To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Motion Path Editing

Michael Gleicher *

Computer Sciences Department, University of Wisconsin, Madison

Abstract

In this paper we provide methods that allow for path-based editing
of existing motion data. We begin by exploring the concept of path
as an abstraction of motion, and show how many of the common
motion editing tools fail to provide proper control over this useful
property. We provide a simple extension to displacement mapping
methods that provide better control over the path in a manner that is
easy to implement in current systems. We then extend this simple
method to avoid violation of geometric constraints such as foot-
skate.

Keywords: Animation, Animation with Constraints, Interaction
Techniques

1 Introduction

Motion capture provides a method for obtaining motion for charac-
ter animation that is physically realistic and conveys the personality
of the performer. Unfortunately, while a captured motion can record
the specific nuances and details of a performance, it also specifi-
cally records the performance. It encodes a specific performer, per-
forming a specific action, in a specific way. Should any part of the
motion not meet the users needs, either a different motion must be
captured, or the existing motion must be transformed to meet the
those needs. Recording new motion to “fill in the gaps” is diffi-
cult and expensive. Creating convincing transformations is difficult
because they must retain the desired qualities of the motions while
making changes to undesired aspects.

In this paper, we consider the problem of altering a previously cap-
tured motion to follow a different path. We introduce methods for
editing of the path of a motion. For example, the motion of a char-
acter walking in a straight line can be transformed to walk along a
curved path in a manner that preserves as much of the detail and
nuance of the original motion as possible. Such transformations
are important in a variety of applications, such as using motions in
new environments (walking around obstacles) or in dynamic appli-
cations (walking to a goal location). The most basic form of mo-
tion path editing extends current techniques to provide interactive
manipulation of a motion. Motion path editing can be enhanced,
like the methods it extends, to to preserve essential properties of
the original motion by applying constraint-based techniques. We

*gl ei cher @s. wi sc. edu,http://wwmv. cs. w sc. edu/ gr aphi cs

demonstrate how path transformations work with constraint-based
approaches to provide an interactive method for altering the path of
a motion. This leads to several useful applications.

A path is an abstraction of the positional movement of a character.
The path encodes the direction of motion, which is different from,
but related to, the orientation of the character as it moves along the
path. This abstraction leads to the idea of representing a motion
relative to the path, allowing the path to be altered and the motion
to be adjusted accordingly. The methods we present maintain the
relationship between the motion and the path.

This paper is organized as follows. We begin by describing an ex-
ample of what our techniques are capable of and useful for (Section
2). This discussion both motivates our methods as well as discusses
their relationship to existing techniques. We then introduce the ab-
straction of a path for a motion (Section 3) including methods for
automatically creating it.

The most basic form of path transformation, presented in Section
4, can create a new motion that follows an arbitrary path and ori-
ents the character appropriately. However, this transformation may
damage some of the fine details in the motion such as the crispness
of footplants. Better results can be obtained by using constraint
processing to explicitly maintain details, as described in Section 5.
The motion is continuously updated as the user drags portions of the
path. Even the most sophisticated of the methods presented works
interactively in all of our examples. We conclude by discussing
experiments with our prototype implementation.

2 Overview and Example

Consider the problem of creating an animation of a fashion model
strutting down a curved catwalk. This walk has a distinctive char-
acter to it that is difficult to describe mathematically, but is read-
ily recorded using motion capture. In fact, a model walking in
a straight line is a standard example in a motion capture library
since it shows how something as basic as a walk can require a range
of specific examples. Unfortunately, the libraries typically contain
only the model walking in a straight line, not along the curved path
we require.

Had we known that we required a curved path during the capture,
we could have captured the exact motion that we needed. Unfortu-
nately, this would have required the foresight to know the path that
would be needed, and in our circumstances would be impossible as
we are limited to what is provided by the motion library. We are
therefore faced with the task of transforming the straight-line mo-
tion to a curved path. The challenge is to create a new motion that
keeps the distinctive character of the original walk, yet moves along
the correct path.

The tools described in this paper can transform the model’s walk to
a curved path. The system defines a “path” — a curve that represents
the abstraction of her motion. This path can be edited using the
same interactive tools used to edit any other curve. In Figure 1, we
represent the path as a cubic B-Spline with 6 knots and use a direct



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure 1: Editing the path of a walking motion. The left image shows the original motion, the right shows the edited result.

manipulation dragging technique to reposition the knots as the user
drags points on the curve. As the path is changed, the motion is
updated interactively.

