
Graphical Models 63, 107–134 (2001)

doi:10.1006/gmod.2001.0549, available online at http://www.idealibrary.com on

Comparing Constraint-Based Motion
Editing Methods

Michael Gleicher1

Department of Computer Sciences, University of Wisconsin, Madison, Wisconsin

Accepted June 1, 2001

Tools for assisting with editing human motion have become one of the most ac-
tive research areas in the field of computer animation. Not surprisingly, the area has
demonstrated some stunning successes in both research and practice. This paper ex-
plores the range of constraint-based techniques used to alter motions while preserving
specific spatial features. We examine a variety of methods, defining a taxonomy of
these methods that is categorized by the mechanism employed to enforce temporal
constraints. We pay particular attention to a less explored category of techniques that
we term per-frame inverse kinematics plus filtering, and we show how these meth-
ods may provide an easier to implement while retaining the benefits of other appro-
aches. c© 2001 Academic Press

Key Words: character animation; motion editing; constraints.

1. INTRODUCTION

The proliferation of different techniques for creating motion for computer animation,
coupled with the needs to best utilize these artistic assets, has made motion editing a rapidly
developing area of research and development. The past few years have witnessed an ex-
plosion of new techniques for various motion editing tasks, as well as the deployment of
commercial tools. Unfortunately, while each new technique almost always provides im-
pressive new results, there has been little done to examine the differences between and
capabilities of various approaches. In this paper, we explore the relationships between a
number of state-of-the-art motion editing methods. Specifically, we provide a unifying view
of several constraint-based techniques. These methods provide explicit support for maintain-
ing specific geometric features of motions. Our goal is to examine the range of techniques

1 This research is supported by a grant from Microsoft Research, equipment donations from Intel, and IBM,
and software donations from Pixar, Autodesk, Alias/Wavefront, and Metacreations. The author is supported by an
NSF Career Award This research is supported by an NSF Career Award “Motion Transformations for Computer
Animation” CCR-9984506.

107

1524-0703/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.

108 MICHAEL GLEICHER

for insights—comparing and contrasting the methods to understand the problems for which
each is appropriate, and to give us insights as to unexplored regions of the design space.

Our discussion is organized as follows. We begin by defining our terms and laying a
groundwork to introduce motion editing methods. We then present a taxonomy of recent
approaches, describing each within a common set of terminology to aid in comparison.
Section 4 focuses on a particularly unexplored category of approach, showing how a simpler
variant of an existing technique can provide useful results.

2. CONSTRAINT-BASED MOTION EDITING

Before comparing motion editing techniques, we must first define what it is we mean by
motion editing. Motion editing is the act of changing the movement of an object [14]. Outside
of computer animation, we generally do not get to control the movement of things without
controlling the things themselves. Even in more traditional 2D animation, the movement
and appearance of objects are tightly coupled. The idea of discussing motion editing only
becomes a worthwhile topic when we deal with 3D animation.

This definition of motion editing is sufficiently broad that most techniques in computer
animation fall under it. We focus our attention on tools specifically designed for this task, that
is, tools specifically designed for changing existing motions. This broad characterization
points to an important feature of these techniques: since we are changing existing motion,
there must be a notion of preserving the original as well as adding new features to it. If we
did not want to preserve any aspects of the original motion, we would not have needed it to
begin with.

For the purpose of this paper, we narrow our focus to character body motion for figure ani-
mation. Typically, such animation represents characters as articulated figures: a hierarchical
representation connecting a tree of rigid segments. While most of the methods we discuss
in this paper are not limited to such tasks, all of them address the primary difficulty of using
such a representation: the parameters of the character (joint angles and root position) are
related to many of the most important geometric features (the position of end effectors, for
example) by complex, nonlinear relationships.

Constraint-based motion editing makes some of the features that are to be preserved or
changed in a motion explicit as constraints. This is in contrast to a non-constraint-based
technique which does not make such features explicit, instead exposing the underlying
representation of characters and motions. For example, a filtering or blending operation
applied to a motion does change it (and is therefore an editing operation) and does preserve
some aspects of the original, but does not explicitly describe the operation in terms of
features in the motion, only in the terms of the underlying parameters used to represent
the motion. A constraint-based technique would explicitly represent features in the motion.
For example, the footsteps in a motion might be represented as an equation specifying the
required position of the end-effector at a given time. Such features serve as constraints either
to be preserved (maintain the footplants as the motion is changed) or to control changes
(move a footplant to a new location).

Constraint-based motion editing techniques generally focus on spatial or geometric con-
straints. Spatial constraints provide features of poses at given instants. For example, they
might specify that a hand must be in a given place at a given time, that the elbow does not
bend backward at any time during the motion, or that the character’s gaze direction faces an

COMPARING MOTION EDITING 109

event of interest when the event occurs. A distinguishing feature of constraint-based editing
techniques is that they allow for spatial constraints independent of the characters’ underlying
parameters. For example, they permit position the end-effectors rather than just specifying
joint angles. This is in contrast to things such as pure signal processing approaches, as
introduced by Litwinowicz [19], Unuma et al. [31], Bruderlin and Williams [5], Popović
and Witkin [34], and others, where the parameters are considered independently of their
interrelationships.

In addition to the spatial properties of motions, editing techniques must consider temporal
properties as well. There has been less formalism of temporal constraints on motion. While
some authors (for example [13, 21, 31]), have used mathematically convenient terminology
like frequency, these are typically crude approximation to the properties that we might really
desire to control and maintain in motions. One of the most effective temporal constraints
presented to date [13, 34] follows from the observation that high frequencies in motion are
almost always noticeable and usually caused by significant external events. Therefore, the
high-frequency content must be preserved during editing. That is, high frequencies should
only be added or removed with care: it is just as incorrect to dull the “snap” of a karate kick
or a chef’s chop as it is to add a twitch to a graceful ballet movement.

2.1. Types of Editing Operations

To date, constraint-based motion editing operations have been primarily applied to motion
transformation tasks. These are problems where good motions are adapted to different
settings, such as new characters or new environments.

Constraint-based motion editing methods can be applied beyond motion transformations.
For example, a signal processing operation such as filtering may destroy a motion’s spatial
constraints. A constraint-based method could then be used to reestablish these constraints.
Similarly, interactive manipulation of a frame of the motion might destroy the temporal
constraints, which could be reestablished with a constraint-based solver.

The editing paradigm where some operation is used to alter a motion and then a constraint-
based solver is used to “clean up the mess” is only one of the possible approaches to
constraint-based motion editing. A different paradigm begins with a motion that satisfies
the constraints and then alters the constraints while maintaining their validity. An example
of the former approach is our work on retargeting [13] and path editing [15], while examples
of the latter include our interactive editing work [12], Lee and Shin’s hierarchical editor
[20], and Popović’s physically based approach [27].

2.2. Inverse Kinematics

The methods used to find the solutions to the geometric constraints are a key imple-
mentation choice in constraint-based motion editing systems. The handling of geometric
constraints on articulated figures is typically called “inverse kinematics.”

Because the term inverse kinematics has different interpretations, we define ours. Inverse
kinematics (IK) is a process for determining the configuration of a character’s parameters
(known as its pose) based on specifications of resulting features of the pose, such as end-
effector positions. Note that this is a generalization of another common interpretation of the
term (popular in robotics texts) that defines IK as the process of determining joint angles
from an end-effector position. For our definition, we neither restrict the types of parameters

110 MICHAEL GLEICHER

(i.e., all of a character’s parameters, not just its joint angles are considered), nor the number
or type of constraints (i.e., not just end-effector positioning). Inverse kinematics implies
solving the geometric constraints at a specific instant in time.

All constraint-based motion editing methods must include a solver for IK problems in
one form or another to allow for constraints on end-effector positions. The nature of inverse
kinematics leads to three general types of challenges that any solver must address:

1. The relationships between the end-effector being controlled and the parameters being
determined will be non-linear, often quite complex. This means that solvers often must rely
on sophisticated methods.

2. There exist goals for which there are no solutions. Such singular problems are particu-
larly difficult because there are often goals close to these impossible situations that are barely
achievable. A solver must distinguish the impossible from the merely difficult. Maciejewski
[23] showed that this distinction is inherent in the mechanics of the IK problem.

