipulation is another issue for the difféedrapproach. Even for
Snap andClick controllers (Section 6.4), the exactness of solving istkchibe-
cause controllers only get to specify velocities at samplegements. For greater pre-
cision, controllers might need to be given some informatibout step size. This is
also important for better tracking of input devices as it {dquermit better prediction.
Enhancing mouse tracking, for example by predictive fittgris another area for study.

The lag between pointing device and dragged object needsltetter understood.
In applications where the lag is detrimental, it might beueztl by techniques such
as predictive tracking. Developing predictive trackingttgies for input devices will
be generally useful, not only for the differential approagott also for things such as
remote collaboration.

10.3.2 Mathematical Techniques

The weakest link in the mathematical techniques is the watyaber-constrained sys-
tems are handled. Many of the deficiencies of the dampingntgubs are listed in Sec-
tion 3.2.1. An alternate method of dealing with the ill-cdrahed or singular matrices
might be found. To date, | have not found any that retain tifeopmance characteris-
tics of the methods discussed in this thesis on well-cooitil problems.

A primary drawback of the damping methods as described &iti@sis is that they
also affect constraints that are not ill-conditioned. Tdhiawback can be avoided by
using methods, such as the one presented by Nakamura[N#k&tddaptively set the
amount of damping. These methods are expensive, as theyiwdfg must solve the
system to determine its condition. Another strategy wouwdfgrm some potentially
expensive computation to determine if there are bad canttrand applying the damp-
ing methods only in these cases. The hope would be that trensk@ computations
would not be needed often or could be computed incrementally

Alternate methods for handling over-constrained matrisash as singular value
decomposition, have better numerical properties than damput would require work
to make them as efficient. Similarly, more reliable methadsfandling inequalities,
such as those of Baraff [Bar94], could be applied if effickeoancerns were addressed.

Another deficiency of the methods presented in Chapter 3aistttey offer few
opportunities for levels of importance of controls (hiefaes in the terminology of
Borning et al[BFBW92]). Soft controls provide two levels afrtstraints, but require
better methods to give them the degree of control of hardatsntExtending differen-
tial techniques to support more levels of hierarchy wouldibeful.

The methods of the differential approach are designed t& with the lowest com-

10.3. DIRECTIONS FOR FUTURE WORK 213

mon denominator of general functions, avoiding speciasasnd anything beyond the
minimal information about the functions. Each of theserretsdns could be relaxed
to create methods that better handled important speciakcdsor example, special
methods for articulated figures exist. Also, more informatabout functions, such as
higher derivatives and intervals, could also be used.

The techniques provided for handling inequality constsaare really a hack, and
would be improved by using numerical methods better suibedHis task. Finding
methods with suitable performance characteristics coaldhallenging.

10.3.3 Numerical Techniques

As computers become faster, the size of the problems thdteehandled at interactive
rates will increase. This means even more of the computétiom will be spent in
the complexity limiting step of solving the linear systerBglecting appropriate algo-
rithms will be increasingly important. Other conjugatedjent solvers, such as those
from [PS82] might apply. In particular, some of these methoty better handle ill-
conditioned or singular matrices, allowing less use of dagnpechniques. Dynamic
selection among multiple solvers, as done in Converge($is®ay also provide better
performance, particularly when the problem can be panigth

The best weapon against the computational complexity gfrspthe linear systems
will be to reduce their size while giving the user the illusibat the entire problem is
being solved. There are many possibilities for new impkahstraint mechanisms.
For example, representations of objects could be dynalyisaitched to maximize
the number of constraints that are represented cheaplgrigighs similar to multiple-
output multi-way local propagation solvers, like [San9dduld implicitly solve as
many constraints as possible. Techniques that divide thlelgm based on numeri-
cal results are possible. For example, Sistare[Sis90ipad constraints empirically.
The solver attempts to solve the constraints on a small solbslee objects. If these
objects do not have sufficient degrees of freedom, more tdgee added to the subset.

Better methods for solving the ODEs would enhance the #tabflthe constraints
and permit a wider class of controls. Making use of knowledgeut the expected
behavior of the objects should provide information that barused to adapt the step
size of the solver. Finding ways of making adaptive stepssizebtrusive to the user
might be required to make them acceptable.

The simple caching mechanisms of Snap-Together Mathesraicreasonable for
the experiments conducted so far with the differential apph. Cache analysis shows
varying performance of the global cache validation schefieetter caching scheme,
perhaps based on incremental attribute evaluation[Hyd@idht be more efficient.
However, as problem sizes grow, the cost of the Snap-Togbththematics compu-
tations will become smaller relative to that of solving tiveehr system. Therefore,
extensive optimizations are unwarranted. Better suppogwitching representations

214 CHAPTER 10. EVALUATION AND FUTURE WORK

would be another improvement in the Snap-Together Mathemiatplementation.

10.3.4 Interface Toolkits

The differential approach addresses only a part of the protdddressed by modern
interface toolkits. If the differential approach is to bedsn a complete toolkit, it must
be made to integrate cleanly with existing approaches. Byimj propagation solvers
for discrete data inside the differential approach seenpsitoarily be an engineering
problem. However, incorporating the differential apptoawith its different model of
time, into a conventional event-driven toolkit poses diffiquestions such as how to
integrate discrete state changes into the continuous flagimnet

The ways that the Whisper interpreter supports Bramble lnitegesting questions
as to the architecture of graphics toolkits. Fast turnagddaronly one of the reasons
for the widespread acceptance embedded interpreters phigsatoolkits. However,
much of the utility of the Whisper/Bramble connection is timany of the services that
Bramble must provide, such as object management and oftyttiefinition of behav-
iors are similar to those provided by the run-time supparafonodern programming
language. An interesting strategy might be to design mnme-tgupport specifically for
interactive graphical applications.

10.3.5 Interaction Techniques and Applications

While the differential approach has many flaws that may beesd@d with future re-
search, the techniques and tools are evolved enough that#mebe used to create
novel interaction techniques and applications. The ineendf new graphical tech-
niques will be the real payoff of the approach. Developing meeraction techniques
may require finding new attributes of objects to constraith @ntrol, new combina-
tions of these controls, and new ways to present the corarmalsonstraints to users.

Generalized snapping is a feature of the differential apgmathat has not been
sufficiently explored. There are many issues in making @ asuccessful interaction
technique, such as how to provide adequate feedback to¢he@nd how to determine
the many parameters. However, | think it is still a promisi@chnique.

The availability of a variety of controls and the ability torabine these controls as
constraints opens up a new domain of questions about howect sgpecify, display,
and edit the controls and constraints. Some tasks, likeesaenposition, seem particu-
larly appropriate for interfaces that give palettes of colstto users. | think the strategy
of manipulation from structure is a promising way to help m#kese tasks easier by
building more constraints into the system before the usetdapecify anything.

Good controls might also serve to facilitate manipulatidrewthe “user” is some
computational mechanism automatically controlling thepipical objects. For exam-
ple, an automatic picture composition system like thoseriesd by Feiner[Fei93]

10.4. FINAL REMARKS 215

might be easier to develop in terms of controls like “poirg kilght at this object” rather
than directly altering the underlying parameters of thesots.

The ability to handle controls asynchronously may help esmulti-input device
interaction techniques. In general, the approach may gertelp incorporate new
input mechanisms as it decouples the input device from tjeetsbeing controlled.

There are many questions which must be addressed beforgaintibased inter-
faces for drawing and modelling can be successful. Comssranust be made easy
to display, debug, understand, and edit. While restricteblpms, such as permitting
users to define the behaviors of individual objects, simhise issues, they do not
remove them.

The techniques for specifying, displaying, and editingstaaints introduced in
Briar also deserve to be examined in more detail. Future warkt address issues in
extending the techniques to larger classes of constraicating them to larger models,
and applying them in 3D.

10.3.6 Usability Evaluation

This thesis provides little in the way of formal evaluatidrtize differential approach.
Because the new interaction techniques were meant onlyaases of the differential
approach, not as wide-ranging solutions to interface bl it was not appropriate
to study the usability of these techniques. However, becaome show promise as
interaction techniques, more formal evaluation may beulsef

Much of the lag between pointing device and target objechéndifferential ap-
proach can be reduced with better tracking. However, maegsugport enjoying this
“spring” behavior. A study to evaluate the usability of tipeieg dragging might be in-
teresting. Similarly, the usability of constraint-basedgmhics has never been formally
studied. Such a study might determine people’s abilitiassemultiple simultaneous
controls, or help understand how complicated a constraimatkl might be created by
a user before comprehensibility is sacrificed.

10.4 Final Remarks

This thesis has provided an approach to implementing dgesgghical manipulation
that uses the numerical and graphical performance of mquteoessors. The approach
views manipulation as an equation solving or constraingidnipation problem, allow-
ing interactions to be defined in terms of objects’ attrisytather than their represen-
tations. To implement the approach, mathematical tectesifpr solving the optimiza-
tion problems had to be selected and implemented in a wantitaesses the issues of
interactive systems. This implementation permitted esgkgting the mathematics in
a manner that allowed the construction of a graphics tothkithid the mathematics of

216 CHAPTER 10. EVALUATION AND FUTURE WORK

the approach from the applications programmer. With theaggh and the prototype
implementations, a number of interaction techniques aptiGgtions were created.

Direct graphical manipulation has been widely successfud, future systems of-
fer new possibilities and issues for these interfaces. Asedsing cost makes high
performance computers more widely available, graphicks todl have a wider poten-
tial audience. Many of these users will require more flueit ansparent interfaces
for types of tools now only used by experts. New classes oliegions, such as vir-
tual reality, offer whole new classes of issues. New usedsreaw applications will
challenge interface designers. The ad-hoc methods wadity used to devise manip-
ulation techniques will hinder the development of new ifstees. This thesis has offers
an alternative that can provide a substrate for future tir@nipulation interfaces.