In order to apply path editing, no information beyond motion cap-
ture data is required. Better results can be obtained by using a con-
straint solver to maintain features of the motion during dragging,
or to clean up artifacts as a post-process. This requires constraints
to be identified. Automatic techniques, such as the one presented
by Bindiganavale and Badler [1] exist, but are imperfect. In prac-
tice, we identify constraints semi-automatically, manually refining
the results of an automatic constraint detector[2].

Figure 2 shows a different example: the original performer danced
in a circle, while we prefer a straight line. We transform the cap-
tured motion to that of a cartoon character (using the methods of
[13] and then use the methods of this paper to straighten the path.

An advantage and limitation of the methods we describe are that
they alter the path or an existing motion, rather than generate a new
motion that better suits the path. In the catwalk example, the ini-
tial motion is six seconds long and consists of 8 steps. Because
we are only transforming the existing motion, the resulting motion
will have the same number of frames as the original motion. If the
path is stretched, more steps will not be generated, although, we
consider such generation in Section 7.2. While the method knows
little of the mechanics of walking motion, and has no explicit de-
scription of the important properties of the motion, the results are
usually reasonable, given a reasonable request. However, they are
not necessarily what the performer would do in the situation. Bet-
ter results could be obtained by providing more information to the
constraint solver, however, our focus is on creating methods that are
fast and interactive providing the opportunity to make adjustments
afterwards®.

2.1 Alternative Approaches

The ability to define motions along a path is a central feature of pro-
cedural and synthetic motion methods. Tools for generating a vari-
ety of locomotion methods along arbitrary paths have not only been
demonstrated in research [3] [15] [17] (see [20] for a survey), but
have been proven in products such as Life Forms [7] and Character
Studio [16]. Unfortunately, these synthesis methods lack some of
the qualities of captured motion: the ability to present variations
such as personality and style without having to find mathematical

1For the examples in this paper, the results shown are the results of our
methods. (No manual tweaking or post-processing is done unless explicitly
stated.)

methods for describing them. For example, while sophisticated syn-
thesis techniques can generate realistic walking motions, it unlikely
that they could create a convincing strut corresponding to a specific
fashion model.

There are two strategies for creating a range of motions using mo-
tion capture data. One is to capture all desired motions and to use
this large library in a production. The alternative is to have edit-
ing tools that can alter a base motion to meet the desired needs.
Each strategy is limited: motion libraries cannot possibly predict
every possible required motion (especially when there is a continu-
ous range of motions that may be needed). These libraries are ex-
pensive to create and can become unwieldy and difficult to maintain
as they expand to cover all needs. Despite recent innovations, there
is still a limited range of editing that can be done that preserves the
desired characteristics of motions. In practice, productions use a
combination of approaches: a large library of motions provides ex-
amples that are close to what is needed, making the required edits
easier.

Neither current editing techniques nor expanded libraries can ade-
quately address the path alteration problem. Because there are an
infinite variety of paths we might want to have a character move
along, we cannot possibly capture all of them in a library. Current
editing tools, including those based on inverse kinematics, signal-
processing (such as motion blending [21], warping [30], and dis-
placement mapping [4]) and constrained optimization (including
the spacetime [12] [18] and physical methods [22]), also fail to ad-
dress the problem of path transformation. Inverse-kinematics meth-
ods, by computing each frame individually, cannot affect proper-
ties over a long time scale, such as a path. The signal process-
ing methods treat each individual signal separately and therefore
cannot maintain the relationship between path direction and orien-
tation over an entire character’s motion. The optimization-based
approaches need this relationship expressed in terms of constraints.

Since the earliest productions[19], animators have created charac-
ters by defining locomotion cycles and looping these cycles while
the character moves along. Motion capture data can be converted
to this form and applied along a path, however, this only works in
simple, repetitive, straight-line motions. For example, the method
used by Rose et al. [23] can apply a single cycle of a walk and
run motion as a character is displaced along a path. The method
provides no way to alter an existing complex path, as in the lantern
example of Section 7.1.

A related approach would build longer motions of characters mov-
ing along desired paths from smaller pieces. Such an approach re-
quires not only a library of the character making various turns but
also methods for transitioning between the various different direc-



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure 2. (also Color Figure) Editing the path of a dance motion. The original performance danced in a circle. This motion was applied to a cartoon character using retargeting
methods (left). Path editing transforms this motion from a curved to a straight line. Dark marks are footplant constraints.

tional elements. The path control provided by the techniques in this
paper makes such an approach more practical by providing a way
to adapt the individual pieces to fit, as we will show in Section 7.2.

3 Paths

In practice, the user of our method sees the path as a curve gener-
ated by the system that provides a handle for control over the mo-
tion a character moves over. In this section, however, we provide
a more precise and general definition of path, allowing the meth-
ods for path editing to be defined easily. Section 3.2 presents our
specific technique for automatically computing the path.