3. There is almost always a multitude of possible solutions: most end-effector goals may
be reached by a variety of poses. The solver must have a mechanism for choosing among
the space of possible solutions.

2.2.1. IK solvers. Any IK solver must address these three issues. The first two are
critical to creating a robust and efficient method, essential to any application. The third
provides some freedom in solution methods. In choosing among correct solutions, solvers
can differentiate from one another by choosing “better” answers in terms of the quality of
the resulting pose, or the predictability of the results.

The way that an IK solver chooses among possible solutions to goals is an important
issue in the solver’s design. Some solver implementations make this choice explicit by
casting the IK problem as a constrained optimization problem. For example, a solver might
prefer the solution closest to its initial starting point, the one closest to the previous frame, or
one that provides the “best” pose subject to posture, strength, or balance objectives. However,
the choice is often implicit in the design of the solver since many solvers take a more ad hoc
strategy. Effectively, many solvers provide “the answer that they happen to choose.” Another
way to look at these algorithms is that they are optimizing something else: simplicity of
code, or the speed of finding a solution.

While IK methods were developed in mechanics and robotics before their application
in computer graphics, the demands of graphics applications (particularly in character an-
imation) brought new challenges for the methods to address. The methods for IK solvers
applied in graphics fall into two categories: geometric or analytic solutions, and numeric or
iterative solutions.

Analytic solution methods use closed form geometric constructions to compute config-
urations for end-effector positions directly. Such methods must be carefully constructed to
handle specific cases. Tolani et al. [30] recently provided a method for a 7 degree of freedom
limb as typically used in computer animation. This work extends earlier solvers, such as
those by Korein and Badler [17]. Analytic methods have the advantage that they provide
guaranteed fast solutions. However, they lack flexibility in how they choose solutions in
underconstrained cases and in the types of problems they can handle.

Numeric solution methods use equation solving or optimization techniques to provide
a more general, albeit computationally expensive, IK solution. Because of the nonlinear
nature of the inverse kinematics equations, a numerical solver will necessarily be an iterative
method. The methods employed fall into two categories: unconstrained and constrained.

COMPARING MOTION EDITING 111

Unconstrained methods model IK goals with objective functions that are minimized by an
unconstrained optimization routine. Such methods, typified by Badler et al. [4], Welman
[32], and Phillips and Badler [25, 28], can employ simpler solvers and may trade accuracy of
end-effector positions for other goals, like balance. Constrained methods treat end-effector
goals and joint limits as hard constraints, and reserve the optimization objective to select
among solutions. Realizations of this strategy, such as Zhao and Badler [35], require the
use of sophisticated nonlinear programming algorithms.

Lee and Shin [20] present a solver that combines analytic and numerical techniques.
They employ analytic solutions for the limbs, where closed form solutions are available,
and reserve optimization for the computation of body posture. Shin et al. [29] also present
a hybrid solver.

3. A TAXONOMY OF SOLUTION TECHNIQUES

The solvers used in constraint-based motion editing all address similar tasks. The main
differences are the approaches they employ to achieve their results. In this section, we look
at the various approaches used to maintain or establish the spatial and temporal constraints
in editing techniques. One might hope that what occurs “under the hood” of an editing
technique would be of little concern to the user. Our goal in this exploration is to see how
the choices in solver strategy affect what the methods that use them can achieve.

By our definition in the previous section, a constraint-based motion editing technique
must provide some method for handling spatial constraints, that is mapping specified goals
to a character’s parameters. Therefore, all methods must include an inverse kinematics
solver (in a general sense).

Our taxonomy categorizes methods based on their approach to handling temporal con-
straints. The existing methods vary greatly, from approaches that do not explicitly han-
dle temporal constraints to those that provide explicit equational constraints for temporal
properties.

3.1. Per-Key Methods

Traditional computer animation systems provide the user with the ability to control a set
of “key” poses that are interpolated. Spatial aspects of motion are created by controlling
these key poses, and temporal continuity between poses is generated by interpolation. We
term such methods per-key inverse kinematics (PKIK) because they solve a problem to
handle the spatial constraints on each key in the motion. Traditional animation tools fall
under the category of per-key methods.

An important aspect of a per-key motion editing technique is that the “solver” changes
each pose individually. The choice of how to set each pose is computed independently. These
computations may consider other frames in the process, however each pose is computed
separately. This attribute is shared with the per-frame methods described below.

Per key approaches do not provide any mechanism for enforcing constraints at frames
other than the key frames, and therefore provide no guarantees that such constraints are
met. The reason that such methods often work well is that the small number of key frames
is often sufficient to describe the motion. If significant key frames are properly chosen,
interpolating between them can provide sufficient temporal continuity and control.

A central difficulty with per-key methods for motion editing is that they require a set of
sparse, well-chosen key frames to represent the motion. The temporal control of motion

112 MICHAEL GLEICHER

changes is an artifact of how the motion was created and represented, not necessarily de-
termined by the goals of the changes in the motion. This is particularly problematic for
motions that are generated algorithmically, for example with motion capture or simulation.
However, even manually constructed motion does not place key frames solely at semanti-
cally relevant instants. One possible approach to this is to use some process for constructing
a convenient representation from the unstructured data.

Recent systems have attempted to make automated use of a per-key approach. The system
of Bindingavale [3] identifies local extrema of motions as “key” poses, applies inverse
kinematics to these poses, and interpolates between the poses. This creates a system that
can preserve events automatically.

3.2. Motion Warping or Displacement Mapping

One drawback of the per-key approach is that key frames may not be placed at spacings
convenient for editing operations. Motion warping [34], also known as motion displacement
mapping [5], provides a solution to this problem. In such an approach, the changes to a
motion are keyframed. This allows keys to be placed conveniently for editing. We term a
motion editing approach based on motion warps as motion warping plus inverse kinematics
(MW+IK) because it must augment motion warps with an inverse kinematics solver to
handle the spatial constraints.

When combined with an IK solver, motion warping provides a type of constraint-based
motion editing method. The IK solver is applied to frames with specified geometric con-
straints, and the spacing of the keys of the displacement map can be used to enforce temporal
constraints on the changes applied to the motion.

The MW+IK approach does have some drawbacks. First, there is no control over geo-
metric constraints except at keyframes. Second, the amount of temporal constraint possible
depends on the amount of geometric control. To provide more geometric control, more keys
must be provided, leading to a reduction in the amount of temporal constraint.

PKIK can be viewed as a special case of MW+IK where the keys in the displacement
map are placed at the same times as the keys in the original motion.

A system that explicitly implements the MW+IK approach is described by Choi and Ko
[18]. They apply inverse kinematics to selected frames of an animation in order to ensure that
key constraints are met on those frames. The changes made to those frames are interpolated
between key frames. The original motion warping work of Popović and Witkin [34] also
exemplifies the MW+IK approach as it allows the user to use any tools in a commercial
animation system (including IK) to set the key frames.

3.3. Per-Frame Methods

A per-frame method manipulates each individual sample of a motion independently. We
prefer the term per-frame rather than per-sample because it sounds better, although the
latter is probably more technically correct, especially if we are dealing with motions that
are algorithmically generated or captured at a high sampling rate. We refer to the class
of methods that applies a solver to each frame of the motion independently as per-frame
inverse kinematics (PFIK).

In a sense, a per-frame method is a special case of a per-key method where the keys
are regularly spaced. However, this is an important distinction: with a per-key method,

COMPARING MOTION EDITING 113

we assume that the keys are strategically placed at significant and important times and,
therefore, it is more likely that simply getting these instants correct will provide for a
desirable outcome.

With per-frame methods, the poses that we consider are typically densely sampled. That
is, the timing between poses is typically quite small relative to the duration of the motion.
Because of this, there is a greater demand to enforce the consistency between poses. When
the poses are spaced farther the interpolation between poses becomes more significant and
will create the necessary consistency.

To emphasize the difference between the per-frame and per-key approach, consider a
motion that is the trajectory of a foot making a step. If such a motion was created manually,
the artist might create key poses at the beginning, middle and end of the step and interpolate
these sparse keys. This same motion could also be sampled a full frame rate. If we were to
change the height of the apex of the step, a quite different result would be achieved. With
the sparse keys, we would obtain a higher step, while with the dense samples, we would
simply put a spike in the motion at the apex.

