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Abstract

Motion capture can be an effective method of creating realistic hu-
man motion for animation. Unfortunately, the quality demands for
animation place challenging demands on a capture system. To date,
capture solutions that meet these demands have required specialized
hardware that is invasive and expensive. Computer vision could
make animation data much easier to obtain. Unfortunately, current
techniques fall short of the demands of animation applications. In
this paper, we will explore why the demands of animation lead to a
particularly difficult challenge for capture techniques. We present
a constraint-based methodology for reconstructing the 3D motion
given image observations, and use this as a tool for understanding
the problem. Synthetic experiments confirm that these situations
would arise in practice. The experiments show how even simple
visual tracking information can be used to create human motion but
even with perfect tracking, incorrect reconstructions are not only
possible but inevitable.

1 Introduction

Motion capture is an attractive method for creating the movement
for computer animation. It can provide motion that is realistic, and
that contains the nuance and specific details of particular perform-
ers. It permits an actor and director to work together to create a
specific desired performance, that may be difficult to describe with
enough specificity to have an animator re-create manually.

Motion capture also has its share of weaknesses. In order to rep-
resent its detailed, nuanced results, motion capture data contains
large quantities of unstructured data that is cumbersome to manipu-
late. The specificity of the data makes it difficult to alter, especially
since the key “essence” of the motion is not distinguished from the
large amount of potentially irrelevant details. The development of
new and improved methods of editing and processing motion cap-
ture data has made great strides in making motion capture a more
viable tool for animation production [12, 23].

Another weakness of motion capture has been the pragmatic chal-
lenge of acquiring data. While research has made progress on using
the data, capture techniques have evolved slowly. Special purpose
tracking technologies, based either on mechanical or magnetic sen-
sors, or specially designed cameras viewing carefully lit markers,
are required to create the observations that are processed into mo-
tion data. While these systems have improved in their reliability,
precision, and range, they are still generally expensive and intru-
sive. This relegates motion capture to be performed by dedicated
studios providing specific environments for the production.

Ideally, the capture of motion data should be easily available, inex-
pensive, and non-invasive. Any performer could be captured in any
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setting that is desired. Using standard video cameras is an enticing
prospect as it could meet these goals. The use of a single camera
is a particularly enticing. It offers the lowest cost, simplified setup,
and the potential use of legacy sources such as films.

The creation of motion capture data from a single video stream
seems like a plausible idea. People are able to watch a video and
understand the motion, why can’t a computer do it? But clearly,
the recreation of human motion from a video stream is a challeng-
ing task for computer vision. The computer vision community has
been actively exploring the problem for several years, and has made
great advances. However, the current results are disappointing for
animation applications as will be discussed in section 6.1.

In this paper, we examine the disconnect between the computer vi-
sion research in human tracking and the needs for motion capture
for animation applications. We will consider why animation is a
particularly challenging application for video motion capture, and
that it is different than the traditional vision applications. We will
examine the mathematics of the single camera capture problem to
understand why it is a fundamentally hard problem, seeming to re-
quire techniques that are at odds with the demands of the animation
application. We will confirm these observations with synthetic ex-
periments, and a review of the current state of the art.

This paper doesnot provide a solution to the problem of capturing
animation data from video sources. Our goal in this paper is to
reconcile the demands of computer animation with the progress that
has been made in computer vision methods. The methods that we
will introduce are a tool for helping us understand these challenges,
not a solution to the capture problem. By examining the challenges
that one faces in using perfect, synthetic data, we hope to better
understand what must be achieved for a viable solution.

2 The Motion Capture Problem

The goal of motion capture is to record the movement of a per-
former (typically, but not always, human) in a compact and usable
manner. Were those last attributes not required, simply creating a
video would suffice. For this paper, we are concerned with the gross
motion of the body. The specific capture of facial motion poses a
different set of challenges.

Computer graphics and computer vision usually abstract the body
into a small number of rigid segments that rotate relative to one
another. This approximation is crude. Human knees, elbows, and
ankles do not have a single pivot point. The true motion of more
complex joints, such as shoulders, hips, or the neck, are even further
from their kinematic approximations.