The path is an abstraction of the positional aspects of the move-
ments. The path does not contain the details of the characters mo-
tion, simplifying the character to a single point. We also prefer to
ignore the smaller details of the movement, so that the path better
fits an idealized description. In the previous example, the model’s
true motion is complex, however we prefer to think of it as strutting
in an almost straight line. The path is intended as a conceptual tool
for the user, not to encode the details of the motion.

Path is not an intrinsic property of a motion, but rather, a func-
tion of how a motion is interpreted. The same motion might be
viewed differently in different circumstances: a person’s movement
might be interpreted as walking along a zig-zag, or zig-zagging in
a straight-line. Abstraction in this way is often related to resolution
or scale: depending on circumstance, we may or may not wish to
consider the small details of a movement. The formalisms of multi-
resolution [5] or scale space [28] consider a function at different
levels of detail. However, because path is an abstraction to be inter-
preted by a user, we do not limit the path to be a filtered version of
the original motion, but rather, allow it to be an arbitrary curve that
relates to the motion. The important attribute of a path is that it is
meaningful for the user.

A path is a time-varying space curve whose value is related to the
position of the character at a given time. We will denote the path
as the vector valued function p(t), and for convenience consider the
corresponding translational transformation matrix P(t).

In the terminology of multi-resolution curve editing [8], the rela-
tionship between the path and the translational motion is the detail
of the motion.

Figure 3: A character zig-zags relative to its path (left). If the details of the motion
are represented in an absolute sense (e.g. left and right on the page), they may not
apply if the direction of travel is changed (center). By representing the details relative
to its path, the details can be preserved in different paths (right).

3.1 Direction of Path

Work on multi-resolution surfaces [9] and curves [8] discusses the
importance of local detail relative to the geometry itself, rather that
in some absolute coordinate system. Both works represent the de-
tails in a coordinate system defined differentially from the coarser
version. We apply the same concept to paths.

At any instant a path has a direction of motion. Trivially, this is
the direction of the tangent of time derivative of the path curve.
This is neither the orientation of the character nor the instantaneous
motion of the character. However, it is often convenient to discuss
each of these details of the motion in terms of the path direction: we
typically prefer to describe a character as zig-zagging side to side
as they walk forward, rather than describing the path perturbations
in an absolute way (e.g. north to south). This distinction becomes
even more significant as we consider editing the path, as we would
like to maintain the description of detail even if the direction of
motion changes, as illustrated in Figure 3.

The preference for relative descriptions of detail is not absolute.
While a character that periodically jumps eastward no matter what
direction they are traveling (perhaps because they are called to a
pilgrimage) seems contrived, the dominance of gravity on our ex-
perience causes the vertical direction to have specific meaning.

The articulations of the character are also best expressed in a conve-
nient coordinate system. Typically, we prefer to describe the orien-
tation relative to the direction of motion. Even if the character is not
facing the direction of movement, it is the relative, not the absolute,
orientation that is likely to be important. A character walking side-
ways is rotated with respect to their direction of motion, whether



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

their path is north-south or east-west.

A path, therefore, defines a coordinate system that moves in time.
The coordinate system is centered at the position p(t), and oriented
such that the details are represented conveniently. As we prefer a
right-handed Y-up convention, we define the Y vector of the co-
ordinate system to be upwards, the positive Z-direction to be the
projection of the path’s tangent on the horizontal, and the X axis
to be their cross product. We will denote this orientation by the
time varying matrix R(t). The path’s coordinate system is given by
P(t)R(t), and the transformation from global to local coordinates is
given by R(t)"*P(t) 2.

Note that P(t) and R(t) could have been independent curves. By
relating them, we gain the ability to control both by simply altering
one. We orient R with respect to the tangent of P and gravity. Al-
ternatively, we might choose to define R by the Frenet frame [25]
of p(t), a coordinate system defined using only differential proper-
ties. We consider the absolute-Y coordinate system to be superior
for a number of reasons. First, it is defined whenever the charac-
ter is in motion, while the existence of a Frenet frame requires the
path to have non-vanishing curvature. Secondly, orientation is most
typically determined relative to gravity: a character stands up while
walking north, south, or up or down a hill. While this precludes
banking into turns, such effects are more typically related to the
physics of the situation and cannot be recreated by the geometry
we consider. Finally, by using the rotation about a fixed axis, issues
in representing rotations are trivialized.

Note: our Y-up system is not the same as simply assuming a level
path and using the Frenet frame. In this latter case, the vertical axis
would flip up or down depending on how the character turned.