The contrived nature of the simple example might make per-key methods sound more
likely to give desirable results. However:

1. Per-key methods offer only the opportunity for choosing keys that are semantically
relevant and, therefore, convenient controls over the animation.

2. Per-key methods generally decouple the editing operations from the frame rate. The
timing of the keys usually corresponds to events in the motion, while the timing of the
frames is usually an artifact of how the motion will be displayed.

3. Per-key methods only change the keys, therefore provide no guarantees on enforcing
constraints at nonkey times.

The characteristic of a per frame method is that the decision of how to adjust each frame
is made independently. The challenge in per-frame approaches is to enforce the temporal
constraints while modifying each frame individually. Each of these independent decisions
may take into account more information than just the pose at the current frame. For example,
a solver might refer to the previous frame in order to choose a solution for the current one
that does not introduce a discontinuity.

3.3.1. Online motion editing. A special class of motion editing problems arrises in
situations where the adaptations of animations must occur on-line. That is, the system must
process animation as it is being generated and viewed. The most common application of
online motion editing is performance animation or puppetry, where a performer drives
an animated character using motion capture and this is shown to the user immediately.
Another application of such online systems is computer games or virtual environments
where animated characters’ motions must be generated in reaction to events as they occur.

Recently, several systems have appeared that apply constraint-based approaches to on-
line problems. Such systems must neccisarily be per-frame systems as they must compute
the current frame, without the ability to know (or affect) the future, or change the past.

An example of this approach is the On-line Motion Retargeting work of Choi and Ko
[6]. For each frame, the inverse kinematics constraints are treated through linearization. In
underconstrained cases, the system attempts to match the original joint angles as closely as
possible subject to the constraints on the end-effector positions. Coherence between frames
is maintained as the end-effectors of the character are constrained to follow the paths of the

114 MICHAEL GLEICHER

performer (whose motions must be continuous), and consistency of solutions is obtained
through the objective function that attempts to match the angles of the real performer.

Shin et al. [29] present a more comprehensive approach to dealing with the problem of
applying motion data to characters of varying size in an on-line application. A Kalman
filter technique is applied to reduce noise and enforce temporal constraints, a special high-
performance IK solver is used to ensure end-effector constraints are met, and an importance
metric is used to gracefully switch between tracking the performers end-effectors and joint
angles. Unlike the system of Choi and Ko, this only tracks end-effector positions when they
are relevant, prefering to match postures at other times. By using graceful switching between
the two modes, Shin’s system avoids the discontinuities that may arrise from switching.

3.4. Per-Frame Plus Filtering

Once the decisions of how to alter each frame are made, some approaches then provide
a “global” process that considers multiple instants together to remove artifacts of the in-
dependent nature of the first step. Almost always,2 this step is a low-pass filter meant to
remove the spikes and other discontinuities introduced by the independence of the first steps.
The first published motion editing system based on such an approach was the Hierarchical
Motion Editing technique of Lee and Shin [20] that used B-Spline fitting to implement the
low-pass filtering. We term the general approach per-frame inverse kinematics plus filtering
(PFIK+F) and discuss the approach in detail in Section 4.

The PFIK+F approaches are distinguished by the existence of two separate phases.
Generally, there is a phase that considers spatial constraints, applying inverse kinematics to
make coordinated changes to all joints of a character simultaneously, followed by a signal
processing stage that implements the temporal constraints. The spatial phase considers the
entire character simultaneously, albeit at a single instant in time, while the temporal phase
considers the entire motion (or a portion-thereof) simultaneously, albeit a parameter at a
time. Because these two phases cannot consider the work of the others, one may “undo”
the work done by the other, so they are often interleaved in an iterative process.

Treating each signal independently is technically incorrect. At a local level, groups of
parameters are almost always coupled to represent rotations. For example, independently
filtering each parameter of an Euler angle does not necessarily have meaning for the ro-
tations themselves. In practice, we believe that this approach works as well as it does on
the displacements because the displacements are typically small, and in small-angle ap-
proximation, the orientation representations are linear. Recently, Lee and Shin [21] have
shown that FIR filters can be adapted to operate on orientations through the use of exponen-
tial coordinates. However, this result does not apply to the common approaches for doing
PFIK+F.

3.5. Spacetime Methods

Spacetime constraint-based motion editing techniques distinguish themselves from the
previously described methods in that they do not consider frames individually. Spacetime
Constraints refer to methods that consider a duration of motion simultaneously in a compu-
tation. Rather than computing an individual frame, as an IK solver does, the solver computes

2 All of the examples to date.

COMPARING MOTION EDITING 115

an entire motion, or any subwindow of it. This allows it to consider constraints on the entire
duration of the motion, and to have objective criteria that consider entire motions.

The initial use of spacetime constraints specified desired positions for a character and
used the solver to compute the “best” motion that met these positions. These initial works,
presented by Witkin and Kass [33] and Cohen [7], included constraints that enforced the laws
of physics and created an objective function that defined the “best” solution as one that min-
imized the amount of energy the character expends with its muscles. This synthesized novel
motions that had a simple character perform simple motions that were physically correct.

The power of the spacetime constraints approach is also its drawback. While the ap-
proach provides tremendous opportunity to define constraints and objective functions that
describe features of the resulting motions, these must be defined for the approach to work.
Defining such mathematical characterizations for motion properties is challenging. While
the approach offers the potential for high level properties to be employed as criteria, to date,
concepts such as “graceful” or “angry” or “like-Fred-Astaire” have eluded a mathematical
description that fits into the framework. Also, the approach requires solving a single math-
ematical problem for the entire motion. This leads to very large constrained optimization
problems that are usually very difficult to solve.

We initially proposed applying the spacetime constraints approach to a motion transfor-
mation problem in [10]. Conceptually, the main difference with the standard spacetime work
was that our objective sought resulting motions similar to the initial motions, rather than
seeking results that minimized energy consumption. This allowed us to avoid the difficult
problem of specifying motion details: we did not have to figure out how to describe a walk
with constraints since we could define a walk by example.

The important properties to preserve in a given motion may not always be simple: “real-
ism,” “grace,” “like-in-Singing-in-the-Rain,” or other high-level properties may be desirable
to preserve during adaptation. In practice, we are limited by our ability to define high-level
qualities of the motion mathematically, by our ability to compute adaptations efficiently
when the metrics become complex, and by the amount of effort we wish to expend in
identifying (or having the user identify) these properties. Even if we encoded the desired
animation completely in a constrained optimization, we would still need to solve these
problems. Generally, richer sets of constraints and objective functions lead to more difficult
problems to solve.

To date, the spacetime approach has been demonstrated on a variety of motion trans-
formation tasks. We have demonstrated that the approach can provide real-time interactive
performance on modest computers in real time [12].

3.6. Physical Approaches

Physics provides a specific, and useful, source of constraints. While certain physical prop-
erties, such as contact with the floor, are conveniently represented as geometric constraints
in the spacetime systems of the previous section, other physical properties are ignored for
the sake of performance. Most significantly, Newton’s laws are not included. The choice
to exclude these constraints was a specific concession of the work of [12]. Kinetic con-
straints and energy properties are particularly computationally expensive in the spacetime
framework.3

3 Intuitively, such constraints are challenging because they create couplings among frames.

116 MICHAEL GLEICHER

For some motions, the kinetic behavior is critical. In such situations, it is unacceptable
to make the simplification of discarding Newton’s laws as a constraint. Popović and Witkin
[27] make a different set of trade-offs to make the spacetime approach realizable. Rather
than simplifying the physics by ignoring Newton’s laws, they chose to simplify the geometry
of the character instead.

To date, the physical approach of Popović has not been extensively demonstrated. It
has only been tested on a small number of short motions. To create a walking motion,
the method is applied to a single gait cycle and looped. In addition to its complexity,
the technique does have the disadvantage of being newer, and therefore less evolved, than
other approaches. Several researchers are exploring ways to approximate momentum effects
within a spacetime editing framework.