While the skeletal approximation is crude, it is required for
tractability. Because some information is necessarily thrown away,
animation techniques must take care to preserve the “essence” of
the motion in doing any processing. What makes this particularly
challenging is that the important properties of a motion are difficult
to identify. Somewhere in the myriad of details properties such as
mood, expression, and personality lie.
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The motion capture problem we consider, therefore, must have the
following form: given a single stream of video observations of a
performer, compute a 3D skeletal representation of the motion of
sufficient quality to be useful for animation. This ill-defined last
clause is the part unique to animation.

2.1 Challenges of Motion Capture for Animation

Animation may seem to be an easy application of motion capture as
precision is unimportant. Animation rarely cares about exact posi-
tions, as applications such as medical analysis might. Animation is
more concerned with seemingly less precise things such as emotion,
style or intent. Unfortunately, these are difficult to quantify. Pre-
cisely capturing all details of the movement is a conservative way
to insure that the critical, but intangible properties are retained.

Animation has direct needs for precision that stem from the sen-
sitivities that viewers have in experiencing motion. For example,
a viewer is likely to notice imprecision in a character’s interaction
with its world. A foot floating slightly above the floor, or sliding a
small amount, or a hand not quite reaching the doorknob, are tiny
imprecisions yet can completely destroy the illusion of realism.

Another place where perception makes small changes noticeable
are high-frequencies. Jitters are extremely easy to notice, possibly
because of the eye’s sensitivity to high frequency. Such artifacts are
often created by systematic noise in a capture system. Pops, where
a body part moves impossibly far in a single frame, are similarly no-
ticeable, and are created by poorly designed processing algorithms
that do not guarantee temporal coherence. “Wobbles,” or misplaced
mid-frequencies, can also be obvious. For example, when process-
ing errors are distributed amongst several frames (rather than in-
troducing a pop), an uncharacteristic motion can be observed in a
character’s knees, causing them to move in a disconcerting way that
stands out against common movements like walking.

In all of these cases, the measurable magnitude of the errors are
small, but their visible effects are significant. The same quantity
of error, occurring at a more fortunate time, or in a more fortunate
manner, would not be a problem.

Since high-frequency noise is often a problem, a common approach
to dealing with it is to low-pass filter the data. Unfortunately, this
rarely has the desired effect: the same reasons that make unwanted
high frequencies so obtrusive also make the removal of important
high-frequencies a problem. Significant high-frequencies are often
the result of important events in a motion, such as a contact, im-
pact, or purposeful gesture. Removing the high-frequencies from a
karate kick or a soldier’s salute destroys the motion, just as adding
high-frequencies to make a motion jittery would. The overuse of
low-pass filtering is a common problem in motion capture process-
ing [23], and leads to a damped look that lacks the crispness that
makes for attractive motion. Over-filtering also causes other prob-
lems, such as destroying the relationships between the character and
its environment (the all-too-well-known foot-slide problem).

To make matters worse, the nuance that is so hard to capture and
preserve is critical to most animation. We rarely want “a” motion,
but rather want “the” performance. The specifics of the performer
and performance are important. Just as actors are trained to know
that there is no such thing as a “generic” movement, the sense of
character, context, and intent should be conveyed in movements.
Just as with stage and film actors, motion capture directors work
with performers to achieve what they want to see. Good motion
capture must preserve this.

In fact, it is often these specific performances that are the reasons
for wanting to perform motion capture in the first place. If we
wanted a standard movement, we might use a recorded one from

a library. More often, motion capture is required for recording a
specific person, a specific situation, or something otherwise non-
standard: we are trying to record something unusual in some way,
surprising, athletic, or artistic, because predictable and standard
movements do not need to be incessantly re-created.

2.2 Motion Capture in Practice

In order to meet the challenges of animation, motion capture prac-
titioners use a combination of precise capture equipment, planning,
and post-processing.

Motion capture for animation is almost always done with a preci-
sion in excess of what the application demands, in both space and
time. Temporal sampling rates of 120Hz are common for anima-
tion production, even when the final product will only be created
at 30 frames per second. By over-sampling, statistical and signal
processing methods can be used to reduce noise. Requiring this
excess precision means that the capture equipment is significantly
more expensive and complex. Often this equipment requires spe-
cific environments to operate in, or at least has a cost that forces it
to be used only at specific studios.