The world is your exercise book, the pages on which you
do your sums. It is not reality, although you can express
reality there if you wish.
You are also free to write nonsense, or lies, or to tear the
pages.
— Richard Bach
lllusions,p. 127

Appendix A

The Whisper Programming Language

An important tool in the development of the differential apgch has been a simple
interpreter for a language call&ihisper. Whisper serves four main purposes in this
work:

1. An embedded interpreter is important for interactiveetys to realize features
such as saving and loading of models and configuration files.

2. The language runtime provides useful tools for systensttoation, such as a
dynamic object system and dynamic function definition.

3. The language provides a convenient notation for deseribiteraction tech-
niques in this thesis.

4. The interpreter permitted avoiding many of the probleritk the programming
environment available to develop this work, such as slowartound and bad
debuggers.

Whisper is not directly connected to the differential appfoaHowever, it is dis-
cussed here for several reasons. Foremost, the languageusskd enough so that a
reader can understand the examples written in Whisper inwsgections of the thesis.

The Whisper interpreter is specifically designed for beindpedded into applica-
tions. The primary design goal were simplicity and exteitigfpeven at the expense of
performance. Although performance of the interpreter mrpihe ease of extensibility
allows adding speed critical code as new primitives writtetine host language, C++.
New data types can also be added easily to the interpretee e core interpretive
language was built, extensions were created to providesad¢oghe Iris GL graphics
library, Snap-Together Mathematics, an image procesgmngry (that is not used in
this thesis), and Bramble.

217

218 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

A.1 Whisper Basics

Whisper is a lexically scoped variant of LISP, like scheme. §ghr is very similar to
other languages in this family. A basic introduction to peogming in such a language
is provided by Friedman and Felleisen [FF87]. Rather thamigdmg yet another tuto-
rial for such languages, we instead look at the differenetsden Whisper and more
common dialects that are relevant to the code examples iméses.

Like other LISP dialects, Whisper has dynamic types. All daistagged with their
type, and the types can be determined for any object. Whispgré system is extensi-
ble at compile time only. The basic set of types provided bysfpér includes integers,
floating point numbers, strings, pairs, points (3 floatingppoumbers), closures, built-
in primitive functions, clocks (special objects for timjrend environments. Types for
basic Snap-Together Mathematics classes are provided|bassdor Bramble objects.
Almost all Bramble objects have the Whisper typ@®bj , but the subtypes can easily
be determined.

Whisper’s special forms for setting variable values areedgfit from most LISP
dialects. Whisper provides set function that sets the value of a variable. If the
variable is defined in the current scope, it is simply rebotmthe new value. If the
variable is not defined, it is created aglabal variable. Thedefun function used to
define a function is simply shorthand feet. Thebind function acts like set, but it
always sets a variable in the most local scope.

Whisper is lexically scoped. Variable bindings are deteediby the code that
surrounds them in the program text. For example,

(let ((a 5)
(defun f (x) (+ x a)))

defines a function that adds 5 to its argument. eawvironmentis the object that em-
bodies a scope, that is, it is a pairing of variable names ahgkg. Environments are
hierarchical, that is, each environment refers to the envirent it was defined in. Un-
bound references are deferred up the chain of environmetitghe global scope is
reached.

One important feature of Whisper is that it permits treatingimnments as first
class objects. Many dialects of Scheme, such as MIT Schet98], do this as well,
and the introductory programming text by Abelson and SussfA&85] provides an
introduction to the use of first-class environments. Whismgmtax and operations for
first-class environments is different from Scheme’s.

Theenvironment special function returns a reference to the current enxent
that can be passed around as any other data element. Forlexamp

A.1. WHISPER BASICS 219

(set e (let ((a 5)
(b 6))

(environment)))

sets the variable to an environment that binds andb. Various operations can be
performed on environments, including adding additionatings, inquiring as to their
contents, combining two environments, and printing theeots of an environment.

The two most important operations that can be performedarediuate an expres-
sion within an environment, and to bind a value in an envireninTo add a binding
to an environment, a special version of thied primitive function is used that takes
an extra argument for environment, for example,

(bind-in e ¢ 10)

which would add the binding = 10 to the environment defined in the previous exam-
ple. A similar version okval is provided,

(eval-in e (+ a b))
which for the example would return 11. Whisper provides theay
(env expry expry ... expry)

to evaluate expressionspr, throughexpr, in succession inside of the scope of en-
vironmentenv. The value of the evaluation of the last expression is retlirnghis
construction violates lexical scoping, for example,

(let ((a 1)
(b 2))
(e (+ a b))

with e defined as in the above example evaluates to 11, not 3. Thisazase an im-
portant distinction between the uselofhd andbind-in . For example,

(let ((a 10))
(bind-in e f a)
(e (bind g a))

creates bindings fdr andg inside ofe, howeverf will be bound to 10, whiley will
be bound to 5, because its binding statement was evaluatiele iofe.

First class environments function as Whisper’s object systéields and methods
are stored as bindings in the environment. The object areaéies an environment
and binds variables to their initial configurations. Whilerthis no explicit mechanism

220 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

to provide inheritance or delegation, such functionalday e provided in the creator
functions.

A BramblelDODbj is not an environment, however each object carries an emviro
ment around. Theet-env function returns the environment carried byl&0bj .
Whisper syntax permits using the evaluation notation fonyke objects as environ-
ments, so

(IDObj expr)
is a shorthand notation for

((get-env IDObj) expr).

A.2 Some Examples

In this section, we take a few examples of code fragments iMmsper programs to
explain various features of the language, and how they ard with Snap-Together
Mathematics and Bramble.

This first example defines a function that builds the functiotk graph for the
line segments shown in Figure 5.1. The line segment is retlas a Whisper object,
that is, as an environment. Notice that an environment isenfiast and then the in-
termediate values are defined in a different environmenis May the environment
that will represent the line segment does not contain tleenmediate values, only the
connectors.

(defun nake-line ()

(let* ((q (rmake-stobj 3)) ; State vector w/3 spaces
(e (environment))) ; empty "object" to put thingsin

(let* ((c (cos-block (signal q 2))) ; make blocks to compute

(s (sin-block (signal q 2))) ; intermediate results

(Ic (tinmes-block c (signal g 3)))
(I's (times-block s (signal q 3))))

(bind-in e left-x (plus-block Ic (signal g 0))) ; makeconnectors
(bind-in e left-y (plus-block I's (sighal g 1))) ; puttheblocksdirectlyinto
(bind-in e right-x (plus-block Ic (signal g 0))) ; theobject

(bind-in e right-y (plus-block I's (signal g 1))))

e))

Calling this procedure returns an environment that costéibindings: 4 for the
connectors, 1 for the state vector and an extra binding shateference to itself. To
use these objects to create the wiring of Figure 5.1, givaimation to perform the

A.2. SOME EXAMPLES 221

attach operation which would take 4 connectors as inputsagate the function block
tree:

(set rodl (make-line))
(set rod2 (make-line))
(set nail (attach (rodl left-x) (rodl left-y)
(rodl right-x) (rodl1 right-y)))

Attach would return an object (a Whisper Environment) thatamed two connectors.
It might be defined as follows:

(defun attach (x1 yl x2 y2)
(let ((c1 (minus-block x1 x2))
(c2 (minus-block y2 y2)))
(environment)))

The following code fragment is a more expanded example atcaimt inferencing
using Bramble’s snapping than the one given in Section 7.lf.i8 a Bramble event
handler that is used to draw lines with rubber banding andraatic inference of con-

straints.

(1) (add-key dev-rightnouse k-none k-down ; define button down handler
(2) (lambda (v) ;

(3) (let* ((s (snapdp)) ; get snap point

(4) (p (if s (where s) (cursor-mapw Vi evv))) start drag at snap or mouse
(5) (I (make-2d-line (p-x p) (p-y p) ; create object at start

(6) (p-x p) (p-y P)))

(7) (d (pt-eg-2d (I endl) (v nouse- port)))) connect one end to mouse
(8) (if s (pt-eqg-2d (I end2) s)) ; if snap, infer constraint
(9) (add- key dev-ri ght nouse k-any k-up ; define button up handler
(10) (1 anmbda (v) ;

(11) (let ((s (snapdp))) ; get snapped point

(12) (del ete d) ; delete drag constraint
(13) (if s (pt-eg-2d (I endl) s)))))))) ; if snap, infer constraint

This fragment is a call tadd-key , the Bramble primitive for defining key han-
dling events. The first three arguments specify that thisctd define the right mouse
button press (down) event with no modifier keys. The last raent to the call is a
closure that is to be called with one argument when the evenirs. The argument
specifies the view that the event occurs in.

Lines 2-12 define the procedure thatis called when the righisa button is pressed.
First, a number of local variables are bound to various qtiesiuseful in the operation:
s is bound to the current state of the snap-sempeis bound to either the position of
s, if there is a point snapped to, or to the position of the agidsais bound to a newly

222 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

created line segment, created with both endpoings ahd a constraint is created con-
necting one endpoint gf to the position of the mouse in the current view and stored
ind.

Line 7 performs a constraint inference. If the cursor is peapto a point when
the line is created, the end of the line is connected to thiat poth a point equality
constraint.