4. PER-FRAME IK PLUS FILTERING

In their 1999 paper, Lee and Shin [20] introduced an interactive motion editing system that
addresses many common tasks, including retargeting, transitions, and editing. In addition
to the specific details of their system, the work presents a novel approach to dealing with
both spatial and temporal constraints. The paper presents the first example of a PFIK+F
(per-frame inverse kinematics plus filtering) motion editing approach. While the paper does
not describe other ways of realizing the PFIK+F approach, it did inspire us to consider the
space of implementations of this style of approach.

A PFIK+F solver uses an inverse kinematics solver applied to each frame of the motion
in order to handle spatial constraints. The results of these solutions are then processed to
enforce the temporal constraints. In the inevitable event that the second phase destroys the
work of the first, the process is repeated.

Lee and Shin apply the temporal constraint suggested by Gleicher [13]: that the changes to
the motion should be band-limited. Alternatively, one might view their process as saying the
spatial constraints should be met using as low a frequency change to the motion as possible.
The advantage of this latter view is that it suggests that we are willing to do whatever is
required to meet the spatial constraints, even if it means adding high frequencies.

The original paper by Lee and Shin describes a specific implementation of the PFIK+F
approach. Their system makes specific choices for each component of the approach. With
each step, they provided an innovation:

1. They use exponential maps as a representation for rotations and provide methodology
for using this representation with displacement maps.

2. They provide a novel, simplified IK solver.
3. They use B-spline fitting to the displacement maps to perform the filtering.

The biggest innovation of the paper, is that it introduces the PFIK+F approach. The paper
provides the first demonstration of a PFIK+F approach and illustrates its applicability to a
wide range of motion editing problems.

Each of their innovations represents a tradeoff:

1. Exponential maps provide a methodol for implementing displacement mapping on
Quaternions and give some theoretical meaning to filtering operations (as presented in [21]).
However, this representation has other implementation issues (see [16]), does not necessarily
provide “nice” motions when splined, and is difficult to integrate with existing tools.

COMPARING MOTION EDITING 117

2. Their simplified IK solver has the advantage that it is extremely fast. This is important
since each application of the PFIK+F process may require hundreds of individual calls
to the IK solver. The tradeoff of this fast solver is that it supports only a limited set of
constraints and sometimes seems to provide unnatural looking motions.

3. B-Splines implement low-pass filters with very wide support and can be easily adapted
to weight different samples differently. However, they are more difficult to implement (and
potentially computationally expensive) than convolution-based (FIR) linear filters.

Clearly, the PFIK+F approach can yield a spectrum of implementations, with different
choices made for each aspect of the system.

4.1. Our PFIK+F Solver

In order to better understand the design space of PFIK+F solutions, we have created
a very different implementation of the approach than Lee and Shin have presented. We
emphasize that we have not attempted to improve Lee and Shin’s results. While their
system is specifically designed to be an effective implementation of a PFIK+F approach,
ours uses existing components within our existing system. We were more concerned with
implementation convenience than performance or result quality. However, the fact that
we were able to realize the approach inside our existing system using already available
components speaks to an advantage of the approach. Having the two approaches within the
same system will allow for easier comparisons in Section 5.

The PFIK+F solver that we have built is based on the following design decisions:

1. We treat whatever underlying rotational representation used by the system as indepen-
dent coordinates. In practice, this means that we do per-component arithmetic operations
on Euler Angles.

Applying the PFIK+F solver directly to Euler Angles does appear to work in practice,
despite its theoretical incorrectness. Rather than trying to make an argument to justify this
theoretically, we prefer to acknowledge that such a “signal processing” approach, perform-
ing per-component arithmetic on Euler Angles, to motion editing is widely used. In practice,
we believe that this approach works on the displacements because the displacements are
typically small, and in small-angle approximation, the orientation representations are linear.
The approach fails most spectacularly when the Euler Angles wrap around at 2π , as the
simple arithmetic cannot notice that two very different parameter values represent the same
angle.

Applying the PFIK+F solver directly to Euler Angles allows easy integration with ex-
isting systems. We feel this is an important asset of the PFIK+F approach, even if it comes
at the expense of mathematical cleanliness.

2. We use our existing IK solver to solve the IK subproblems. Or, more specifically,
we use our general purpose spacetime solver (as described in [13]) on a single frame at a
time. While this solver provides a wide range of constraints, this generality comes at the
expense of speed and precision. Our spacetime solver is most likely not as good at solving
the per-frame IK problems as it is designed with excess generality, and intended to provide
performance on the large sparse problems that occur in the spacetime, rather than the small,
dense problems that arise in IK.

Again, the key advantage of this choice is to demonstrate integration with existing sys-
tems. Implementing a good IK solver is a challenging process, and such a solver is generally

118 MICHAEL GLEICHER

considered a valuable asset in an animation environment. Arguably, implementing an IK
solver is the key challenge of creating a PFIK+F system. However, since an existing solver
can be leveraged, this difficulty can be avoided.

3. We use linear FIR filters, rather than B-Spline fitting. This has advantages in generality
and ease of implementation. The hierarchical B-Spline approach used by Lee and Shin, first
presented by Lee et al. [22], offers many advantages over FIR filters for the PFIK+F
approach that will be mentioned in the subsequent discussion.

4.1.1. Operation of the algorithm. Each iteration of the solver produces a new motion
(mi+1) from the results of the previous iteration. We denote the initial motion as m0.

1. The inverse kinematics solver is applied to each frame of the animation. To compute
mi+1(t), we apply the solver beginning with configuration mi(t) and the constraints at time
t . The solver is run on each frame of the animation independently.

2. The displacement map is computed as the difference of the new motion and the original
motion, d = mi+1 − mi.

3. The displacement map is filtered by convolving it with a low-pass filter kernel. Each
channel of the vector is treated independently. We denote this filtered result as df.

4. The new motion is computed as the sum of the filtered displacement map and the
motion at the beginning of the iteration, mi+1 = mi + df.

We note that (assuming the inverse kinematics procedures work), the “original” mi+1 in
step 1, and therefore the displacement computed in step 2 (mi + d), motions will satisfy the
constraints on each frame. The filtering process may provide a motion that does not satisfy
the constraints. In fact, there is no guarantee that the result of step 4 (mi+1) will be any
closer to satisfying the IK constraints than mi in step 1. We cannot make any theoretical
claims about the convergence of the algorithm without placing restrictions on the filter.

The intuition for the algorithm is that at each iteration we determine what changes to the
motion are needed to satisfy the geometric constraints for each frame (step 1 and 2). We
then remove any part of the changes that would violate the temporal constraints. We include
only the portion of the changes that are acceptable. These changes are not enough to fully
satisfy the spatial constraints since they are only part of the changes determined necessary.

To create an algorithm that prefers low frequency changes, but does whatever is necessary
to satisfy the geometric constraints, we use different filters on each iteration of the algorithm.
This is accomplished in Lee and Shin’s system through the use of B-Splines with increasingly
many control points. In our approach, we use filters with increasingly high cutoff frequencies
(i.e., smaller and smaller filter kernels). Intuitively, this causes as much of the change to be
accomplished by the low frequency changes.

We believe that this approach could be implemented in the scripting languages of most
major animation packages. To date, we have not actually created such an implementation,
however, we have done paper design experiments with 3D Studio Max [8] and Maya [1].

4.1.2. A trivial demonstration. To provide some insight as to how the PFIK+F algo-
rithm works, we examine a trivial example: a 2D particle whose initial motion is along the
x axis. We constrain the particle to be on the x axis at the beginning and end of the motion,
and to have a height of n units halfway through the motion. To simplify the illustrations,
we do not allow the solver to alter the x positions of the particle (so that the x position of
the particle is equal to the time step). The initial problem is illustrated in the upper left of
Fig. 1.

COMPARING MOTION EDITING 119

FIG. 1. (upper left) Initial motion and constraints for the trivial example. The other frames show the third
iteration of the solver. The upper right panel shows the displacement required to “solve” the constraint, the lower
left panel shows the filtered displacement, and the lower right panel shows the filtered displacement added to the
previous step.