3.2 Automatic Path Abstraction

Typically, we use the path as a handle to manipulate motion. For
such an application, the goal of a path is to provide a curve that
relates closely to the motion, yet allows control at the correct level
of detail. An approximation at a level of detail convenient for ma-
nipulation can be created by filtering the translational motion of the
character to produce a path. We usually compute paths from the tra-
jectory of the global offset of the articulated figure. Alternatively,
we might use the character’s center of mass, or another point on the
character. When dealing with two characters moving together (such
as dancing), we choose the average position of the two characters.

The motion capture data is filtered to create the initial path. We im-
plement this by computing a least-squares fit of a piecewise poly-
nomial curve. In all of the examples of this paper, we choose uni-
form cubic B-Splines with a number of knots chosen for ease of
manipulation. In practice, it is best to space the knots equally in
arc-length, rather than in time (parameter-space). If the arc-length
spacing is not used, the paths often have ill-defined derivatives in
regions where the character stops, causing difficulties in manipula-
tion.

Because errors in the fitting process will be “kept” as detail in the
motion, it is not essential that the path fits the motion well. It is im-
portant that the relationship between the path and the motion is clear
to the user. Unfortunately, artifacts of the scale tangent computa-
tion may sometimes leads to non-intuitive results. For example, if a
character pauses, this may cause the tangent to spin around, which
can cause unusual effects when the path is edited.

4 Path Editing

Given the path corresponding to an initial motion, we can factor
the motion into the path and a residual by placing the motion in the
moving coordinate system defined by the path. We can then replace
the path curve to produce a motion that follows the new path. We
will denote the initial path with a 0 subscript.

It is common practice in animation systems to allow a character to
be placed in a moving coordinate system, inserting transformations
“above” the character in a kinematic hierarchy. In commercial sys-
tems this can be done by placing the character in a group whose
transformation can be animated.

Because we define the initial motion in the coordinate system of the
initial path, the coordinate system for the character is given by:

P(t)R()Ro(t) ~Po(t) . (6]

If the method is applied to sampled motions, such as motion cap-
ture data, Ro(t)~* and Po(t)~ can be stored as a table of samples.
This enables a simple implementation that can be realized in the
scripting languages of commercial animation systems. The four
transformations can be applied to the character and animated ac-
cordingly. As the path P(t) is updated, the corresponding R(t) must
be computed.

If we do not use the rotation of the frame, our method is exactly
equivalent to using a motion displacement map [4] (also known as
a motion warp [30]) on the translation of the character. The path
serves as the displacement map.

Alternatively, one might view our method as the application of
multi-resolution curve editing [8] to the root translation of a charac-
ter. The difference is that rather than simply filtering out the detail
of the curve, we also “filter” the detail of the character’s move-
ments to be added back in later. We use the curve to define not just
a point position, but a coordinate system in which the details are
represented. Also, we do not limit ourselves to only using low-pass
filtering to create the abstracted curves.

Any methods can be used to alter the path curve, or define a new
one. We provide the user with direct control of the path’s control
points as well as direct manipulation editing of the curve itself using
a least-squares technique[10] [27].

4.1 Arc-Length Reparameterization

A path is a temporal entity as well as a geometric one. Each time
determines a position and orientation. By parameterizing the path
by time, altering the path allows control not only of the position
but of the velocity as well, as shown in Figure 4. The beginning of
the path corresponds to the beginning of the motion. Likewise the
character reaches the end of the path when the motion ends.

Unfortunately, the temporal control is not always desirable. As the
user performs geometric operations on the path, they may inadver-
tently alter velocities they want to preserve. Or they may break the
motion by stretching parts of the motion such that the character can-
not reasonably step from one footplant to another. The problem is
even more pronounced when the path is replaced by a completely
different curve. In such a situation, the parameterization of the new
curve may not match the parameterization of the original path, es-
pecially if the new path is created using a purely geometric method.

The user interface provided for manipulating curves could assist
the user in maintaining the desired velocities. Instead, we offer
the option of arc-length parameterizing the new curve such that the
velocity along the new curve is identical to the original.



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure 4: Path editing is used to alter the timing of a motion. The evenly spaced
knots of the original B-Spline path are repositioned in the lower image.

If we map the character’s position on the path by arc-length in-
stead of time, we can provide a different interface which preserves
the distance a character moves through time as we edit the path.
Using this parameterization we can better maintain the dynamics
of the motion. The velocity of the character matches the kinemat-
ics which produced the motion, and foot skate introduced by path
transformations is reduced. Using this parameterization also allows
the motion to be slid along the path by altering where on the curve it
should begin. To efficiently approximate arc-length parameteriza-
tions, we use Euler step integration using distances between motion
samples to approximate the tangent vector. This approximation is
sufficient in practice because the path curves are usually smooth.