Lines 8-12 redefine the event handler that is called whenigie mouse button is
released. Because of Whisper’s lexical scoping, this cod&easuted in the environ-
ment created by the key down handler and has access to tluadevémiables. It first
deletes the constraint that was connecting the line segioéné cursor. If the cursor
was shapped to a point when the button release occurs, thedgment is attached to
this point in line 12.

A.2.1 The Define-Shape Syntax

A special facility is provided in Bramble to facilitate theeation of 2D shapes. The
process is inspired by the shape spreadsheets in the Vesrardy program [Sha93],
but has greater utility because it permits placing constsanside objects and using
any point as a handle. Thiefine-shape special function takes a description of
a shape and automatically generates two functions: onectbates instances of the
object, and another that draws a prototype version of thpeskaitable for displaying
in an icon. Thelefine-shape primitive is special because it does not evaluate its
arguments in the standard way.

The syntax oflefine-shape are as follows:

(define-shape name wvariables defaults lets command; commandsy ...)
where:
name is a string that names the type;
variables is a list of state variable names;
defaults is a list of initial values for each variable;
let is a list of let pairs to define internal variables;
command is a pairing of commands and data.

For example, a simple rectangle can be defined by:

A.2. SOME EXAMPLES 223

(define-shape rectangle (w h) (.5 .25)
(w2 (/ w 2))
(h2 (/ h 2))
(mw (- 0 w2))
(mh (- 0 h2)))
(spath ((w2 h2) (mw h2) (mw mh) (w2 mh))))

All shapes are defined in their local coordinates, so thanggte only has 2 state vari-
ables, width and height. Default values for these are pexlidrhe let list defines 4
local variables. Thepath command defines a list of vertices that are connected to
draw a polygon, with handle points placed at each vertex.cbnemand is equivalent

to separate commands to define a drawing function and haodiésp Literally, the
definition used for drawing is also used for manipulation.

Thedefine-shape mechanism makes extensive use of Whisper first-class en-
vironments to make the concise specification possible. kEadhble declaration and
let list clause defines a new symbol in the objects local emvirent. Each of these is
bound to a signal: when thaefine-shape is executed, itis run in a special envi-
ronment that shadows all of the basic arithmetic operatiatts their Snap-Together
Mathematics block generating counterparts. Because #wealy routines do not exe-
cute during thalefine-shape , they can do normal arithmetic.

Other commands permit more general drawing commands cgbgpecification of
handle points, and generation of constraints on the objdut. fuel-gauge widget of
page 162 demonstrates many of the featuretefihe-shape . Here we present a
more complete version:

224 APPENDIX A. THE WHISPER PROGRAMMING LANGUAGE

(1) (define-shape gas-gauge (sz theta) (.35 0) ;2 params
;local variables

(2) ((I (* (one-way sz) .9)) ; size

(3) (t (+ .2 (* 2.7 theta))) ; angle (in radians)

(4) (x (- 0 (* 1 (cos t)))) ; positon of needle

(%) (y (= 1 (sin t)))) ; draw function
(6) (drawf (prog (color gl-white) (arcf 0 0 sz 0 1800) ; whitearcfor back

(7) (color gl-black) (linewi dth 3) ; black border

(8) (arc 0 0 sz 0 1800) ; arc border

(9) (move (- 0 sz) 0) (draw sz 0) ; bottom border

(10) (icon-font) ; set text font

(12) (crnov (* | -.9) (* 1 .2)) (fnprstr '"E) ; placelabels

(12) (crov (* I .8) (* I .2)) (frprstr '"F) ; forEandF

(13) (move 0 0) (draw x y))) ; draw needle

(14) (> theta 0) : limit to legal values
(15) (< theta 1) ;

(16) (handle x y)) ; create handle on needle

The gas gauge has 2 parameters, one for the size of the gadgmefor its current
value. The let clause of thaefine-shape defines a number of intermediate vari-
ables using arithmetic operations. One special operaiona-way that defines that
controls on its output should not effect its input. Tdree-way function block returns
the value of its input, but always returns a zero derivatiha. the gas gauge, the one-
way is used so that dragging the needle of the gas gauge doesamge the size of the
gauge. Tharawf command defines a code fragment that is used to draw the gauge.
The list of statements are calls to the GL graphics librarjte ¥ and< commands
define constraints, and thendle command creates RistinguishedPoint
connector at the specified position on the object, whichénetkample is the tip of the
gauge’s needle.

Theinstall-shape function is defined by certain applications to automatycall
install an icon for creating shapes defined wi#fine-shape . It simplifies using
define-shape in an application. Thenstall-shape function takes the values
returned bydefine-shape and creates an icon and the proper handlers for creating
new instances of the shape.

The real purpose of scientific method is to make sure Na-
ture hasnt misled you into thinking you know something
you don't actually know.
If you get careless or go romanticizing scientific informa-
tion, Nature will soon make a complete fool out of you.
It does it often enough anyway when you dont give it op-
portunities.

— Robert Pirsig

Zen and the Art of Motorcycle Maintenange,94

Appendix B

Performance of the Implementations

This appendix provides some empirical tests measuringdhfenmance of the proto-
type implementation. The absolute performance numbeyseaesense, not important
as the hardware and the implementation are continuallygihgn These benchmarks
are provided to:

e Provide empirical evidence of the scaling properties oftdwhniques, as ana-
lyzed in Section 4.2.

e Give some idea of the scale of problems solvable with culrdiotrca 1993)
available hardware.

¢ Provide some intuition for where the performance bottlésexe.

Understanding the performance of a program running on a meligh-performance
workstation is a difficult task. Complicated factors suchramory hierarchy orga-
nization interact in complex ways. For example, differerdijpems may distribute
themselves differently along the lines of the data cach¢éhodigh we have attempted
to design benchmarks that reduce these types of effectsjuanipers must be viewed
with some caution.

The benchmarks were run on a Silicon Graphics Indigo 2 watkst, except where
noted. The machine had a 150MHz R4400 processor and 32 ntegaifynain mem-
ory. All of the problems fit into main memory on the machinensgaging occurred.
The clock accuracy on the workstation is 10 milliseconds. Wlggeater precision is
reported, it was found by averaging over enough trials tieéktra digit remains stable
as more trials are run. Some of the simpler benchmarks warerra Silicon Graphics
Personal Iris 4D/25, with a 20MHz R3000 processor, 16 meigahyf main memory,

225

226 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

[|| || s

Figure B.1: A sample run of the synthetic benchmark with= 50 andn = 25. Lines are
used to denote pairs of points with a control placed betweemt Each step, the controls push
the points closer to one another.

and small instruction and data caches. Current generagitsopal computers provide
significantly better performance than this older machine.eW§Higures are provided
for this machine, they will be explicitly noted.

B.1 A Synthetic Benchmark

In order to evaluate the performance and scalability of tiees, a contrived problem
was developed that can be arbitrarily scaled. The problesesgned to mimic real-
istic problems in which the constraints may have randoncaire. An instance of the
problem can be defined for any number of variabteand constraints. The problem
placesm /2 points on the plane and placescontrols, each connecting 2 points. A
control computes the distance between the points and asTawards controller
placed on it.

A synthetic workload generator creates instances of thiel@no. It randomly dis-
tributes the points in a 10x10 square. Pairs of points aextal to have the distance
controls placed on them. The workload generator insurdsiiieae are no duplicate
controls, but makes no other checks on the distribution@ttnstraints. An example
run is shown in Figure B.1.

Generating arbitrarily sized synthetic workloads for thkver that are reliable mea-
sures of performance is difficult. The speed of the solveeddp almost as much on the
structure of the constraint problem as it does on its sizeés dén create a bias based
on the density of constraints in variables. For examplesictan an example with 2
constraints. If there are only 3 variables, no matter how2titenstraints are placed,
the constraints will be in a single partition. However, iéth are 4 variables, the con-
straints might not access any common variables, so therseil@artition the matrix.
As the number of variables goes up, the probability of thisgyop as well. This can
lead to the counterintuitive result that for a fixed number@fistraints, larger numbers
of variables might actually be faster to solve. For randogdgerated problems of the
same size, there can be substantial differences in solviregldased on how “hard” the
system is to solve: if one set of constraints is more tightiyreected than another.

B.1. ASYNTHETIC BENCHMARK 227

15F

time per trial (seconds)

05}

0 50 100 150 200 250 300 350

number of constraints n

Figure B.2: Results of the synthetic benchmark. The ordinate enunwethgenumber of
controls, the abscissa is the time required to run 5 4th drierge-Kutta steps. Error bars
represent the range of time for each value. The central titkek the mean values for the
trials. m = 400 variables were used in all trials.

To run the trials, 5 constraint configurations and 5 initiasgions were generated
for each problem size. This leads to 25 different trials p@bfem size. Each trial
was run for 5 Runge-Kutta 4 steps (that is, the differenfmirnization was solved 20
times). Each trial was duplicated a small number of times.

Graphing the results of running the trials for a fixed numbbe@aoiables and varying
number of constraints yields an expected result, as showigure B.2. The error bars
represent the range of time for each problem, while the ticidline graph show the
mean value. The graph shows the expected quadratic perfioenhut also shows a
wide variance of times for a given problem size. Some of thrsance can be attributed
to how different randomly generated constraint sets carab#ipned.

A similar experiment fixed the number of constraints, buieathe number of
variables. The results shown in Figure B.3 are inconclusikie effects of problem
“hardness” are more significant than the number of varialdlass is sensible because
there are very few parts of the algorithm that@xen), and all of these have very small
constants. While thé(n?) is able to dominate the problem hardness,(#ie:) terms
are not.

228 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

0.8

0.7}

0.6}

4

0.5}

0.4t

time per trial (seconds)

0.3 : - .. N
300 320 340 360 380 400 420 440 460 480 500

number of variables n

Figure B.3: Results of the synthetic benchmark for 150 constraints aradying number of
variables.