Walking through the steps of the process, we begin by “solving” the constraints on each
frame. For this trivial example, solving merely means resetting values at the constrained
frames. Subtracting the input to this iteration from this motion provides a displacement
map, which is filtered to compute df, which is added to the starting point of the iteration to
provide the result of the iteration. This process is illustrated in Fig. 1.

The convergence of this process is shown in Fig. 2. For this example, each iteration uses
an identical filter: in this case a binomial filter of width 9 [the kernel (1, 8, 28, 56, 70, 56,
28, 8, 1)]. In this case the solver will never converge exactly—each iteration only moves
the center point 30% closer to the goal.

Figure 3 shows a different example illustrating how the addition of frequency bounded
changes preserves the original motion. In this case, the initial signal has high frequencies and
is subject to the same constraints as the previous example. Figure 3 mimics the illustrations
provided for the simpler example, and the convergence of the solver is shown in Fig. 4.

FIG. 2. The path of the particle on each iteration of the solver.

120 MICHAEL GLEICHER

FIG. 3. The steps of an iteration of the solver on the wave example. The upper left panel shows the initial
condition. The third iteration of the solver is shown in the other frames. (upper right) The results of the per-frame
solve provide the displacements. (lower left) The displacements are filtered to provide filtered displacements.
(right) The final result sums the filtered displacement and the initial curve.

To make the example more challenging, we add additional constraints in Fig. 5. Again,
the process is illustrated with the results in Fig. 6. Even this trivial example has the property
that it will never converge: it is not possible to meet the spatial constraints without adding
high-frequencies to the initial motion. To better handle such cases, we change the solver to
use a decreasingly large filter kernel on each iteration. The result of this process is shown
in Fig. 7.

4.1.3. Filters and fitting. Within the context of the trivial example, we can better un-
derstand choices for filters. It is obvious from the first example that the filtering scheme
chosen leads to a very slow convergence of the algorithm in this case: each iteration only
progresses 30% of the way toward the goal.

A different way to implement the low-pass filtering behavior would be to fit a low-
order polynomial through the constraints. Given that there are only three constraints in the
most trivial case of Fig. 1, this would provide a smooth curve that would exactly meet the

FIG. 4. The path of the particle on each iteration of the solver.

COMPARING MOTION EDITING 121

FIG. 5. Initial motion and constraints for the third simple example with 3 constraints. The steps of the seconde
iteration of the solver are shown: (upper left) initial problem; (upper right) the results of the per-frame solve provide
the displacements; (lower left) the displacements are filtered to provide filtered displacements; (lower right) the
final results sums the filtered displacement and the initial curve.

FIG. 6. The path of the particle on each iteration of the solver.

FIG. 7. The path of the particle on each iteration of a solver where a filter of decreasing size is used on each
iteration.

122 MICHAEL GLEICHER

constraints. More generally, we could imagine choosing a piecewise polynomial such that
desired smoothness constraints are met, and fitting this curve to the data. If there are many
constraints that are close together in time, the curve fit through them will either need to
have many degrees of freedom (and therefore have high-frequency wiggles) or it will not
interpolate the data.

In Lee and Shin’s PFIK+F implementation, a scattered data interpolation method de-
scribed by Lee et al. [22] is employed. This scheme first fits a polynomial with a small
number of knots, and then fits polynomials with an increasing number of knots to fit the
residual. This has the effect of fitting the data with as low-frequency as possible inter-
polant. A similar scheme can be realized by applying a sequence of FIR filters between
each iteration of the algorithm, with latter iterations using filters with higher frequency
cuttoffs.

4.2. Experiments

We have implemented the PFIK+F approach within our Timelines animation testbed.
Our spacetime constraints solver, described in [13], is applied to each frame individually
to serve as the IK solution. By implementing this approach in our existing framework we
are able to apply it to the same problems that we have been exploring with other appro-
aches.

We have applied our PFIK+F solver to a range of problems, including retargeting motions
to new characters, constraint editing, and path editing. In the first and last type of problem,
a change is made across the entire motion and a new solution is found to existing con-
straints. In a constraint editing problem, the constraints are manipulated interactively by the
user.

When our spacetime solver is applied in batch mode, its performance is slower than
when used interactively. This is because we make additional performance concessions (as
described in [12]) for interactivity. More significantly, in batch mode, we lose “differen-
tialness” [11]. That is, during dragging there are only small changes made between each
solution. Therefore, the previous solution is a good starting point in the search for the
next. Interestingly, our PFIK+F solver does not gain major advantage from differential-
ness. While a good starting point might make each individual IK solution slightly faster,4

the total number of iterations is the same.
We discuss a few representative experiments chosen to highlight some of the differences

in the results of the two solvers. Timings reported in this section are run on a Dell Precision
610 workstation with a 550 Mhz Pentium III Xeon Processor and 512 M of RAM.

4.2.1. A simple retargeting problem. We first apply the solvers to the task of retargeting
the walk of a fashion model down a catwalk to a shorter character, 60% of the original’s
height. Footplant constraints are applied to the characters heels and the balls of her feet. The
motion has 183 frames on which 954 scalar constraints have been placed5 to the heel and
forefoot strikes. The solver is permitted to move the positions of the footplants, however it
must keep the feet on the floor and in place when planted. This example is similar to the
one used in Section 5.1.2.

4 We believe the solver described by Lee and Shin takes a constant amount of time, independent of how far the
initial guess is.

5 We count scalar equations, so a constraint that positions a point in 3D counts as 3 constraints.

COMPARING MOTION EDITING 123

We should note that because the character was scaled uniformly, there is a trivial solu-
tion to this retargeting problem: scaling the translation by the same 60% as the limbs, as
shown in Fig. 8. This solution is found by the heuristic starting point finder described in
[13], therefore we omit the heuristic on this example. Instead, we force the character to
walk using the footplant positions of the original, causing a more challenging retargeting
problem.

Our spacetime solver (the least-squares method described in [13]) produces a good result
for the motion when the control points of the B-Spline for the displacement map are placed
5 frames away from one another (3 frame spacing shows noticeable “lunging” to meet foot-
plants). The solver only moves the footplants a small amount from their original positions,
so the small character does take very long steps in relation to its height (this is normally
addressed by the scaling heuristic). Otherwise, the solver produces an appealing motion. In
under half a second, the solver provides a solution where the total error magnitude over the
entire motion is less than 2 cm.

Five iterations of the PFIK+F solver take slightly over 2.5 s to provide a solution where
the total error magnitude is approximately 6 cm. (no single frame shows more than a few
millimeters of error). The resulting motion exhibits a little more “lunging” to meet the long
stride lengths than the spacetime solution, which is a sign that we should have applied more
filtering to the first few iterations of the solver (our implementation presently only supports
limited filtering).

Figure 9 shows the amount of error per frame after each iteration of the solver.

4.3. Real Retargeting Problems

We have also applied both the PFIK+F and spacetime solvers to a number of “real”
retargeting problems where we adapt existing motions to new characters. In such examples,
we find motion and character geometry in libraries, determine a skeleton to fit inside of
the geometry, retarget the motion to work with this skeleton, and then use the skeleton to
drive the movement of the geometry. Some of the menagerie of characters that were tested
are shown in Fig. 10. In all cases, the characters were found in libraries, as were most of
the test motions.

The spacetime-based solver reliably provided subjectively acceptable results over a very
wide range of motions and characters. The PFIK+F solver was not quite as reliable.
On several examples, the solver failed to converge to a solution that met both temporal
and geometric constraints. Also, conflicting constraints and anomalies with euler angles
(filtering over zero-crossings) often caused the PFIK+F solver to fail to return a visu-
ally acceptable solution, even in cases where the spacetime solver was able to provide
answers.

Figures 11a and 11b shows the results of performing a retargeting test using both our
PFIK+F and Spacetime solvers, respectively. We began with motion capture data of a
person performing a spinning leap (not shown), and retargeted this motion to a cartoon ant.
The image shows three different frames of the motion from the results of each solver. The
two solvers give very different results. The PFIK+F solver has the ant leaping much higher
than the spacetime solver. It is impossible to say which is “correct”: we do not know how
a cartoon ant would perform the jump.