As with any media production, planning is an essential part of mo-
tion capture. Planning responds to the challenges of capture by
insuring that the desired performance is created for the sensors to
record, and to stage it in a way that makes it most likely that it will
be recorded properly.

Once the performance is captured, the recorded data is processed
into a useful form. Overall, the procedure must transform the data
in a way that maintains the temporal continuity and spatial preci-
sion of the data, ideally suppressing noise and avoiding the addi-
tion of artifacts. Well designed processing pipelines use heuristics,
such as end-effector tracking, to preserve the most important as-
pects of a motion, see Shin et. al. [20] for a discussion. Constraint-
based [7, 8] and importance-based [20] methods attempt to vary
the choice of what is preserved by identifying or predicting what is
most important. Unfortunately, manual tweaking is often a neces-
sary step for most capture processing operations.

2.3 Human Motion Tracking

In addition to computer animation, medical, surveillance, and
recognition applications would also benefit from an inexpensive
capture solution. The development of a video-based capture solu-
tion has, therefore, been an important topic in the computer vision
community. Recent surveys of the computer vision literature on hu-
man motion capture are available [6, 13] and we give a brief one in
section 6.1.

The capture problem is inherently difficult: the articulated model
does not accurately reflect the real performer, articulations lead to
self-occlusions, even the articulated models contain many degrees
of freedom, the skeleton is internal and therefore cannot be ob-
served directly. Our information sources are inherently 2 dimen-
sional and occlusion is possible. In addition, the medium provides
a finite resolution (spatially and temporally), and the parameters
of real cameras are difficult to obtain precisely. Given these lim-
itations, it is not surprising that the practical approach to motion
capture involves using sensing modalities without these limitations.

Clearly, the amount of detail that can be recovered from a restricted
set of observations is limited. For example, if we observe a point
on the performer in an image created by a camera, we cannot de-
termine the position of the point, only constrain its location to lie
along a ray. For our discussion, we assume an idealized pinhole
camera model such that the ray is defined by the camera’s focal
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point and the point on the image plane1. In practice, a camera has
a finite resolution so observations are only localized to a region of
the image plane. This leads to a weaker constraint that places the
point within a cone, rather than on a ray. Uncertainty in camera
parameters further enlarges the set of feasible positions.

Additional information is needed to determine the position of a
point in space. A variety of sources have been utilized in vari-
ous computer vision techniques, and a few can be applied to mo-
tion reconstruction. Most methods assume strong models to place
further restrictions on possible poses. Such assumptions are prob-
lematic for motion capture applications: because we are interested
in capturing novel motions, we cannot count on previous motions
for cues. For example, Shadow Puppets [1] would create 3D recon-
structions that contain segments of (and therefore nuances of) the
training motions, not necessarily the observed motion.

2.4 Animation vs. Vision

If the general challenges of human motion capture were not hard
enough for computer vision, the specific challenges of animation
make the problem even tougher.

• Unlike applications such as recognition and surveillance, ani-
mation does care about small details.

• Jitter and wobbles often come from uncertainty in computa-
tions, or the failure to account for interframe coherence prop-
erly. These small errors can be extremely noticeable.

• The importance of high frequencies means that filtering is not
a viable tool for noise removal at video sampling rates (for ex-
ample, using Kalman filters). It also is problematic for meth-
ods that use regularization or damping to achieve coherence,
or that rely on a highly damped dynamic model.

• The unpredictability and unusual motions that we need to cap-
ture limit the strength of the models we can apply.

Clearly, achieving video-based motion capture for animation appli-
cations is challenging. The key to success seems to be augmenting
the information that can be obtained from the single stream of video
observations.

3 Constraint-Based Approach

The video motion capture problem demands that we compute a de-
tailed 3D model of the performance based on a limited set of 2D
observations. The observations are weak: they provide limited cues
as to the pose of the performer. A set of observations limits the
range of possible poses. Additional information is required to de-
termine the specific pose.