5 Constraints

The path transformation methods described preserve certain aspects
of motion. For example, the joint angles are unaffected by the pro-
cess, but the resulting positions of the end effectors are moved. Of-
ten the details of the end-effector movement are more significant
to defining the motion, and therefore must be explicitly maintained
during any transformations.

More problematically, path transformations change the trajectory of
end effectors. While we would expect that a character’s foot would
be in a different place when its path is changed, the relative motions
may be important — for example, the foot should remain stationary
when planted. Because a path transformation may affect different
times differently, points in the original motion that are stationary
over a period of time may move along a curve as each instant during
the duration is transformed differently. When the methods of the
preceding section are applied to a motion, slipping along the floor
is typically evident, especially when the path of the character is
lengthened.

These problems are not specific to path transformation: any tech-
nique that transforms motion must consider what aspects are to be
changed and what will be maintained. A common strategy is to
identify specific geometric features of motions as constraints that
must be maintained during the transformation. This strategy has
been applied to a number of motion transformation problems, in-
cluding interactive editing [12, 18], retargeting to new characters
[13], and generation of transitions [24]. The methods that have been
applied to these other problems may be applied to path transforma-

Figure 5. The path of a walking motion is lengthened. The last of 4 B-Spline knots
is moved along the line. (upper) As the path lengthens the footplants separate until
it is physically impossible for the character to step from one to the next. (lower) As
the path lengthens the original motion (full body) is little changed. Additional frames
(line figure) are added so that the motion arrives at the end of the path by repeating the
cyclic motion.

tions as well. In this section we survey some of the details specific
to using constraint-based methods with path transformations.

We apply constraint processing in a fashion similar to [13]. That
is, the path transformation is applied first to “mess up” the motion,
and then the motion itself is altered to re-establish the constraints.
Constraint processing does not change the path, just the details of
the motion.

Geometric constraints on end-effectors may specify either abso-
lute or relative positions. Absolute positions maintain the relation-
ship between the character and some other object. For these con-
straints, the specific positions must be maintained. Relative position
constraints maintain features relative to the character’s motion and
must be updated as the path is transformed. For example, the spe-
cific position of a character’s footsteps may be moved, providing
that the foot remains planted. This category of constraints must be
handled specially when applying path transformations: a new posi-
tion for the constraint must be determined that fits with the path.

For a relative constraint at a single instant of time, a new position
can be computed just as it was for the character. However, since
different instants in time may be transformed differently, there is
no guarantee that a constraint that exists over a duration of time
will preserve any properties. One particularly common problem is
that stationary footplants tend to be spread over their duration. The
simple cure for this is to choose a single time for each constraint,
and transform the entire duration of the constraint by the transfor-
mation at this one instant.

Different choices in time lead to different constraint positions
which, in turn, lead to different characteristics of the motions. The
three most obvious choices are the beginning, middle, and end of
the duration of the constraints. Figure 6 shows how this choice
affects a walking motion. The differences are subtle, and illustrate
the challenge of motion transformation: there is no clearly “correct”
answer given the limited information that we have. We are left with
either building more sophisticated models to determine the move-
ment, relying on heuristics (or user input) to select amongst the
myriad of small choices, or reconciling ourselves to never having
the perfect answer.

One specific caveat: entire footplants must be dealt with at a sin-




To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure 6: The example of Figure 1 is adapted using different methods for choosing the new footplant positions. The different colors represent the motion obtained by moving

footplants to their beginning, middle or end of their duration.

gle instant, the heel and toe strikes cannot be given separate times.
If they are transformed at the same instant, their positions will
be transformed rigidly. Otherwise, the heel and toe strike posi-
tions may be transformed differently, changing the distance be-
tween them which is impossible if the character is a rigid skeleton.

An alternative to computing new locations for constraints is to ex-
press the constraints in a relative manner. For example, rather than
specifying that a footplant is at a particular location, the constraints
merely express that the position is constant over the duration of
time. Such a formulation has the advantage that the solver can
adjust the locations based on other criteria. The disadvantage is
that by coupling different times, simpler solution methods that con-
sider individual instants in time independently are not applicable;
see [14] for details.

5.1 Constraint Solution Methods

With the constraint positions determined, we are left with the task
of computing a new motion that meets the constraints. A variety of
approaches have been presented in the literature, and are surveyed
in [14].