In absolute terms, if we require 5 Runge-Kutta steps perrsgcan Indigo 2 can
handle approximately 200 point distance constraints onvdd@bles. This, of course,
leaves no time for redraw. More realistically, if we wanteddave half of the time for
drawing and other system functions, the benchmarks couldlaapproximately 150
constraints. The absolute performance numbers are ndy vélat is important here
as they depend heavily on the implementation, the machinkethee problem.

To understand the performance of the benchmarks, a numtralsfwere run with
a version of the benchmark driver compiled with gieie profiling tool available on
the Iris. Pixie provides detailed information about wheggr@agram spends it time by
instrumenting the code. Pixie’s output is not hierarchisalonly low level procedures
can be accurately monitored.

Table B.1 shows the results of running a number of trialsughopixie. The table
displays the time in percent that the program spent in the os®sl basic blocks. The
top two lines of the table are important: a very large parthaf program’s running
time is spent in two lines of code. These two lines of code lagehtlf-sparse matrix
times vector and half-sparse matrix transpose time vegt@riloops. This is not sur-
prising because these form the inner loops of dHe?) part of the algorithm, so as
the number of constraints grow, the percentage of time iseth@ps also grows. The
linComb function computes the linear combination of vectors, anagsisd to com-
pute the gradients of function blocks. Thgradl procedure actually executes the
conjugate-gradient solver, but its time does not includeetspent in the procedures
it calls, including the matrix vector multiply functionsp@dot , a function that com-
putes the dot product of two vectors. All callsdot in this program occur inside of

B.2. APPLICATION BENCHMARKS

229

procedure % time,n = 150 | % time,n = 200 | % timen = 250
HSpMat::multT 27.01 28.66 29.96
HSpMat::mult 18.62 21.21 23.04
linComb 8.39 6.49 4.84
cgradl 5.08 6.49 6.58
dot 4.16 4.76 5.22

Table B.1: Profiling results for the synthetic constraint benchmarkiniers represent the
percent of total running time spent in the basic proceduoeks. A few of the most time
consuming parts of the program are shown.

the conjugate-gradient solver.

B.2 Application Benchmarks

To provide a more realistic evaluation of the absolute perémce of the prototypes
running on the lIris, the performance of various Bramble @pfibns was measured
on a number of examples. In each case, the example objectrea®d beforehand.
The timings are measured only while the solver is runnindpait of the controls, for
example during dragging or while a mechanism is being drivemotors.

B.2.1 Direct Manipulation Interaction Techniques

Traditional direct manipulation interaction techniquegdlve a small number of con-
trols, usually the same number as the degrees of freedoneohplut device. When
implemented in the differential approach, these directimdation techniques usually
require some slightly larger number of controls, but st8haall constant.

Table B.2 describes the performance of Bramble while exegsbme of the direct
manipulation methods discussed this thesis. All of thert@gles require short enough
periods of time such that solving will not be the bottlenatkniteractive performance.
Redraw, which must be done in a conventional direct manijmulamplementation as
well, is more likely to limit the frame rate. Statistics ate@provided for the Personal
Iris.

B.2.2 Constrained Models

One use of the differential approach is to permit the usepézify an arbitrary num-
ber of controls, in order to provide a constraint-basedriate. Here we discuss the
performance for constraint benchmarks using Bramble egjpdins with constraint-
based interfaces. The important concern here is how largedeinsan the user create

230

Indigo 2 times per| Personal Iris times per
controls| RK4 step| redraw| RK4 step redraw
dragging a spirasection 8.1.1 2 .001 .01 .01 .05
3D Jack Widgetection 8.3.6 2 .003 .02 .03 A1
Image Alignmentection 8.2.4 8 .009 .02 .06 .07

APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

Table B.2: Performance of various direct manipulation techniquesaandifferent comput-
ers. Time is in seconds per 4th order Runge-Kutta step, antbfaplete redraw of the view
window.

before performance becomes unacceptable. The frame nateckt direct manipula-
tion becomes unacceptable seems to vary by applicatidg,aad user. However, the
experiments here show that the prototype implementatiangpermit the direct ma-
nipulation of models with dozens of interactive controlsl éhis number can be raised
substantially using the methods of Section 4.4.

A set of benchmarks was run with the MechToy application. tRerfirst set of
tests, a number of 5 bar linkages were animated by enabl@igrtiotors. An example
is shown in Figure B.4. Because the mechanisms are all imdiepe, we would expect
that the performance would be linear. Even though the MeglpFogram does not
use partitioning, the conjugate-gradient solver doestaring automatically for this
problem. The expected linear behavior is evidenced in thi@peance of the system,
plotted in Figure B.5. For the case of 9 mechanisms (the nhastfit easily on the
screen), the Runge-Kutta 4 steps averaged 56 milliseceadh,call to the conjugate-
gradient solver averaged 8 milliseconds, and each Jacabiastruction averaged 3
milliseconds. Redrawing averaged 46 milliseconds.

The next mechanism example is more tightly coupled: all ikegs are intercon-
nected to form a single 4 bar linkage. As the motor rotatesh étuss” rocks back
and forth. No matter how big the mechanism, it only has a sidgigree of freedom.
As more parallel trusses are added, the number of variabg@nstraints grow. A
picture of the mechanism with 5 trusses is shown in Figure Bdfformance figures
are given in Table B.3, and graphed in Figure B.7 This exarsipbavs that even with
completely connected constraints, models with around d@8tcaints are practical on
a machine such as the Indigo 2.

B.2. APPLICATION BENCHMARKS 231

»

il ais
|
|

LA
%

-
=

§

Figure B.4: MechToy animating 9 5-bar linkage mechanisms. Each meshmisiindepen-
dent of the others, although mechtoy simulates them simedtasly.

012

0.10 ~

0.08 [~

0.06 [~

0.04 I~

0.02 I~

Seconds per 4th Order Solver Step

0.00
1 3 5 7 9 11 13 15

Number of Linkages (1/8 # constraints)

Figure B.5: Performance of MechToy simulating a number of 5 bar linkajesiitaneously.
The number of constraints is 8 times the number of linkages.

232 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

EJE'EJLMIE.’.E
I 1

ElE |

&
Ak
=

Figure B.6: A 4-bar linkage with 5 parallel trusses.

number of seconds per frames/sec
trusses vars| consts| step| cgrad| jac | draw | 1 step| 2 steps
19 18| .013| .002|.001| .015| 354| 25.1
37 36|.029| .005|.002| .022| 19.8| 129
55 54 |.048| .008|.002| .029| 12.9 8
73 72| .068| .012|.003| .038 9.6 5.8
91 90| .093| .017|.004| .044 7.3 4.3
109| 108|.121| .023|.005| .051 55 3.4
127 | 126/ .159| .031|.005| .062 4.7 2.6

~No o h~wWN PR

Table B.3: Performance figures for MechToy simulating a mechanism watlying numbers
of parallel trusses. Columns denote the time for an avertdgerder Runge-Kutta step, solving
the linear system with conjugate-gradient, forming theb&m, and redrawing the entire view.
4 calls tocgrad and Jacobian formation are required for each step. Themiggitcolumns
show the frame rates using 1 and 2 solver steps per redraw.

B.2. APPLICATION BENCHMARKS 233

0.20
—8 step

g 0.15} O redraw
5
(8]
g/ 0.10F
£
= 0.05F

0.00

1 2 3 4 5 6 7
number of trusses

Figure B.7: Performance running the simulation of the truss mechanim?) solving time
quickly grows to dominate th€(m) drawing time.

234 APPENDIX B. PERFORMANCE OF THE IMPLEMENTATIONS

References 235

References

[AGL87]

[Ald88]

[Ald92]
[Alp93]

[AS85]

[Bar86]

[Bar89]

[Bar90]

[Bar91la]

[Bar91b]

[Bar92a]

[Bar92b]

[Bar92c]

[Bar94]

William Armstrong, Mark Green, and Robert Lake. MNeaaal time control of
human figure modeldEEE Computer Graphics and Applicatignzmges 52—-61,
June 1987.

B. Aldefeld. Variation of geometries based on a getrc-reasoning method.
Computer Aided Desigr20(3):117-126, April 1988.

Aldus Corporation. Intellidraw. Computer Prograf®92.

Sherman R. Alpert. Graceful interaction with gragad constraintsIEEE Com-
puter Graphics and Applicationpages 82-91, March 1993.

Harold Abelson and Gerald Sussm&tructure and Interpretation of Computer
Programs MIT Press, 1985.

Paul S. Barth. An object-oriented approach to giegdlinterfacesACM Trans-
actions on Graphicss(2):142-172, April 1986.

David Baraff. Analytical methods for dynamic siratibn of non-penetrating

rigid bodies. InComputer Graphic§Proc. SIGGRAPH volume 23, pages 223—
232. ACM, July 1989.

David Baraff. Curved surfaces and coherence forpemetrating rigid body
simulation. InComputer GraphicgProc. SIGGRAPH volume 24, pages 19—
28. ACM, August 1990.

David Baraff. Coping with friction for non-penating rigid body simulation. In

Computer Graphicg¢Proc. SIGGRAPH volume 25, pages 31-40. ACM, July
1991.

Joel Bartlett. Don't fidget with widgets, draw! Tatdcal report, DEC Western
Research Laboratory, May 1991.

David BaraffDynamic Simulation of Non-Penetrating Rigid BodielD thesis,
Department of Computer Science, Cornell University, Mak®B2. Appears as
technical report 92-1275.