Our approach to analyzing (and potentially implementing) video
motion capture is based on finding restrictions on the pose caused
by each piece of available information. Each piece of informa-
tion serves as a constraint, limiting the potential space of possi-
ble poses2. We can assess how much each new type of informa-
tion might be able to help sufficiently narrow the space of possible
poses. For a given set of constraints, we can understand how insuf-
ficient they are for reconstructing motion.

Different types of information yield different types of constraints,
each yielding equational relationships that must hold on the deter-
mined state. For video motion capture, we must consider:

1This model is more realistic than the orthographic model often used in
the vision literature

2Plankers and Fua [17] take a similar approach

Character Constraints provide limitations on possible poses
based on the performer that we are tracking. Examples in-
clude the rigidity of distances between joints (when we as-
sume a skeletal model), non self-intersection, and limits in
the range of joint angles.

Observation constraints that limit poses to be consistent with
what is observed.

World constraints that place geometric restrictions based on
knowledge of the world, for example that the performer’s
feet cannot move through the floor. These are difficult to use
with video motion capture because we typically use camera-
relative coordinate systems in which world objects, such as
the floor, are not in known positions.

Pose constraints that specify the configuration of the character at
particular instances. Such true 3D information might be ob-
tained for some small set of frames by some process that is
too difficult to apply to a large number of frames, E.g. [3],
[11] and [14] all require the user to specify the initial pose.

Dynamics constraints that place limitations on the relationships
between frames. Smoothness isnot an effective constraint:
high-frequencies are typically very important in motions as
they are noticeable and must be captured effectively.

For our initial analysis and experiments, we consider a limited set
of constraints: limitations on the distances between joint positions
(enforcing skeletal rigidity), and the pose at an initial frame.

3.1 Uncertainty Models

In practice, the constraints on a pose is imprecise and incomplete.
We cannot be certain what the pose is. Much recent work uses
Bayesian assumptions, such as [1, 16, 21, 9] to determine what the
most likely pose is given the observations and some prior world
model. For animation, we wish to avoid about what ismost likely
in order that the approach work for novel motions and characters.
Often, it is theunlikelymotions that are most interesting to capture.

The differences between motions and characters are subtle, biasing
a solution towards some prior model may lose the detail we are
most interested in. Similarly assuming Gaussian distributions or
using least-squares from range centers introduces biases towards
the center, in effect “inventing” information. Even if a Gaussian
model of noise is appropriate for certain sensing operations, the
non-linearity of the imaging operation yields distributions that are
distinctly non-Gaussian.

In practice, some sort of bias must be introduced into systems in
order to make selection from within the feasible range practical.
However, for analysis, we examine realistic sets of constraints to
see how broad a set of solutions they permit, noting that a system
cannot be certain that it is doing any better.

4 Analysis of Constraints

Given a set of constraints, we can determine the possible poses.
Here, we consider an idealized situation to see the challenges even
in this simple situation. We assume that the object we are tracking
is a known rigid kinematic tree, that an initial pose is known, and
that image observations of points (at the joints) are available.

In practice, the point data could be obtained from a region detector,
a corner detector, marker tracking or manual annotation of video
sequences. We assume that we can extract image points with some
uncertainty. For our applications we assume the character points
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form a skeleton, and that we have distance constraints on the points
on the character. Even though we have this skeletal model, we do
not use it in the tracking process. There are several benefits to the
separation of the tracking and reconstruction processes. One is that
we do not utilize strong models where they may not be needed and
singularities are removed from the tracking phase [14]. Thus we as-
sume a separate tracking process has recovered the image locations
of corresponding points.

We model the camera using an ideal pin hole projection which
is parameterized by the focal distance,f , and the principal point
(cu, cv). In the following we will use units of length and hence the
pixel scaling parameters are omitted from our discussion. We ex-
press the constraints of the noisy image observations,(u, v), of 3D
pointX = (x, y, z) as

∣∣∣
(

fx

z
+ cu

)
− u

∣∣∣ ≤ d,

∣∣∣
(

fy

z
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)
− v

∣∣∣ ≤ d, (1)

whered = 0 is the ideal image model. The initial pose,X0
k , k =

1, . . . , M is known for M points on the skeleton. The distance
constraints between pairs of points are given byD(Xm, Xn) =
lmn where

D(Xm, Xn) =
√

(xm − xn)2 + (ym − yn)2 + (zm − zn)2

is the Euclidean distance between two points and for clarity we have
dropped the superscript denoted the time (or image frame).