The simplest approach is to solve the constraints at each instant in
time individually. Such an approach has the advantage that it solves
a series of small kinematic problems. A wide range of techniques
including direct solution [26] and iterative numerical methods [11]
have been applied to these inverse kinematics problems, and solu-
tions are widely available. The problem is that solving each prob-
lem frame as an independent problem is that there is no way to
maintain consistency across the subproblems.

Many of the consistency issues come from constraint switching: the
instant before a constraint (or after the constraint) the solver has no
way to prepare for the future. For example, if a constraint requires
a footplant to be in a particular place, unless the frames leading up
to this need are suitably altered, the foot would jump to its goal lo-
cation at the beginning of the constraint. Other consistency issues
stem from the fact that there may be multiple solutions to the con-
straint problems or that consistent answers may not be computed in
response to subtly different inputs.

Inconsistency among individual per-frame constraint solutions
leads to high-frequency artifacts in the resulting motion. In prac-
tice, we find that such an approach unacceptable as we see limbs
“snapping” to “hit” footplants, and we see jitter introduced as solver
imprecision gives slightly different answers on each frame. A

method for dealing with interframe consistency is a requirement.

Approaches to interframe consistency that do not allow for con-
straint switching, such as that used in the online motion retargeting
system of Choi and Ko [6] or Bindiganavale and Badler [1], do
not apply to path transformations. Such approaches rely on known
continuous paths for the end effectors. Using this with path trans-
formations by path-transforming the initial end-effector positions
would constrain the motion to have foot skate.

Spacetime constraint methods consider larger spans of the motions
and therefore can provide solutions that have interframe consis-
tency. While the approach was originally introduced for physical
motion generation [29], more recent work has applied the tech-
niques to motion editing tasks. The original spacetime approach of
defining a single constrained optimization that computes the new
motion was employed by Rose et al.[24] to generate transitions be-
tween motions, by Gleicher for interactive editing of motions [12]
and retargeting [13], and by Popovic and Witkin [22] to create phys-
ically realistic motion transformations. Lee and Shin [18] intro-
duced an alternative solution method that computes a constraint so-
lution on a per-frame basis and then uses a B-Spline fitting process
to combine these into a consistent result.

We have implemented both spacetime and per-frame ik plus filter-
ing (PFIK+F) methods in our system. The tradeoffs between the
methods are described in [14]. The PFIK+F methods are simpler to
implement, but do not offer the generality of the spacetime meth-
ods.

6 Recipe

To summarize, the steps of the path transformation process are:

1. Augment the motion with constraints that maintain any essen-
tial geometric features. Typically, this is done when motions
are placed into our library such that the effort can be amor-
tized across many uses of the motion.

2. Define the initial path Pq(t), either by filtering the character’s
motion, or by user specification. Determine Ro(t), from Po(t).

3. Create a new path, most typically by using curve editing tools
on the original. The corresponding orientations must also be
determined.

4. Apply the transformation of Equation 1 to the initial motion.



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure7: The top image shows a motion where the character searches a room while
carrying a lantern. The lower image shows the results of transforming the path such
that the character searches a straight corridor.

5. Apply a constraint solution technique to re-establish the geo-
metric features of the motion. This step modifies the motion,
not the path.

With fast constraint processing, steps 3, 4 and 5 can be interleaved
in iteration with drawing to create interactive motion manipulation.

7 Examples and Applications

All examples described in this paper are run using our motion edit-
ing testbed running on personal computers under Windows NT. All
example motion in this paper was originally created using optical
motion capture.

7.1 Interactive Path Editing

To date, the primary use of our tools has been for interactive motion
editing. The illustrations of this paper show some of the examples
that we have used with our system.

Most of the examples presented transform a straight motion into a
curved path. In Figure 7, a motion of a character searching around
is adapted to work in a straight hallway. The turning of the char-
acter to look around is maintained, despite the straightening of the
direction of travel.

The searching motion is among the longer of the experiments we
have tried, consisting of 550 frames covering 18 of the characters

steps. Over 3700 scalar constraints are used for the footplants. Our
prototype can achieve a 30Hz refresh rate during interactive drag-
ging without constraint processing (but including arc-length adap-
tation), providing a motion that can be “cleaned-up” afterwards. To
achieve interactive performance (5-10 Hz) with our real-time solver
we use sparse constraint sampling and large tolerances as described
in [12]. The results are acceptable for low-resolution applications
and can be cleaned up as a post-process. All other examples shown
run faster.