David Baraff Dynamic Simulation of Non-Penetrating Rigid BodielD thesis,
Cornell University, March 1992. Appears as Department aihoter Science
Technical Report 92-1275.

Ronen BarzelPhysically-Based Modeling for Computer Graphidscademic
Press, 1992.

David Baraff. Fast contact force computation fonpenetrating rigid bodies. In
Computer Graphics (SIGGRAPH '94 Proceedingsges 23—-34, July 1994.

236

[Bau72]

[BB88]

[BD86]

[BDFB+87]

[Ben89]

[BFBW92]

[BG8S]

[BGK93]

[Bie86]

[Bie89]

[Bie90]

[Bli88a]

[Bli88D]

[BMB86]

References

J. Baumgarte. Stabilization of constraints andgrells of motion in dynamical
systems. Computer Methods in Applied Mechanics and Engineering—16,
1972.

Ronen Barzel and Alan H. Barr. A modeling system basedynamic constaints.
Computer Graphic22:179-188, 1988. Proceedings SIGGRAPH '88.

Alan Borning and Robert Duisberg. Constraint-bassals for building user
interfaces ACM Transactions on Graphic§(4):345-374, October 1986.

Alan Borning, Robert Duisberg, Bjorn Freeman-BensomglAKramer, and
Michael Woolf. Constraint hierarchies. Rroceedings OOPSLAages 48-60,
October 1987.

M. Benyon. Evaluating definative principles forardgction in graphics. In R. A.
Earnshaw and B. Wyvill, editor$\ew Advances in Computer Graphics: Pro-
ceedings of CG International '8%pringer Verlag, 1989.

Alan Borning, Bjorn Freeman-Benson, and Molly ¥dh. Constraint hierar-
chies.Lisp and Functional Programming:223—-270, 1992.

Nathaniel Borenstein and James Gosling. UNIX Emaksetrospective. In
Proceedings of the ACM SIGGRAPH Symposium on User InteSafte/are and
Technologypages 95-101, 1988.

Christian Bischoff, Andreas Griewank, and Peyvattthdemi. Workshop re-
port on first theory institute on computational differetiba. Technical Report
ANL/MCS-TM-183, Argonne National Laboratory, Decembe®39 Abstracts
from the workshop held at Argonne May 24-26,1993.

Eric Bier. Skitters and jacks: Interactive 3d pasiing tools. InProceedings of
the 1986 Workshop on Interactive 3d Graphigages 237-249, October 1986.

Eric Bier. Snap-dragging: Interactive geometrésigin in two and three dimen-
sions. Technical Report EDL-89-2, Xerox Palo Alto Rese&ehter, 1989.

Eric Bier. Snap-dragging in three dimensio@mputer Graphics24(2):193—
204, March 1990. Proceedings 1990 Symposium on Intera8iv&raphics.

James Blinn. Me and my (fake) shadol2EE Computer Graphics and Appli-
cations pages 82—-86, January 1988.

Jim Blinn. Where am 1? What am | looking attEEE Computer Graphics and
Applications pages 76—81, July 1988.

Norman Badler, Kamran Manoocherhri, and David BaraMulti-dimentional
input techniques and articulated figure positioning by ipldtconstraints. In
Proceedings of the 1986 Workshop on Interactive 3d Grapp@ages 151-170,
October 1986.

References

[BMWS7]

[Bor81]

[Bor86]

[Bro86]

[Bru86]

[BS86]

[BW92]

[CFV88]

[CG91]

[CMS88]

[Com88]

[Com92]
[Cor89]
[Cra86]
[CSHT92]

237

Norman Badler, Kamran Manoocherhri, and Grahamtéval Articulated figure
positioning by multiple constraint$EEE Computer Graphics and Applicatigns
pages 28-38, June 1987.

Alan Borning. The programming language aspectstihdLab, a constraint-
oriented simulation laboratorACM Transactions on Programming Languages
and Systems(4):353-387, 1981.

Alan Borning. Defining constraints graphically. Pmoceedings CHI 86pages
137-143, April 1986.

Frederick Brooks. Walkthough — a dynamic graphieginment for simulat-
ing virtual buildings. InProceedings of the 1986 Workshop on Interactive 3d
Graphics pages 9-22, October 1986.

Beat Brudelin. Constructing three-dimensionalmetric objects defined by con-
straints. InProceedings of the 1986 Workshop on Interactive 3d Grapp@ages
111-129, October 1986.

Eric Bier and Maureen Stone. Snap-draggi@gmputer Graphics20(4):233—
240, 1986. Proceedings SIGGRAPH '86.

David Baraff and Andrew Witkin. Dynamic simulatiorf non-penetrating flex-

ible bodies. Computer Graphics26(2):303—-308, July 1992. Proceedings Sig-
graph '92.

U. Cugini, F. Folini, and | Vicini. A procedural symh for the definition and
storage of technical drawings in parametric form. In D. AcBand P. Jancene,
editors,Eurographics '88 pages 183-196. Elsevier Science Publishers, 1988.

George Celniker and David Gossard. Deformable cuanve surface finite-
elements for free-form shape design.Gomputer Graphics (Proceedings SIG-
GRAPH 91) pages 257-266, 1991.

Michael Chen, S. Joy Mountford, and Abigail Sellénstudy in interactive 3D
rotation using 2D input devicesComputer Graphics22(4):121-130, August
1988. Proceedings SIGGRAPH '88.

PHIGS+ Committee. Phigs+ functional descripticevision 3.0. Computer
Graphics 22(3):125-215, 1988.

Computervision Corporation. DesignView. CompuiReogram, 1992.
Thomas H. Cormerintroduction to AlgorithmsMIT Press, 1989.
John CraigRobotics: Mechanics and Controhddison-Wesley, 1986.

D. Brookshire Conner, Scott Snibbe, Kenneth Herndomi€#drobbins, Robert
Zeleznik, and Andries van Dam. Three-dimensional widget®roceedings of
the 1992 Workshop on Interactive 3D Graphipages 183—-188, March 1992.

238

[CW92]

[DERS6]

[DGZ92]

[DNN+93]

[End90]

[Eng86]

[ETWS81]

[FB93]

[FBBO2]

[FBMBOO]

[Feio3]

[FF87]

[FFD93]

[Fleg7]

References

George Celniker and William Welch. Linear consttaifor deformable b-spline
surfaces. IrProceedings of the 1992 Symposium on Interactive 3D Graphic
pages 165-170, March 1992,

J. S. Duff, A. M. Erisman, and J.K. Reifirect Methods for Sparse Matrices
Oxford University Press, Oxford, UK, 1986.

Steven Drucker, Tinsley Gaylean, and David ZeltzEINEMA: a system for
procedural camera movements Hroceedings of the 1992 Symposium on Inter-
active Computer Graphi¢pages 67—70, 1992.

Roger B. Dannenberg, Tom Neuendorffer, Joseph M. NewecoDean Rubine,
and David B. Anderson. Tactus: toolkit-level support fonslyronized interac-
tive multimedia.Multimedia Systemd.:77-86, 1993.

Eric Enderton. Interactive type synthesis of meitras. Master’s thesis,

University of California, Berkeley, April 1990. Also appsaas Report No.
UCB/CSD 90/570.

Douglas Englebart. The augmented knowledge waksin ACM Conference
on the History of Personal Workstatigrsages 73—-83, January 1986.

Kenneth B. Evans, Peter P. Tanner, and Marceli Weablet-based valuators that
provide one, two, or three degrees of freed@uamputer Graphicsl 5(3):91-97,
August 1981.

Bjorn Freeman-Benson. Converting an existing userface to use constraints.
In Randy Pausch, editoRroceedings of the ACM SIGGRAPH Symposium on
User Interface Software and Technologpges 207-215, 1993.

Bjorn Freeman-Benson and Alan Borning. Integmtionstraints with an object
oriented language. IRroceedings ECOOP '92.992.

Bjorn Freeman-Benson, John Maloney, and Alan BagnAn incremental con-

straint hierarchy solver.Communications of the ACM3(1):54—63, January
1990.

Steven Feiner. Knowledge-based design of 3D grapdund virtual worlds. In
Proceedings Graphics Interfacpages 51-52, 1993.

Daniel Friedman and Matthias Felleis@rne Little Lisper MIT Press, 1987.

Mingxian Fa, Terrence Fernando, and Peter Dew.dDB® manipulation tech-
niques for interactive solid modelling. Proceedings Eurographi¢cpages 237—
248, 1993.

Roger FletchePractical Methods of Optimizatiordohn Wiley and Sons, 1987.

References 239

[Fow92] Barry Fowler. Geometric manipulation of tensooqbuct surfaces. IRProceed-
ings, Interactive 3D Workshop992.

[FP88] N. Fuller and D. Prusinkiewicz. Geometric modellimigh euclidean construc-
tions. In M. Magnenant-Thalmann and D. Thalmann, editbisyw Trends in

Computer Graphics: Proceedings of CG International .'"&ringer-Verlag,
1988.

[FYDFH90] JamesD. Foley, Andries van Dam, Steven K. Feared,John HugheS€omputer
Graphics: Principles and Practice Addison Wesley, second edition edition,
1990.

[Fw88] Kurt Fleischer and Andrew Witkin. A modeling testbedh Proc .Graphics
Interface pages 127-137, 1988.

[Gan84] Sundaram Ganapathy. Decomposition of transféomamatrices for robot vi-
sion. Ininternational Conference on Robotjggmges 130-139, March 1984.

[Gas93] Marie-Paule Gascuel. An implicit formulation faepise contact modeling be-

tween flexible solidsComputer Graphics27:313—-320, August 1993. Proceed-
ings Siggraph '93.