Using these definitions, theconstraint-based 3D reconstruction
problem can be expressed as follows:Suppose we have a model
with M points, a video sequence withN frames, and we are given

• at least one known poseXi
k (usually assumed to be the initial

pose i=0),k = 1, . . . M

• D(Xm, Xn) = lmn for some pairsmn

• image observations points(ui
k, vi

k) for k = 1, . . . M , points
with uncertaintyd (i.e. eq. 1), for framesi = 0, . . . , N

Find the best pose (3D position ofXi
k) in each framei, satisfying

these constraints.

In this form it is clear that the image observations constrain the
3D point to lie within a region (a tetrahedron defined by the opti-
cal center and the image pixel region) rather than along a ray. In
solving the constrained optimization problem as stated there is a
spaceof possible solutions. While other assumptions (e.g. ortho-
graphic projection and precise image information) can lead to pa-
rameterized families of solutions, such a succinct description of the
solution space is not possible with our constraints. The distance
constraint is a quadratic constraint on a 3D position thus describ-
ing a surface and the image uncertainty inequalities are planes that
bound portions of the distance constraint surface. Depending on
the particular geometry there can be zero, one, or two connected
surface regions3.

Consider pointsA andB, with D(A, B) = l. If the coordinates of
A are fixed then the rotations of the linkAB that can occur while
still satisfying the image observations forB are bounded by

θ = cos−1

(
AB1 ·AB2

‖AB1‖ ‖AB2‖

)

whereB1(B2) is the intersection of the image uncertainty plane
and the quadratic surface (distance constraint) with the maximum

3If the region of uncertainty of two image observations overlap on the
image plane then there are infinite possible positions for the two points (i.e.
the distance constraint does not help)

A A
(u ,v )

B B
(u ,v )

B2

B1

O
A

θ

Figure 1: Rotation within the plane defined by the image constraints and the optical
center is not observable. The dashed lines represent the image observation uncertainty
for B. B1 andB2 are at the extremes of a region that satisfies the constraints. Also
shown, in dotted lines, are two disconnected regions resulting from a larger distance
constraint.

(minimum) Z value (fig. 1). If all four image constraint planes
intersect the distance constraint surface then there are two discon-
nected regions of possible points andθ can be computed foreach
component. Only motion in the plane parallel to the image plane is
fully observable.

If an additional link (with endpointC) is connected toB, each pos-
sible position ofB describes a surface of points forC. The union of
these surfaces form a volume (again, possibly disconnected) in the
space of possible positions for pointC. The additional constraint
may eliminate spurious solutions (i.e. it may resolve the ambiguity
for the position ofB), or it may multiply the number of possible
solutions.

In practice we find that for reasonable image noise models (1-2
pixel errors) there are two possible solutions for the single limb
case (i.e. the situation depicted by the dotted lines in figure 1).
Under reasonable viewing assumptions (viewing a 25cm link at a
distance of 1.5m – e.g. a forearm) the range of values ofθ depends
on the orientation of the link with respect to the camera. Assuming
1-2 pixel error in image observations, for fronto-parallel views the
angular variation tends to be on the order of 5 degrees, for views
oriented roughly parallel to the optical axes, angular variation tends
to be on the order of 1 degree for each component, however the two
components are typically far apart (upwards of 120 degrees).

Here we have considered only the uncertainty in the image obser-
vations. If one considers uncertainty in the optical parameters and
in the link lengths the region of uncertainty grows.

The advantage of using the constraint based method is that we can
easily add additional constraints (e.g. lines, other known poses) if
they are available. For example, the above ambiguity in joint posi-
tion may be resolved using additional constraints on the pose (e.g.
a knee joint motion can be constrained to allow only a physically
plausible range of motion).

5 Empirical Assessment

To verify our analyses, we have implemented the constraints of
the last section withinTimelines,our constraint-based animation
testbed. This system provided facilities for many aspects of char-
acter animation, and allows us to examine our results in the con-
text of the application. Timelines provides a non-linear constraint
solver that can handle a wide array of constraint types, such as self-
intersection and footplants, however for these discussions we con-
sider only the constraints discussed in Section 4. To test the image
constraints, various simple predictors (0th and 1st order) were used
on a per-frame basis.