The motion of Figure 2 also changes a curved motion to a straight
line. With only 250 frames in the motion, achieving interactive
rates during constrained-dragging is not a problem with our cur-
rent implementation. Because of the highly dynamic nature of the
leaping and spinning dance, one would expect that our disregard
for Newton’s laws would cause many artifacts. Momentum is most
likely not preserved when the path changes as the ballistic trajec-
tory during leaps will be altered. However, the physics of the car-
toon character performing this motion are so stylized to begin with,
it is difficult to say which is less realistic.

7.2 Transitions

Long sequences of motions are typically created by connecting
shorter segments. Making a realistic transition between two mo-
tions can be difficult if the motions are quite different. However,
if the end of the first motion is similar to the beginning of the sec-
ond, simple mechanisms can be applied to make the transitions. If
the motions connect extremely well, they may be simply spliced to-
gether, or small changes may be accounted for by blending. Motion
libraries are typically designed to support this by providing moves
that connect well to one another.

The overall position and direction of a motion is important to pre-
serve over a transition. Often, motion libraries contain families
of “turning” moves to allow a character to change direction. Path
editing reduces the need for such redundancy by permitting a sin-
gle motion to serve a variety of needs. To connect two motions,
we use a path transformation to insure continuity of the positional
movement of the character. After bringing the overall movement to-
gether, blending is often sufficient to make effective transitions. We
use constraint processing techniques to clean up geometric details,
such as footplants after blending.

A cyclic motion is designed to transition to itself, permitting the
generation of arbitrarily long motions. With an arbitrary path, a
cyclic motion can be applied repeatedly until the entire path has
been filled with the motion. Using this technique we can create arbi-
trarily complex paths for any given cyclic motion, or create motions
whose velocities are not accelerated when the path is stretched, as
shown in Figure 5.

8 Conclusions

Path transformations provide an important tool in enhancing the
utility of motion libraries by permitting a single motion to be ap-
plied in a wide variety of settings. The basic methods are simple to
implement and can provide an interactive tool for motion editing.
When these methods are combined with constraint techniques, they
can still provide for interactive performance while maintaining key
features of the original motion.

The methods described in this paper are purely geometric: there
is no notion of physics. This means that the methods might fail
for motions that are highly kinetic, such as jumping, or even mak-



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

ing sharp turns when running. Because we rarely know the precise
physical properties of animated characters or the physical laws of
their worlds, fast, simplified methods, combined with the possibil-
ity of tweaking, seem to offer the most practical and useful tools.

The ability to factor the path from a motion may provide the oppor-
tunity to perform operations on motions independent of the path, for
example, blending motions that had different directions. With the
ability to create a range of movements decoupled from their range
of paths, an approach to animation based on assembling pieces of
motion as needed becomes practical.

Acknowledgements

Andrew Prock played an important role in the development of path transformations,
implemented the initial version of arc-length parameterizations and transitions, and
assisted with the initial draft of the paper. Alex Mohr and Andrew Gardner helped
with the Timelines system and producing illustrations, Rob Iverson assisted with paper
production. The baby model of Figure 2 was provided by Hou Soo Ming.

This research is supported by an NSF Career Award “Motion Transformations for
Computer Animation” CCR-9984506, support from Microsoft, equipment donations
from IBM and Intel, and software donations from Microsoft, Intel, Alias/Wavefront,
Softimage, Autodesk and Pixar. The motion used for the examples in this paper was
generously donated by Digital Domain, House of Moves, and Mainframe Studios.

References

[1] R. Bindiganavale and N. Badler. Motion abstraction and mapping with spatial
constraints. In Frank Crow and Stephen M. Pizer, editors, Modeling and Motion
Capture Techniques for Virtual Environments, pages 70-82, November 1998.

[2] Peter Bodik. Automatic footplant detection inside flmoview. Student Summer
Project Report Web Page.

[3] Armin Bruderlin and Thomas W. Calvert. Goal-directed, dynamic animation of
human walking. In Jeffrey Lane, editor, Computer Graphics (SIGGRAPH ’89
Proceedings), volume 23, pages 233-242, July 1989.

[4] Armin Bruderlin and Lance Williams. Motion signal processing. In Robert
Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Conference Se-
ries, pages 97-104. ACM SIGGRAPH, Addison Wesley, August 1995.

[5] P.J.Burtand E. H. Adelson. The laplacian pyramid as a compact image code.
IEEE Trans. Communications, 31:532-540, 1983.

[6] Kwang-Jin Choi and Hyeong-Seok Ko. On-line motion retargetting. Pacific
Graphics "99, October 1999. Held in Seoul, Korea.

[7] Credo Interactive. Life forms. Computer Program, 1999.

[8] Adam Finkelstein and David H. Salesin. Multiresolution curves. In Andrew
Glassner, editor, Proceedings of SIGGRAPH ’94 (Orlando, Florida, July 24-29,
1994), Computer Graphics Proceedings, Annual Conference Series, pages 261—
268. ACM SIGGRAPH, ACM Press, July 1994.