[GBT93] Enrico Gobberti, Jean-Francis Balaguer, and Oartialmann. VB2: An archi-
tecture for interaction in synthetic worlds. In Randy Pdwsditor,Proceedings
UIST '93 pages 167-178, 1993.

[Gen79] Donald Gennery. Stereo-camera calibrationProc. DARPA Image Under-
standing Workshgppages 101-107, 1979.

[GL89] Gene Golub and Charles Van LoaMatrix Computations The Johns Hopkins
University Press, 1989.

[Gle92a] Michael Gleicher. Briar - a constraint-based drgaprogram. InNSIGGRAPH
Video Revieywolume 77, 1992. CHI '92 Formal Video Program.

[Gle92b] Michael Gleicher. Through-the-lens camera aantn SIGGRAPH video review
86, 1992.

[GMW81] Phillip Gill, Walter Murray, and Margret WrightPractical Optimization Aca-
demic Press, New York, NY, 1981.

[Gol80] Herbert GoldsteinClassical MechanicsAddison Wesley, 1980.

[Gos83] James Goslingilgebraic ConstraintsPhD thesis, Carnegie Mellon University,
May 1983.

[GriB9] Andreas Griewank. On automatic differentiationn M. Iri and K. Tanabe,
editors,Mathematical Programming: Recent Developments and Agiidics
pages 83-108. Kluwer Academic, 1989.

240

[Gro89]

[GW91a]

[GW91b]

[GW92]

[GW93]

[GW94]

[Hah8g]

[Halg9]

[HBP*93]

[Heio3]

[HH8S]

[HHOO]

[HHK92]

References

Mark Gross. Relational modeling: A basis for comgtassisted design. In
Maclcolm McCullough, William J. Mitchell, and Patrick Pwit, editors,The
Electronic Design Studio (Proc. CAAD Futrues '8pages 123—-146. MIT Press,
1989.

Michael Gleicher and Andrew Witkin. Differentialamipulation.Graphics In-
terface pages 61-67, June 1991.

Michael Gleicher and Andrew Witkin. Snap togetheathematics. In Edwin
Blake and Peter Weisskirchen, editofglvances in Object Oriented Graphics
1: Proceedings of the 1990 Eurographics Workshop on Objeer®d Graph-
ics. Springer Verlag, 1991. Also appears as CMU School of Comfsitience
Technical Report CMU-CS-90-164.

Michael Gleicher and Andrew Witkin. Through-thexecamera controlCom-
puter Graphics26(2):331-340, July 1992. Proceedings Siggraph '92.

Michael Gleicher and Andrew Witkin. Supporting nutical computations in
interactive contexts. In Tom Calvert, edit@raphics Interfacepages 138-145,
May 1993.

Michael Gleicher and Andrew Witkin. Drawing with csinaints. The Visual
Computer11(1), November 1994. to appear.

James Hahn. Realistic animation of rigid bodiéemputer Graphics22:299—
308, 1988. Proceedings SIGGRAPH '88.

Roy Hall. lllumination and Color in Computer Generated Imagae8pringer-
Verlag, New York, 1989.

Ralph Hill, Tom Brinck, John Patterson, Steven Rohail ®ayne Wilner. The
Rendezvous language and architect@emminications of the ACM6(1):62—
67, January 1993.

Jeff Heisserman. Boeing computer services. Pelgdommunication, 1993.

Tyson Henry and Scott Hudson. Using active data in &8l In Proceedings of
the ACM SIGGRAPH Symposium on User Interface Software actthdtogy
pages 167-178, 1988.

Pat Hanrahan and Paul Haeberli. Direct WYSIWYG paigptand texturing on
3D shapes. In Forest Baskett, editGomputer Graphics (SIGGRAPH '90 Pro-
ceedings)volume 24, pages 215-223, August 1990.

Willaim M. Hsu, John F. Hughes, and Henry Kaufman.rézit manipulation of
free-form deformationsComputer Graphics26(2):177-182, July 1992. Pro-
ceedings Siggraph '92.

References

[HHN90]

[Hil91]

[Hor91]

[Hor92]

[Hor93]

[Hou92]

[HtMO3]

[Hud90]

[Hud91]

[Hud92]

[HY91]

[HZR*92]

241

Tyson R. Henry, Scott E. Hudson, and Gary L. Newatitegrating gesture and
shapping into a user interface toolkit. Broceedings of the ACM SIGGRAPH

Symposium on User Interface Software and Technofmayes 112121, October
1990.

Ralph D. Hill. A 2-d graphics system for multi-usemnteractive graphics based
on objects and constraints. In E. Blake and P. Weisskirakaitgrs Advances in
Object Oriented Graphics 1: Proceedings of the 1990 Eurpbiaes Workshop
on Object Oriented Graphi¢pages 67—92. Springer Verlag, 1991.

Bruce Horn. Siri: a symbolic reduction interpreter object oriented constraint
programming. Technical Report CMU-CS-91-152, CMU SchdaComputer
Science, June 1991.

Bruce Horn. Constraint patterns as a basis for dlgdgented programming. In
Proceedings OOPSLA '9pages 218-233, October 1992.

Bruce Horn. Constrained Objects PhD thesis, School of Computer Science,
Carnegie Mellon University, 1993. Appears as CMU SCS tezdimeport CMU-
CS-93-154.

Stephanie Houde. Iterative design of an interface#sy 3D direct manipulation.
In Proceedings CHI '92pages 135-142, May 1992.

Chris Hanson and the MIT Scheme Team. Mit Schemeanenkference manual,
October 1993.

Scott E. Hudson. Adaptive semantic snapping — anigcie for semantic feed-
back at the lexical level. IRroceedings CHI '90pages 6570, April 1990.

Scott Hudson. Incremental attribute evaluationflekible algorithm for lazy
update ACM Transactions on Programming Languages and SystEs(8):315—
341, 1991.

Scott Hudson. Adding shadows to a 3D curgdtM Transactions on Graphics
11(2):193-199, April 1992.

Scott E. Hudson and Andrey K. Yeatts. Smoothly integrg rule-based tech-
nigues into a direct manipulation user interface builderPtoceedings of the
ACM SIGGRAPH Symposium on User Interface Software and dtxfyppages

145-153, November 1991.

Kenneth Herndon, Robert Zeleznik, Daniel Robbins, Dodkshire Conner,
Scott Snibbe, and Andries van Dam. Interactive shadowsPrdceedings of
the 1992 ACM SIGGRAPH Symposium on User Interface Softwar&echnol-
ogy, pages 1-6, November 1992.

242

[1C87]

[1ri91]

[Joh63]

[Jue9l]

[Kas92]

[Kau91l]

[KF93]

[KLW92]

[KNK8]

[Kol91]
[KP88]

[KPCO3]

[Kra9o0]

References

Paul Issacs and Michael Cohen. Controlling dynansiosulation with kine-
matic constraints, behavior functions and inverse dynar@iomputer Graphics
21(4):215-224, 1987. Proceedings SIGGRAPH '87.

Masao Iri. History of automatic differentiation dmounding error estimation. In
Andreas Griewank and George Corliss, editénstomatic Differentiation of Al-

gorithms: Theory, Implementation and Applicatigages 3—16. SIAM, January
1991.

Timothy E. Johnson. Sketchpad Ill: A computer paogifor drawing in three
dimensions. InConference Proceedings, Spring Joint Computer Conference
IEEE Computer Society, 1963. Reprinted in Herbert FreeradnTutorial and
Selected Readings in Interactive Computer Graphics, 1§80)—-26.

David W. Juedes. A taxonomy of automatic differign tools. In Andreas
Griewank and George Corliss, editofgjtomatic Differentiation of Algorithms:
Theory, Implementation and Applicatigmages 315-329. SIAM, January 1991.

Michael Kass. CONDOR: constraint-based data floBomputer Graphics
26:321-330, July 1992. Proceedings SIGGRAPH '92.

Henry Kaufman. Constraint techniques for intekecphysically-based model-
ing. Master’s thesis, Brown Unversity, July 1991.

David Kurlander and Steven Feiner. Inferring coastts from multiple snap-
shots.ACM Transactions on Computer Graphid2(4), October 1993.

Solange Karsenty, James A. Landay, and Chris Weikaferring graphical con-
straints with Rockit. IHCI'92 Conference on People and Computers Ydges
137-153. British Computer Society, September 1992.

Nami Kim, Tsukasa Noma, and Tosiyasu L. Kunii. PietEditor: A 2D picture
editing system based on geometric constructions and eonistr In R. A. Earn-
shaw and B. Wyvill, editordew Advances in Computer Graphics: Proceedings
of CG International '89 pages 193—-207. Springer Verlag, 1989.

Craig Kolb. Rayshade. Computer Program, 1991.

Glenn Krasner and Stephen Pope. A cookbook for udiegModel-View—
Controller user interface paradigm in smalltalk-8the Journal of Object Ori-
ented Programmingpages 26—49, August/September 1988.

John Kawai, James Painter, and Michael Cohen. Réidiation — goal based
rendering. InComputer Graphics (SIGGRAPH '93 Proceedingsges 147—
154, 1993.

Glenn A. Kramer. Solving geometric constraint gyes. InProceedings AAAI-
90, pages 708-714, 1990.

References 243

[Kur93]

[KW93]

[KWT88]

[Lel8g]

[LGL81]

[Low80]

[Mac90]

[Mal91]

[MB86]

[McG89]

[MCR90]

[Mer50]

[MGD*90]

[MKW89]

David Kurlander.Graphical Editing by ExamplePhD thesis, Columbia Univer-
sity, 1993.