To create synthetic examples, we began with high-quality motion
capture data created using an optical motion capture system by a
premier motion capture service provider. We specifically chose ex-
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Figure 2: A frame in the reconstruction of a karate kick sequence. The ellipsoidal
character is the original “ground truth” motion capture data. The simulated camera’s
image plane and focal point are shown in the upper right, the image constraint cones
are also shown. The reconstructed motion is shown as bright cubes. Notice that the
left lower leg has entered the “wrong” solution. This solution is a valid reconstruction,
and in this case is as plausible a pose as the original.

amples that were of sufficient quality for animation, and would be
too difficult for even the state-of-the-art computer vision methods.
The motion capture data contained location of the skeleton joints
at discret time steps This motion capture data was “filmed” by a
virtual pinhole camera, and the locations of the joints on the virtual
camera’s image plane recorded as simulated tracker output. This
simulated data is “ideal:” our virtual camera is a pinhole camera for
which we know the exact parameters (and parameters were chosen
to be consistent with a standard digital video camera), the model is
exactly a rigid skeleton with fixed link lengths, and the observations
exactly record image coordinates without noise.

The synthetic data allows us to consider ideal circumstances. We
have a precise camera calibration, initial pose, and image measure-
ments (we used 1 pixel boxes). Arguably, we can never expect to do
better than under these ideal situations. As pointed out in section 4,
the constraints can lead to multiple solutions. Without additional
constraints the solver “gets stuck” in the wrong local minima. In
practice, we find this case occurs frequently.

While the constraint-based algorithm succeeds in many cases, it
fails surprisingly often. Figure 2 shows a particularly illustrative
example. In this motion, a martial artist performs three swift kicks.
The depicted frame shows a case where the motion matches the
original as far as the constraints are concerned, but has some sub-
stantial differences. Were the ground-truth motion not shown, the
pose of the left leg would have seemed perfectly fine.

The obvious improvements to the simple algorithm would not solve
this example problem. For example, a first-order predictor or
continuity-based method would most certainly be thrown off by the
substantial high-frequency “snaps” that occur during the kicks. The
failure of prediction to apply might be expected: the kicks were
meant to surprise opponents, why should we expect our algorithms
to fare better?

The synthetic framework also allows us to explore how the con-
straints degrade with noise. From a practical viewpoint, the addi-
tion of our uncertainty model is trivial: the equality constraints on
image positions are replaced by inequality bounds. Experimental
results show that the performance of the algorithm degrades grace-
fully as the bounds are enlarged. Figure 3 shows an example result.
Not surprisingly, as the tolerance is enlarged, the small details of
the motion are removed, however, the overall content of the motion
is maintained.

In a similar vein we can perturb other parameters such as the optical
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Figure 3: A graph of reconstructed position vs. time vs. the tightness of the bounds
on image observations (d in equation 1). The graph of the Z coordinate shows the
situation where, because of the depth ambiguity, the solver takes a different “fork” of
the potential solution than the ground truth.

parameters. Again we find that the algorithm performs on-par with
the noise free case for small errors, and degrades as the error in the
assumed optical parameters rises.

6 Discussion

Vision-based motion capture is attractive yet challenging. A solu-
tion that meets the needs of animation seems even more so: not
only is animation a particularly demanding application of motion
capture, its demands seem directly at odds with many of the ap-
proaches one might take towards building a video-based capture
system.

The constraint-based approach provides a tool for understanding
the limitations of processing observations to reconstruct motion.
Our analysis, and experiments, show that a single video stream cou-
pled only with weak constraints does not come close to providing
sufficient capture performance for animation applications. Clearly,
additional information is required to provide more constraints that
will better narrow the potential solutions.

More information can have the form of additional constraints, or
better predictive models (used in the prediction phase). The latter
can be difficult for animation applications as we hope to capture
unusual and unpredictable motions. The former may come from a
variety of sources, such as additional observations, more detailed
models of the limitations of human movement, and detected inter-
actions between the character and its environment.