In terms of temporal performance, the differences are difficult to characterize. There
were examples for each solver where it was the fastest. This is not surprising given the

124 MICHAEL GLEICHER

iterative nature of the algorithms (especially the spacetime solver), and will be explored in
Section 5.1.

4.4. Path Editing

In this section, we consider the problem of transforming the path that a locomoting
character moves along. For example, we transform a motion of walking in a straight line
to walking in a curved line. The details of the method, described in [15], are unimportant
for this discussion: as far as the solver is concerned, the motion is simply transformed in a
manner that does not preserve the constraints so they must be reestablished. In practice, the
path editing and solution take small amounts of time: we are able to interactively change
the paths of motions with several hundred constraints.

One issue in using the PFIK solver for this approach is that a single position for each
constraint must be found. This does not trivially extend to constraints that exist over a
duration of time. The position of such a constraint may be mapped to different locations
at different times. One way to view the problem is that a single instant must be chosen for
the constraint to determine how to transform its position, otherwise its position may not be
mapped to a unique location.

Different choices in time lead to different constraint positions which, in turn, lead to
different characteristics of the motions. The three most obvious choices are the beginning,
middle, and end of the duration of the constraints. Figure 12 shows how this choice affects
a walking motion. The differences are subtle, and illustrate the challenge of motion trans-
formation: there is no clearly “correct” answer given the limited information we have. We
are left with either building more sophisticated models to determine the movement, relying
on heuristics (or user input) to select among the myriad of small choices, or reconciling
ourselves to never having the perfect answer.

One specific caveat: entire footplants must be dealt with at a single instant, the heel and
toe strikes cannot be given separate times. If they are transformed at the same instant, their
positions will be transformed rigidly. Otherwise, the heel and toe strike positions may be
transformed differently, changing the distance between them which is impossible if the
character is a rigid skeleton. The spacetime approach provides the option of allowing the
solver to determine where the footplants are placed.

5. COMPARING APPROACHES

At a high level, the different methods discussed so far all achieve the same result: they
allow for finding motions that meet a set of spatial (geometric) and temporal constraints.
Our goal in this section is to understand the differences between the methods in terms of
what they accomplish.

Our focus is on comparing the PFIK+F and Spacetime approaches as they address similar
problems:

• Both the spacetime and PFIK+F approaches are applicable to motion from any source:
keyframed data can be sampled. The PKIK methods only work given good keyframes, and
therefore are not applicable across the range of problems of these other methods.

• Both spacetime and PFIK+F methods are inherently off-line. That is, they require the
entire motion to examine. While this has the benefit that the methods can look at larger ranges
of the motion to create better temporal constraints, the ability to look into the future may

COMPARING MOTION EDITING 125

FPO scaled at 100%
4-Color Artwork

FIG. 8. The model’s walk is retargeted to a smaller character (right).

not be practical. The PFIK approach seems to be uniquely suited for on-line applications
where future durations of the motion are unavailable, and past decisions cannot be changed
as discussed in Section 3.3.1. Recent developments in online systems [29] may lead to PFIK
that are competitive for off-line problems.

• The PFIK approach can be viewed as a variant of the PFIK+F approach with an
identity filter. In practice, a more sophisticated IK technique would be used to enforce
temporal constraints. However, it appears that the class of temporal constraints that can be
achieved this way is different than what can be achieved with the other methods.

FPO scaled at 100%4-Color Artwork

FIG. 9. Total per-frame error for the catwalk example for each iteration of the PFIK+F solver. Error is
measured in feet.

126 MICHAEL GLEICHER

FIG. 10. A variety of characters that we have retargeted motions to. The original skeleton from the motion
capture data is shown in the center.

FIG. 11. (a) Results of retargeting a leaping dance motion to a cartoon ant using our PFIK+F solver.
(b) Results of retargeting a leaping dance motion to a cartoon ant using our Spacetime solver.

COMPARING MOTION EDITING 127

• We do not consider the physical approaches as they are predominantly a different
objective function and constraint for the spacetime approach. Also, because the methods
have not been demonstrated on comparable classes of problems, analysis is difficult.

• The PFIK+F and Spacetime approaches are the only methods that have been demon-
strated across a wide and similar set of editing problems, and have demonstrated viable
interactive performance on these problems.

5.1. Comparison of Performance

The actual performance is as much a measure of the implementation as of the method.
While modern processors provide impressive performance for applications, achieving the
potential of these applications typically requires a great deal of tuning and care.6

More specific to our comparison, it seems that even within a given approach, there
are a wide range of design decisions and tradeoffs that can be made. For example, com-
pare the tradeoffs made in the spacetime approach to achieve interactive performance on
a circa 1996 personal computer [12] with the decisions made to create a noninteractive
system on a high-performance workstation where maintaining physical constraints were
essential [27].

Similarly, Lee and Shin make concessions to performance in their implementation of the
PFIK+F approach. Through the use of the simple geometric IK solver, they trade solution
quality and generality for performance. In our implementation, we made fewer concessions
by employing a more general, however more expensive, optimization-based solver. For our
analysis, we consider the latter because it is more able to handle the range of constraints
that the spacetime approach can. Specifically, it can allow arbitrary points to be positioned,
multiple points to be placed simultaneously, joint limits to be used, and other types of
constraints to be applied.

The iterative nonlinear solvers used for spacetime typically only require a small number
of iterations to converge to a solution. This makes the performance difficult to characterize:
a small perturbation in the initial conditions may require the solver to make an extra iteration
or two, which is substantial when the solver requires only a handful of iterations altogether.

5.1.1. Computational complexity. To consider the complexity of each method, we as-
sume that the motion has n frames. Each frame of the motion has a small number of
constraints, therefore the problem must consider O(n) constraints. Similarly, in each frame,
the character has the same number of variables to describe its configuration, so the total
number of variables is again O(n).

Convergence of any algorithm that solves general nonlinear equations is not guaranteed.
Therefore, it is impossible to place strong bounds on the time it takes to solve nonlinear
equations, whether for an IK problem or for a spacetime solution. However, in practice,
we do not seek an exact solution and typically bound the number of iterations by a small
constant—if a suitable solution is not found in this number of iterations, we assume one will
not be found. In practice, we find this number to be quite small for our solver. We therefore
analyze the complexity of a single iteration of the nonlinear solver, since this does grow
in a deterministically bounded way with problem size, and we assume that the number of
iterations is bounded by a constant, so this complexity does apply to the overall solution.

6 Anecdotally, we have achieved very substantial speedups in our code by attending to issues in memory system
performance. A cache miss can take as long as a large number of floating point operations.

128 MICHAEL GLEICHER

FPO scaled at 100%4-Color Artwork

FIG. 12. The example of Fig. 8 is adapted using different methods for choosing the new footplant positions.
The different colors represent the motion obtained by moving footplants to their beginning, middle, or end of their
duration.

At each iteration of the nonlinear solver, constraint errors and derivatives are computed,
a linear system is solved, and the estimate of the solution updated.7 In [11] we argue that
constraint problems are sparse for many graphics applications because each constraint only
affects a small number of variables independent of the overall size of the problem. This
means that the constraints and their derivatives can be computed in time linear with the
number of constraints and variables. The only step with worse than linear complexity is
solving the linear system.

Under these assumptions, the computational complexity of the PFIK+F approach is
O(n). At each iteration of the solver, an IK problem must be solved for each frame of the
motion. The amount of time each of these problems take is independent of the total length
of the animation. Similarly, other steps in the process also are independent of the duration
of the animation. We assume that the solver runs for a small constant number of iterations.

The analysis of the spacetime solver is more complex. Following the analysis of [11], we
can see that the amount of work done for each constraint in evaluating and differentiating
is a constant independent of the total number of constraints. The constraint Jacobian (the
derivative of each constraint with respect to each variable) will consist of O(n) rows (one
per constraint), each having a small constant number of nonzero entries (each constraint
refers to only a small number of instants in time). This sparse linear system, with O(n)
nonzero entries, can be solved in O(n2) time with an iterative method (O(n) iterations
each requiring an O(n) sparse-matrix multiply [2]).8 Exploiting the banded nature of these
matrices can reduce the complexity even further, yielding O(n) complexity.