Larry Koved and Wayne Wooten. GROOP: an object-aedrtoolkit for ani-
mated 3D graphics. In Andreas Paepcke, edid@®PSLA '93 Conference Pro-
ceedingspages 309—-325, October 1993.

Michael Kass, Andrew Witkin, and Demetri TerzopisulSnakes: Active contour
models.International Journal of Computer Visio821-331, 1988.

Wm. Leler. Constraint Programming Languages: Their Specification h-
eration Addison-Weseley, 1988.

V. C. Lin, D. C. Gossard, and R. A. Light. Variationgéometry in C.A.DCom-
puter Graphics15(3):171-177, 1981. Proceedings SIGGRAPH '81.

David Lowe. Solving for the parameters of object ratsdfrom image descrip-
tions. InProc. DARPA Image Understanding Workshppges 121-127, 1980.

Anthony Maciejewski. Dealing with the ill-condithed equations of motion for
articulated figureslEEE Computer Graphics and Applicatigriday 1990.

John Harold MaloneyUsing Constraints for User Interface ConstructidrhD
thesis, University of Washington, 1991. Appears as Comp&teEnce Technical
Report 91-08-12.

Brad A. Myers and William Buxton. Creating highlytigractive and graphical
user interfaces by demonstratiofComputer Graphics20(4):249-258, 1986.
Proceedings SIGGRAPH '86.

Chris McGlone. Automated image-map registratising active contour models
and photogrammetric techniques. Pnoceedings of the SPIE, Volume 1070
January 1989.

Jock Mackinlay, Stuart Card, and George RobertBapid controlled movement
through a virtual 3d workspaceComputer Graphics24(4):171-176, August
1990.

Mildred P. MerrymanChildren’s Storieschapter “Quack!” said Jerusha, pages
117-136. Whitman Publishing Co., Racine, WI, 1950.

Brad A. Myers, Dario Guise, Roger B. Dannenberg, Bradd¢auzanden, David

Kosbie, Ed Pervin, Andrew Mickish, and Phillipe Marchal.@arehensive sup-
port for graphical, highly-interactive user interfacefielGarnet user interface
development environmentEEE ComputerNovember 1990.

D. L. Maulsby, K. A. Kittlinz, and I. H. Witten. Metarause: Specifying graph-
ical procedures by exampleComputer Graphics23(3):127-136, July 1989.
Proceedings SIGGRAPH '89.

244 References

[Mof59] Francis H. Moffitt. PhotogrammetryInternational Textbook Company, 1959.

[MW8S8] P.M. Moore and J. Wilhelms. Collision detection amghonse for computer ani-

mation. InComputer GraphicgProc. SIGGRAPH volume 22, pages 289-298.
ACM, August 1988.

[Mye90] Brad Myers. A new model for handling inplCM Transactions on Information
Systems3(3):289-320, July 1990.

[Mye93] Brad Myers. State of the art in user interface sofenaols. In H. Rex Hartson
and Deborah Hix, editorgydvances in Human-Computer Interactimolume 4,
pages 110-150. Ablex Publishing, 1993. Appears as CMU Sdfidomputer
Science technical report CMU-CS-92-114.

[Mye94] Brad Myers. Challenges of HCI design and implemtaita Interactions pages
73-83, January 1994.

[Nak91] Yoshiko Nakamura. Advanced Robotics: Redundancy and Optimization
Addison-Wesley, 1991.

[Nel85] Greg Nelson. Juno, a constraint based graphicgesysComputer Graphics
19(3):235-243, 1985. Proceedings SIGGRAPH '85.

[NKK*88] T.Noma, T. L. Kunii, N. Kin, H. Enomoto, E. Aso, and T. Yamato. Draw-
ing input through geometrical constructions: Specificatnd applications. In
M. Magnenant-Thalmann and D. Thalmann, editddew Trends in Computer
Graphics: Proceedings of CG International '88pringer-Verlag, 1988.

[NO86] Gregory M. Nielson and Dan R. Olsen. Direct manipiolatechniques for 3d
objects using 2d locator devices. Pnoceedings of the 1986 Workshop on Inter-
active 3d Graphicspages 175-182, 1986.

[Nor90] Donald NormanThe Design of Everyday ThingBoubleday, 1990.

[OA90] Dan R. Olsen and Kirk Allan. Creating interactive li@iques by symbolically
solving geometric constraints. Proceedings of the ACM SIGGRAPH Sympo-
sium on User Interface Software and Technolqgages 102-107, 1990.

[OA92] James R. Osborn and Alice M. Agogino. An interface ifatieractive spatial
reasoning and visualization. Proceedings CHI '92pages 75-82, May 1992.

[Ous91] John K. Ousterhout. An X11 toolkit based on the Teglzage. Inl991 Winter
Usenix Conference Proceedind991.

[Pau8l] Richard PaulRobot Manipulators: Mathematics, Programming, and Cohntro
MIT Press, Cambridge, MA, 1981.

[PB88a] Cary Phillips and Norman Badler. Jack: A toolkit foanipulating articulated
figures. InProceedings of the ACM SIGGRAPH Symposium on User Interface
Software and Technologgages 221-229, 1988.

References 245

[PB88b] John Platt and Alan Barr. Constraint methods forilflexmodels. Computer
Graphics 22:279-288, 1988. Proceedings SIGGRAPH '88.

[PB91] Cary Phillips and Norman Badler. Interactive bebawvifor bipedal articulated

figures. InComputer Graphics (Proceedings SIGGRAPH, 3iBges 359-362,
1991.

[PF9O2] Pierre Poulin and Alain Fournier. Light from highitg and shadows. IRro-
ceedings of the 1992 Symposium on Interactive Computerl@gmpages 31—
38, 1992.

[PFTV86] William Press, Brian Flannery, Saul Teukolskydafilliam Vetterling. Numer-
ical Recipes in CCambridge University Press, Cambridge, England, 1986.

[Pla92] John Platt. A generalization of dynamic consti@GVIP: Graphical Models
and Image Processing4(6):516-525, November 1992.

[PS82] Christopher Paige and Michael Saunders. LSQR: amitig for sparse linear
equations and sparse least squar&&EM Transactions on Mathematical Soft-
ware, 8(1):43-71, March 1982.

[PT94] Randy Pausch and The University of Virginia User iifstee Group. Personal
communication, 1994.

[Pug92] David Pugh. Designing solid objects with interaetsketch interpretation. In
Proceedings of the 1992 Symposium on Interactive ComputgshEs pages
117-126, March 1992.

[PW85] Theo Pavlidis and Christopher Van Wyk. An automasadmifier for drawings
and illustrations.Computer Graphicsl9(3):225-234, 1985. Proceedings SIG-
GRAPH '85.

[RK77] A. J. Rubel and R. E. Kaufman. Kinsyn Ill: A new humangineered systems
for interactive computer aided design of planar linkagdsansactions of the
ASME: Journal of Engineering for Industrgages 440-448, May 1977.

[Ros86] Jarek Rossignac. Constraints in constructivel ggliometry. InProceedings of
the 1986 Workshop on Interactive 3d Graphigages 93-110, October 1986.

[Rub91] Dean Rubine The Automatic Recognition of GestureBhD thesis, School of
Computer Science, Carnegie Mellon University, 1991. Appes CMU SCS
technical report CMU-CS-91-202.

[San94] Michael Sannella. The SkyBlue constraint solver issmapplications. In Pas-
cal Van Hentenryck and Vijay Saraswat, edité*gnciples and Practice of Con-
straint ProgrammingMIT Press, 1994. to appear.

[Sap93] Mark SapossnekVirtual Prototyping: An Interactive Approach to Geometric
Tolerance Design and AnalysiBhD thesis, Carnegie Mellon University, 1993.

246

[SB91]

[SB92]

[SC92]

[Sch59]

[Sch83]

[SDS'93]

[SG86]

[Sha93]

[She94]

[Sho85]

[Sho92]

[Sil91]

[Sis90]

[Sis91]

[SKN9O]

References

Wolfgang Sohr and Beat Bruderlin. Interaction withnstraints in 3D model-
ing. In Symposium on Solid Modeling Foundations and CAD/CAM Aafptinsg
pages 387-396, June 1991.

Michael Sannella and Alan Borning. Multi-Garnettdgrating multi-way con-
straints with garnet. Technical Report 92-07-01, Depantnoé Computer Sci-
ence, University of Washington, 1992.

Paul S. Strauss and Rikk Carey. An object-orientegt8phics toolkitComputer
Graphics 26(2):341-349, July 1992. Proceedings SIGGRAPH '92.

K. SchwidefskyAn Outline of PhotogrammetrfPitman Publishing Corporation,
first english edition, 1959.

Ben Schneiderman. Direct manipulation: A step beyprogramming lan-
guageslEEE Computerpages 57—69, August 1983.

Chris Schoeneman, Julie Dorsey, Brian Smits, James, A Donald Green-
berg. Painting with light. Il€Computer Graphics (SIGGRAPH 93 Proceedings)
pages 143-146, 1993.

Robert W. Scheifler and Jim Gettys. The X window syst&@M Transactions
on Graphics5(2):79-109, April 1986.

Shapeware Inc. Visio. Computer Program, 1993.

Jonathan Shewchuck. An introduction to the congugeadient method without
the agonizing pain. Technical Report CMU-CS-94-125, Stleb&omputer
Science, Carnegie Mellon University, 1994.

Ken Shoemake. Animating rotations with quatermorves.Computer Graph-
ics, 19(3):245-254, July 1985. Proceedings SIGGRAPH '85.