[9] David R. Forsey and Richard H. Bartels. Hierarchical B-spline refinement. In
John Dill, editor, Computer Graphics (SIGGRAPH ’88 Proceedings), volume 22,
pages 205-212, August 1988.

[10] Barry Fowler and Richard Bartels. Constraint-based curve manipulation. IEEE
Computer Graphics & Applications, 13(5):43-49, September 1993.

[11] Michael Girard and Anthony A. Maciejewski. Computational modeling for the
computer animation of legged figures. In B. A. Barsky, editor, Computer Graph-
ics (SIGGRAPH ’85 Proceedings), volume 19, pages 263-270, July 1985.

[12] Michael Gleicher. Motion editing with spacetime constraints. In Michael Co-
hen and David Zeltzer, editors, Proceedings 1997 Symposium on Interactive 3D
Graphics, pages 139-148, apr 1997.

[13] Michael Gleicher. Retargeting motion to new characters. In Michael Cohen, ed-
itor, SIGGRAPH 98 Conference Proceedings, Annual Conference Series, pages
33-42. ACM SIGGRAPH, Addison Wesley, July 1998.

[14] Michael Gleicher. Comparative analysis of constraint-based motion editing. In
Hyeong-Seok Ko and Normal Badler, editors, Proceedings of the Symposium on
Human Modeling and Animation, June 2000.

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien.
Animating human athletics. In Robert Cook, editor, SIGGRAPH 95 Conference
Proceedings, Annual Conference Series, pages 71-78. ACM SIGGRAPH, Ad-
dison Wesley, August 1995.

Kinetix Division of Autodesk Inc. Character studio. Computer Program, 1997.

Joseph F. Laszlo, Michiel van de Panne, and Eugene Fiume. Limit cycle control
and its application to the animation of balancing and walking. Proceedings of
SIGGRAPH 96, pages 155-162, August 1996.

Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion
editing for human-like figures. Proceedings of SIGGRAPH 99, pages 39-48,
August 1999.

E. G. Lutz. Animated Cartoons: How They are Made, Their Origin and Devel-
opment. Charles Scribner’s Sons, 1920. Reprinted by Applewood Books, 1998.

Franck Multon, Laure France, Marie-Paule Cani-Gascuel, and Giles Debunne.
Computer animation of human walking: a survey. The Journal of Visualization
and Computer Animation, 10(1):39-54, January - March 1999. ISSN 1049-8907.

Ken Perlin. Real time responsive animation with personality. IEEE Transactions
on Visualization and Computer Graphics, 1(1):5-15, March 1995.

Zoran Popovic and Andrew Witkin. Physically based motion transformation.
Proceedings of SIGGRAPH 99, pages 11-20, August 1999.

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. Verbs and adverbs:
Multidimensional motion interpolation. IEEE Computer Graphics & Applica-
tions, 18(5), September — October 1998. ISSN 0272-1716.

Charles F. Rose, Brian Guenter, Bobby Bodenheimer, and Michael F. Cohen.
Efficient generation of motion transitions using spacetime constraints. In Holly
Rushmeier, editor, SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 147-154, August 1996.

Michael Spivak. A Comprehensive Introduction to Differential Geometry. Pub-
lish or Perish Press, 1990.

Deepak Tolan, Ambarish Goswami, and Norman Badler. Real-time inverse kine-
matics techniques for anthropomorphic limbs. submitted for publication, 2000.

William Welch, Michael Gleicher, and Andrew Witkin. Manipulating surfaces
differentially. In Proceedings, Compugraphics '91, September 1991.

Andrew Witkin. Scale space filtering. In Proc. International Joint Conference
on Artificial Intelligence, 1983.

Andrew Witkin and Michael Kass. Spacetime constraints. In John Dill, editor,
Computer Graphics (SIGGRAPH ’88 Proceedings), volume 22, pages 159-168,
August 1988.

Andrew Witkin and Zoran Popovic. Motion warping. In Robert Cook, editor,
SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pages 105—
108. ACM SIGGRAPH, Addison Wesley, August 1995. held in Los Angeles,
California, 06-11 August 1995.



To Appear at The 2001 ACM Symposiumon Interactive 3D Graphics

Figure8: Color Plate: Editing the path of a dance motion. The original performance danced in a circle. This motion was applied to a cartoon character using retargeting methods
(left). Path editing transforms this motion from a curved to a straight line. Dark marks are footplant constraints. The figure shows the interactive toon shading of our animation
testbed.