For each of these analyses, we have limited the solver to a constant number of iterations.
With the PFIK+F approach, we have the choice of ensuring that despite this bounded
number of iterations that either the temporal constraints are satisfied (by terminating with
a filtering step) or that the spatial constraints are satisfied (by terminating with a step
that skips the filtering). The spacetime approach does not provide this choice: because we

7 This characterizes a wide class of methods [9, 24].
8 Technically, iterative solution of the linear system with O(n) nonzero elements takes O(n2) time only with infi-

nite precision arithmetic. In practice, the use of damping and large tolerances allow us to achieve this performance.

COMPARING MOTION EDITING 129

FIG. 13. Results of the performance experiment. The timings provided are computed on an IBM workstation
with an 866 Mhz Pentium III Xeon Processor and 512 M of RDRAM.

cannot be guaranteed of convergence, we cannot know that the spatial constraints will be
satisfied.

5.1.2. Performance experiment. To explore the asymptotic performance of the algo-
rithms, we devised an experiment where we created very long motions with many con-
straints. In order to keep the “difficulty” of the numerical problem constant, we needed to
use similar constraints. To create the long examples, we began with a loopable 89 frame
walking motion on which footplant constraints were applied to the heel and toe. We repeated
this motion as necessary to create a motion of the desired length.

Our test was to retarget the motion to a character 60% of the size of the original. The
results of this experiment are shown in Fig. 13. As in the examples of Section 4.2.1, the
smaller character is forced to walk in the footsteps of the original character to create a more
challenging retargeting problem and the scaling heuristic in not used.

These trials test extremely long motions: the longest trial is over 7 min long. All of the
experiments, except for one, performed the retargeting in less than real time. The anomolies
in the longest trials are explained by the fact that this problem is too large to fit in physical
memory.

The parameters for the solvers were chosen to be the fasterst settings that produced
visually acceptible results. This required four iterations of the PFIK+F solver, with a filter
schedule that ended with a 3-point B-Spline filter kernel. As expected, the timings for the
PFIK+F solver are linear (when the last example is excepted), as shown in Fig. 14.

The behavior of the spacetime solver seems less simple. For each test, a small number
(between 4 and 11 of iterations was required by the solver. When the solver took more than
3 steps, it rarely made much progress (the last steps of the solver improved the solution by
less than 1%). The solver’s choice to take more iterations does not seem to be coupled to
the quality of the result, or the size of the problem. In theory, it is tied to the nonlinearity of

130 MICHAEL GLEICHER

FIG. 14. Performance of the PFIK+F and spacetime solvers on problems of varying size. A third line shows
the expected spacetime solver performance if a fixed number of iterations is used.

the problem. In practice, there seems to be a degree of luck as to how well the solver does
at finding a solution and determining that it is unlikely to make substantial improvements
by taking more steps.

If we limit the spacetime solver to 3 iterations, it achieves results comparable to the
PFIK+F solver, so this timing is also provided. When the timing for the spacetime solver
is examined on a per-iteration basis, we would expect the time to be dominated by the step
of solving the sparse linear system. Because we use a conjugate-gradient solver (similar
to the one described in [26], we would expect O(n2) behavior. We instead see a result
that is linear (to a very high statistical confidence). The best explanation for this is that
the matrix is well enough conditioned, and the stopping tolerance is large enough, that an
effectively constant number of iterations is required. Rather than claiming that this is likely
to happen across problems, we use this example as a demonstration that nthe time required
for the spacetime solver depends as much on how hard the problem is as how big the
problem is.

The spacetime trials were run with the control points of the B-Spline placed on every third
frame. This yielded a motion that was of acceptable quality and was visually superior to the
PFIK results. Using a control point every fifth frame provided an even more natural looking
motion, albeit one with more foot sliding (in terms of measured distance, not perceived
quality). The smaller number of control points took a longer time to solve.

5.2. Range of Constraints Handled

Different types of solution techniques allow differing amounts of generality to the types
of constraints that they may allow. The set of constraints that we might want to preserve in a
motion is open. Ultimately, we might have constraints to specify not only geometric details,
such as the positions of end-effectors and limits on joints, but also high-level properties

COMPARING MOTION EDITING 131

such as the “naturalness” of a motion, or its “mood.” To date, mathematical descriptions
of such high-level properties have not been identified. However, generality in a solver means
that such constraints are more likely to be usable when they are developed.

The class of constraints a system can handle depends on much more than the solver’s
approach. The details of the implementation of the solver parts make limitations. For ex-
ample, not all inverse kinematics solvers implement all possible IK constraints. Sometimes
limitations on the availability of constraints are more than a solver issue: for constraints to
be used effectively, there must be methods provided to specify and visualize them.

Our question is whether the motion editing approach affects the range of possible con-
straints. Just because an approach can handle a particular constraint does not mean that all
implementations of the approach can. In this section we explore the generality afforded by
the spacetime approach over that provided by an IK-based approach. That is not to say that a
sophisticated PFIK approach may not implement a wider variety of constraints than a simple
implementation of a spacetime approach. In this section, when we refer to the constraints
of an approach, we are discussing that constraints are possible with an implementation of
the approach. We are seeking fundamental limitations in the approaches.

Our first observation is that the set of spatial constraints possible in a spacetime approach
is a proper superset of what an IK solver can do. At worst, the same equations used in an
IK solver can be used in a spacetime solver applying to a single instant in time. In terms
of temporal constraints, the situation is less clear. A spacetime solver can recreate a PFIK
solver by using an objective function that does not couple frames. However, the preference
for low frequencies given by the PFIK+F approach (with soft temporal constraints) is more
difficult of recreate. At worst, it can be implemented within the spacetime approach by
making repeated calls to the spacetime solver with gradually increasing frequency limits.

The spacetime approach can handle constraints that a per-frame approach cannot. A
simple example is that it is possible to create constraints that hold over time. We call
such constraints variational, as they place limits on the function curves. In a PFIK-based
approach, constraints can only be placed at discrete instants. To date, this advantage has not
been exploited: variational constraints are implemented by sampling at discrete instants.

A related issue is interframe constraints: that is, a constraint that relates two or more
different instants in time. For example, we might want to specify that a hand is in the same
place in several different frames. We note that this implies that we do not have a specific
value in mind: if so, we could have equivalently specified a position for each individual
constraint.

A major flexibility of the spacetime approach comes from the fact that it handles “don’t
care” constraints well. That is, a constraint that does not fully specify a goal. Such con-
straints are common. While many constraints specify interactions with specific points in
the world, an even larger class of constraints place only general restrictions. For example,
most footplant constraints require that the foot be on the floor, and that the foot does not
slip while on the floor. However, the exact position on the floor is typically unimportant
(unless the character is walking in a mine field, crossing a river on rocks, or another such
contrived case).

The information to determine values for the “don’t cares” can come from any part of the
motion. Allowing the solver to determine the footplant positions based on information from
other frames leads to more natural retargeting and more useful constraint-based control.
For example, a character whose goal is moved may take larger steps in order to reach its
destination.

132 MICHAEL GLEICHER

5.3. Order Independence

Interframe constraints with “don’t cares,” as described in the above section, suggest
another limitation of per-frame approaches: they are order dependent. We must choose the
configuration for one frame before choosing another.

To illustrate the order independence property, consider placing a constraint on the motion
specifying that the character must be standing in place. In a PFIK approach, each frame
would have to look to the results of a previously solved frame to choose a position. Were it to
choose an unsolved frame, that frame might change in the future. Consider if an additional
constraint specifying the character’s position is placed on one of the frames of the motion.
Were this frame solved first, then all other frames would end up in the right place, if another
frame was chosen to be solved first, when the positioned frame’s turn to be solved arrived,
it would have a conflict: it would need to choose between being in the same place as the
previously solved frames or meeting its positional goals.

Some of the advantages of the spacetime approach might be recreatable in a PFIK+F
approach if there were a mechanism for determining the order in which to solve constraints.
An illustration of this is in Fig. 12, where a single time is chosen to determine the position
of each footplant. The declarative, order independent, nature of constraints are one of the
features that make constraint-based descriptions attractive.