Ken Shoemake. ARCBALL: a user interface for speegythree-dimensional
orientation using a mouse. Proceedings Graphics Interface '9fages 151—
156, May 1992.

Silicon Graphics IncGraphics Library Programming Guidd.991.

Steven Sistare A Graphical Editor for Three-Dimensional Constraint-Bdse
Geometric ModellingPhD thesis, Harvard University, 1990.

Steven Sistare. Interaction techniques in coimgttesed geometric modeling.
In Proceedings Graphics Interface '9pages 85-92, June 1991.

Gurminder Singh, Chun Hong Kok, and Teng Ye Ngan. i@ruA system for
demonstrational rapid user interface developmentPrisceedings of the ACM
Symposium on User Interface Software and Technojmayes 167—177, October
1990.

References 247

[SKvW192] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foramd Paul Haeberli.
Fast shadows and lighting effects using texture mapp@gmputer Graphics
26(2):249-252, July 1992. Proceedings Siggraph '92.

[SLGS92] Chris Shaw, Jiadong Liang, Mark Green, and Yungi. Sine decoupled simula-
tion model for virtual reality systems. roceedings CHI '92pages 321-328,
May 1992.

[SM88] Pedro A. Szekely and Brad A. Myers. A user interfaggkib based on graphical
objects and constraints. MOPSLA '88 Proceedingpages 36—45, September
1988.

[SMFBB93] Michael Sannella, John Maloney, Bjorn Freemam&bn, and Alan Borning.
Multi-way versus one-way constraints in user interfacespefience with the

DeltaBlue algorithm Software—Practice and Experien@3(5):529-566, May
1993.

[Sof93] Softimage Inc. Softimage creative environmentmpater Program, 1993.

[Sur92a] Mark Surles. Interactive modeling enhanced wathstraints and physics — with
applications in molecular modeling. Proceedings of the 1992 Symposium on
Interactive Computer Graphicpages 175-182, March 1992.

[Sur92b] Mark C. Surles. An algorithm for linear complexity interactive, physically-
based modelling of large protein€omputer Graphics26(2):221-230, 1992.
Proceedings SIGGRAPH '92.

[Sur92c] Mark C. SurlesTechniques for Interactive Manipulation of Graphical Reiot
Molecules PhD thesis, University of North Carolina at Chapel Hill 929 Ap-
pears as TR93-016.

[Sut63] Ivan Sutherlandsketchpad: A Man Machine Graphical Communication System
PhD thesis, Massachusetts Institute of Technology, Jsrie63.

[SZ90] Peter Schroeder and David Zeltzer. The virtual eres®t: Dynamic simulation
with linear recursive constraint propagaticbomputer Graphics24(2):23-31,
March 1990. Proceedings 1990 Symposium on Interactive 3ipldcs.

[TBGT91] Russell Turner, Francis Balaguer, Enrico Golibeahd Daniel Thalmann.
Physically-based interactive camera motion using 3d igavices. In N. M.
Patrikalakis, editorScientific Visualiztion of Physical Phenomena: Proceesling
of CG International 199lpages 135-145, Tokyo, 1991. Springer-Verlag.

[TTA91] Konstantinos Tarabamis, Roger Tsai, and PetemAlfsutomated senor planning
for robotic vision tasks. IfProceedings of th 1991 IEEE International Confer-
ence on Robotics and Automatjgrages 76—82, April 1991.

[Ups89] Steve Upstill.The Renderman CompaniocAddison-Wesley, 1989.

248

[Ven93]

[VL89]

[VW82]

[VWJBS5]

[VZ88]

[VZ89]

References

Dan Venolia. Facile 3D manipulation. Proceedings INTERCHI '93pages
31-36, 1993.

John M. Vlissides and Mark A. Linton. Unidraw: A framerk for building
domain specific graphical editors. Rroceedings of the 1989 ACM SIGGRAPH
Symposium on User Interface Software and Techngolgyember 1989.

Christopher J. Van Wyk. A high level language for sifgiag pictures. ACM
Transactions on Graphic4(2):163—182, April 1982.

J. J. van Wijk, F. W. Jansen, and W. F. Bronsvoortn&dssues in designing user
interfaces to 3d raster graphigcSomputer Graphics Forun#:5-10, 1985.

Bradley T. Vander Zanden. Constaint grammars in userface management
systems. IrProc. Graphics Interfacgpages 176-184, 1988.

Bradley T. Vander Zanden. Constraint grammars — a mewdel for specifying
graphical applications. IRroceedings CHI '89pages 325-330, April 1989.

[VZMGS91] Brad Vander Zanden, Brad A. Myers, Dario Guiseq &edro Szekeley. The

importance of pointer variables in constraint model€?taoceedings of the ACM
SIGGRAPH Symposium on User Interface Software and Teadwaages 155—
164, November 1991.

[VZMGS94] Brad Vander Zanden, Brad Myers, Dario Guise, ardrB Szekely. Integrat-

[Wam86]

[Wan92]

[Wav94]

[Wel93]

[Wer94]

[WFB87]

ing pointer variables into one-way constraint method<CM Transactions on
Computer Human Interactiori.(2), June 1994.

Charles W. Wampler. Manipulator inverse kinemattutions based on vector
formulations and damped least-squares meth®BE Transactions on Systems,
Man, and Cyberneticd 6(1):93-101, January 1986.

Leonard Wanger. The effect of shadow quality on thcgption of spatial re-
lationships in computer generated imagery. In David Zeltzditor, Computer
Graphics (1992 Symposium on Interactive 3D Graphiesjume 25, pages 39—
42, March 1992.

Wavefront Inc. Kinemation and dynamation. Compegrams, 1994.

Chris Welman. Inverse kinematics and geometricst@ints for articulated fig-
ure manipulation. Master’s thesis, Simon Fraser UniwerSieptember 1993.

Josie WerneckeThe Inventor Mentar Addison-Wesley Publishing Company,
1994.

Andrew Witkin, Kurt Fleischer, and Alan Barr. Engrgonstraints on parame-
terized modelsComputer Graphics21(4):225-232, July 1987.

References 249

[WG87]

[WGW90]

[WGW91]

[Whigg]

[Wil87]

[Wit89a]
[Wit89b]

[WK88]

[WKTF88]

[WO90]

[Wolgs]

[WR87]

[WWOO]

[WW92]

Dennis Wixon and Michael Good. Interface style ankbeticism: Moving be-
yond categorical approaches. Pnoceedings of the Human Factors Society —
31st Annual Meetingpages 571-575, 1987.

Andrew Witkin, Michael Gleicher, and William Welchinteractive dynamics.
Computer Graphics24(2):11-21, March 1990. Proceedings 1990 Symposium
on Interactive 3D Graphics.

William Welch, Michael Gleicher, and Andrew WitkinrManipulating surfaces
differentially. InProceedings, Compugraphics '9%eptember 1991.

R. M. White. Applying direct manipulation to geomietconstruction systems.
In M. Magnenant-Thalmann and D. Thalmann, editblsw Trends in Computer
Graphics: Proceedings of CG International ‘88pringer-Verlag, 1988.

Jane Wilhelms. Using dynamic analysis for reatistinimation of articulated
bodies.IEEE Computer Graphics and Applicatiansages 12—-27, June 1987.

Andrew Witkin. Personal Communication, 1989.

Andrew Witkin. Physcially-based modeling: Pastsent future. ISIGGRAPH
Panel Proceedingpages 203—-205, 1989. Part of panel chaired by Demetri Ter-
zopoulis and John Platt.

Andrew Witkin and Michael Kass. Spacetime consttaitComputer Graphics
22:159-168, 1988. Proceedings SIGGRAPH ’'88.

Andrew Witkin, Michael Kass, Demetri Terzopoul@nd Kurt Fleischer. Phys-
ically based modeling for vision and graphics.Rroc. DARPA Image Under-
standing Workshagpages 254-278, 1988.

Colin Ware and Steven Osborne. Exploration of virtteanera control in virtual
three dimensional environmentsComputer Graphics24(2):175-184, March
1990. Proceedings 1990 Symposium on Interactive 3D Graphic

Stephen WolframMathematica Addison Wesley, 1988.

Catherine G. Wolf and James R. Rhyne. A taxonomic@gqh to understanding
direct manipulation. IfProceedings of the Human Factors Society — 31st Annual
Meeting pages 576-580, 1987.

Andrew Witkin and William Welch. Fast animation andrdrol of non-rigid
structuresComputer Graphic24(4):243-252, August 1990. Proceedings SIG-
GRAPH '90.

William C. Welch and Andrew Witkin. Variational swa€e modellingComputer
Graphics 26(2):157-166, July 1992. Proceedings SIGGRAPH '92.

250 References

[WW94] Will Welch and Andrew Witkin. Free form shape desigsing triangulated sur-

faces. InComputer Graphics (SIGGRAPH '94 Proceedinggges 247-256,
July 1994.

[ZCWT91] Robert C. Zeleznik, D. Brookshire Conner, Matthias M.oR4d, Daniel G.
Aliaga, Nathan T. Huang, Philip M. Hubbard, Brian Knep, Hekmaufman,
John F. Hughes, and Andries van Dam. An object-orienteddvaonk for the
integration of interactive animation techniques. In Theia Sederberg, editor,

Computer Graphics (SIGGRAPH '91 Proceeding®)lume 25, pages 105-112,
July 1991.

[ZHR193] Robert Zeleznik, Kenneth Herndon, Daniel Robbins, N&tang, Tom Meyer,
Noah Parker, and John Hughes. An interactive 3d toolkit torstructing 3d
widgets. Computer Graphics27:81-84, August 1993. SIGGRAPH '93 video
paper.