The constraint-based approach allows us to understand the effec-
tiveness of additional information as we find effective ways of de-
termining it, and to implement capture systems based on these for-
malisms. For example, commercial optical motion capture system,
such as those sold by Vicon [22] or Motion Analysis [15] are dis-
tinguished from video-based techniques as they use special hard-
ware and a controlled environment to make observations precisely.
Such systems engineer away the vision problem by using controlled
lighting, camera optics, and markers to facilitate identification and
localization. Because of the known shape and small size of the
markers, and the careful understanding of the camera optics, mo-
tion blur and partial occlusion can be accounted for. This allows
very precise 2D localization. Extremely careful calibration amongst
multiple cameras provides precision in three dimensions. Such sys-
tems presently use very weak motion models, typically viewing the
points individually, and using continuity only for determining cor-
respondence. Very high sampling rates allow for continuity and
filtering to be effective tools for noise reduction.

Within the constraint-based framework, we can see that optical
tracking systems provide their better results by using much stronger
constraint information. Sub-pixel marker localization and multiple
cameras provide considerable cues as to the location of individual
markers. This allows avoidance of stronger predictors and world
models. The markers can often be tracked to a degree of precision
that the tractable, skeletal approximations do not afford, and can
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handle the novelty and nuance of animation applications. Unfortu-
nately, this requires expensive equipment and a controlled environ-
ment to achieve.

6.1 Taxonomy of Computer Vision Approaches

A video motion capture solution, based on computer vision tech-
niques, must somehow create motion data using the limited infor-
mation provided by video. The considerable activity in the vision
community over the past several years have focused on a few key
strategies:

1. Better localization of features by use of regions.

2. Stronger geometric models to restrict possible poses.

3. Stronger motion models to predict likely poses.

4. Novel applications that accept coarser pose results.

As discussed in Section 2, strategies 3 and 4 are unlikely to be of
much assistance for animation applications.

The published results of current vision research do not meet the
quality demands of motion capture for animation. At best, these
techniques operate on simple motions (e.g. walking), and produce
a level of fidelity where these motions are recognizable but details
are absent. Here, we consider some of the more recent results.

Our discussion of section 4 assumed point features. Larger features
may offer better opportunities for precise localization by incorpo-
rating more information. For example Ju et. al. [11] track all pixels
associated with each body segment. This is extended by Bregler
and Malik [3], and Yamamoto et. al. [24] to get 3D information
by interpreting the optical flow within these segments. Edge based
information is used in [4, 5, 17], and template matching is used
in [10] to recognize body segments.

Strong motion models are often used to facilitate tracking by focus-
ing the search to poses that are likely to follow from the previous
motion. For example, Rehg [18] and Bregler and Malik[3] use a dy-
namic model within a Kalman Filter framework. More recent work
uses more sophisticated motion models. An example of a strong
model is the work of Brand [1] which generates motion by driv-
ing a trained Hidden Markov model from observations. The system
is restricted to playing clips from the training corpus, limiting the
variability of its output. In between are systems that use statisti-
cal models to train predictors that provide likelihood estimates for
poses [21, 4, 5].

A problem with strong models is that they limit the system to those
motions described by the model. For example Rohr [19] explic-
itly assumes a specific motion (walking), whereas Sidenbladh and
Black [21] implicitly make this assumption by training their statis-
tics only on walking motions. Bregler [2] builds a dynamic model
of human running.

Geometric models (typically a kinematic chain for the skeleton) are
used in many approaches (e.g. [10, 5, 4, 3, 17]). Probabilistic
frameworks are incorporated to determine which poses are more
likely.

Geometric and biomechanical constraints are less restrictive than
motion models. Geometric models (typically a kinematic chain for
the skeleton) are used in many approaches (e.g. [10, 5, 4, 3, 17]).
This is attractive because it improves a system’s ability to handle
novel motions, but it is difficult to find models that are both math-
ematically tractable and sufficiently restictive. To date, the mod-
els employed in the video capture literature are merely kinematic
chains [10, 5, 4, 3, 17]. More sophisticated geometric and biome-
chanical models seem to be a promising, but under-explored, direc-
tion for future video motion capture systems.
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