5.4. Quality of Result

Getting an answer quickly is nice. However, it is also important to get “good” answers.
Unfortunately, it is difficult to define what a good answer is since there is no ground truth
answer to compare with. In a motion editing tool, one might define the correct answer as
being what the user wants. Therefore, the quality of a solution is directly related to how
well it can be controlled to provide a user with a desired result.

Just as the specifics of implementation may mean as much as the approach for the
performance of solvers, they also have considerable influence on the quality of the resulting
motions. For example, in a PFIK+F or PFIK approach, an IK solver that tends to pose the
character in natural and plausible ways is more likely to provide good motions than a solver
that doesn’t. An example showing differences between our spacetime and PFIK+F solvers
is shown in Figs. 11a and 11b.

The specific examples applied have impact on the quality of the resulting motions. Achiev-
ing good results requires having good motions to start with.9 It also requires good spatial and
temporal constraints to be defined for the initial motion. Both of these factors are somewhat
independent of the motion editing approach. However, the approach can impact quality
through the types of constraints it allows for and how well it operates in the face of “bad”
constraints, such as conflicts, and under-specified cases.

5.5. Summary: PFIK+F vs Spacetime

The advantages of the spacetime approach:

1. Wider range of objective and temporal constraints possible, however this flexibility
has not yet really been exploited.

9 Generally; the use of motion editing techniques to turn bad motions into good motions has not yet been fully
explored.

COMPARING MOTION EDITING 133

2. Order independence.
3. Better handling of “don’t care” geometric constraints.
4. Interframe geometric constraints.

The advantages of the PFIK+F:

1. Simpler to implement. A PFIK+F solver can basically be build from “standard” parts
in an animation system.

2. Can ensure solving the geometric constraints.
3. Easily allows for weak frequency limit constraints.
4. More predictable solution times.

6. CONCLUSIONS

In this paper, we have examined a range of methods of performing constraint-based
motion editing. With this menagerie of techniques at their disposal, developers can choose
techniques that fit their problems. Some classes of editing applications suggest particular
solution approaches, for example PFIK for on-line applications. For general off-line editing
applications, several approaches apply. Spacetime and PFIK+F methods, the two primary
contenders in such applications, each have a set of strengths and weaknesses, and physically
based approaches offer promise as a viable approach in the future.

ACKNOWLEDGMENTS

The author thanks Andy Gardner for his assistance in performance evaluation and picture making, Taylor
Wilson of House of Moves Motion Capture Studios for the sample data, Jehee Lee and Sung-Yong Shin for their
discussions of the methods, and Alex Mohr for his help with proofreading.

REFERENCES

1. Alias/Wavefront, Maya, computer software, 2000.

2. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eikhout, R. Pozo, C. Romine, and H.
van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

3. R. N. Bindiganavale, Building Parameterized Action Representations from Observation, Ph.D. thesis, Uni-
versity of Pennsylvania, 2000. [Appears as Technical Report MS-CIS-00-17]

4. N. I. Badler, K. H. Manoochehri, and G. Walters, Articulated figure positioning by multiple constraints, IEEE
Comput. Graphics Appl. 7(6), 1987, 28–38.

5. A. Bruderlin and L. Williams, Motion signal processing, in SIGGRAPH 95 Conference Proceedings, Annual
Conference Series, pp. 97–104, Aug. 1995.

6. K. J. Choi and H.-S. Ko, On-line motion retargeting, J. Visual. Comput. Animation 11, 2000, 223–243.

7. M. F. Cohen, Interactive spacetime control for animation, Computer Graphics (Proceedings of SIGGRAPH
92) 26(2), 1992, 293–302.

8. Discreet, a division of Autodesk, Inc., 3d Studio Max, computer software, 2001.

9. R. Fletcher, Practical Methods of Optimization, Wiley, New York, 1987.

10. M. Gleicher and P. Litwinowicz, Constraint-based motion adaptation, J. Visual. Comput. Animation 9, 1998,
65–94.

11. M. Gleicher, A Differential Approach to Graphical Interaction, Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, 1994.

134 MICHAEL GLEICHER

12. M. Gleicher, Motion editing with spacetime constraints, in Proceedings 1997 Symposium on Interactive 3D
Graphics, pp. 139–148, Apr. 1997.

13. M. Gleicher, Retargeting motion to new characters, in SIGGRAPH 98 Conference Proceedings, Annual
Conference Series, pp. 33–42, ACM SIGGRAPH, Addison Wesley, July 1998.

14. M. Gleicher, Animation from observation: Motion capture and motion editing, Comput. Graphics, invited
paper to appear.

15. M. Gleicher, Motion path editing, in Proceedings 2001 ACM Symposium on Interactive 3D Graphics, March
2001.

16. F. Sebastian Grassia, Practical parameterization of rotations using the exponential map, J. Graphics Tools
3(3), 1998, 29–48.

17. J. U. Korein and N. I. Badler, Techniques for generating the goal-directed animation of articulated structures,
IEEE Comput. Graphics Appl. 2(9), 1982, 71–81.

18. S. Park Kwangjin Choi and H. Ko, Processing motion capture data to achieve positional accuracy, Graphical
Models Image Process. 61(5), 1999, 260–273.

19. P. C. Litwinowicz, Inkwell: A 2 1
2
-D animation system, in Computer Graphics (SIGGRAPH ’91 Proceedings),

Vol. 25, pp. 113–122, July 1991.

20. J. Lee and S. Y. Shin, A hierarchical approach to interactive motion editing for human-like figures, in Pro-
ceedings of SIGGRAPH 99, pp. 39–48, Aug. 1999.

21. J. Lee and S. Yong Shin, Multiresolution Motion Analysis and Synthesis, Technical Report CS-TR-2000-149,
Computer Science Department, KAIST, 2000.

22. S. Lee, G. Wolberg, and S. Y. Shin, Scattered data interpolation using multilevel b-splines, IEEE Trans. Visual.
Comput. Graphics 3(3), 1997, 228–244.

23. A. A. Maciejewski, Dealing with the ill-conditioned equations of motion for articulated figures, IEEE Comput.
Graphics Appl. 10(3), 1990, 63–71.

24. J. Nocedal and S. Wright, Numerical Optimization, Springer Series in Operations Research, Springer, New
York, 1999.

25. C. B. Phillips and N. I. Badler, Interactive behaviors for bipedal articulated figures, Comput. Graphics (Pro-
ceedings of SIGGRAPH 91), 25(4), 1991, 359–362.

26. W. Press, B. Flannery, S. Teukolsky, and W. Vetterling, Numerical Recipes in C, Cambridge University Press,
Cambridge, UK, 1986.

27. Z. Popovic and A. Witkin, Physically based motion transformation, in Proceedings of SIGGRAPH 99, pp. 11–
20, Aug. 1999.

28. C. B. Phillips, J. Zhao, and N. I. Badler, Interactive real-time articulated figure manipulation using multiple
kinematic constraints, in 1990 Symposium on Interactive 3D Graphics, Vol. 24, pp. 245–250, March 1990.

29. H. J. Shin, J. Lee, M. Gleicher, and S. Y. Shin, Computer puppetry: An importance based approach, ACM
Trans. Graphics, accepted.

30. D. Tolani, A. Goswanmi, and N. Badler, Real-time inverse kinematics techniques for anthropomorphic limbs,
Graphical Models 62, 2000, 353–358.

31. M. Unuma, K. Anjyo, and R. Takeuchi, Fourier principles for emotion-based human figure animation, in
SIGGRAPH 95 Conference Proceedings, Annual Conference Series, pp. 91–96, ACM SIGGRAPH, Addison
Wesley, August 1995.

32. C. Welman, Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation, Master’s
thesis, Simon Frasier University, Sept. 1993.

33. A. Witkin and M. Kass, Spacetime constraints, in Computer Graphics (SIGGRAPH ’88 Proceedings). Vol. 22,
pp. 159–168, Aug. 1988.

34. A. Witkin and Z. Popović, Motion warping, in SIGGRAPH 95 Conference Proceedings, Annual Conference
Series, pp. 105–108, Aug. 1995.

35. J. Zhao and N. I. Badler, Inverse kinematics positioning using nonlinear programming for highly articulated
figures, ACM Trans. Graphics 13(14), 1994, 313–336.

