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Abstract

Crowd simulation for virtual environments offers many challenges centered on the trade-offs between rich behav-
ior, control and computational cost. In this paper we present a new approach to controlling the behavior of agents
in a crowd. Our method is scalable in the sense that increasingly complex crowd behaviors can be created with-
out a corresponding increase in the complexity of the agents. Our approach is also more authorable; users can
dynamically specify which crowd behaviors happen in various parts of an environment. Finally, the character mo-
tion produced by our system is visually convincing. We achieve our aims with a situation-based control structure.
Basic agents have very limited behaviors. As they enter new situations, additional, situation-specific behaviors
are composed on the fly to enable agents to respond appropriately. The composition is done using a probabilistic
mechanism. We demonstrate our system with three environments including a city street and a theater.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Animation

1. Introduction

Crowds are an important feature of the real world, and
hence high quality crowd simulation is vital for many virtual
environment applications in education, training, and enter-
tainment. There are several conflicting goals in crowd an-
imation. Simple characters are more efficient to evaluate,
but complex characters can capture more realistic crowd
behaviors. Authors need a control over the actions of the
crowd, but we cannot control every agent individually. Fi-
nally, crowds for virtual environments must be visually plau-
sible. Scalable simulation is required to address these con-
flicting goals, particularly with respect to the complexity of
the environment and the wealth of behaviors required by the
crowd. In a scalable simulation, the complexity of the char-
acters and their control grows slowly as the environment de-
mands more of them, and visual quality is always retained.

In this paper we present a novel approach for simulating a
crowd in a complex virtual environment that is scalable, di-
rectable and visually convincing. In this approach the crowd
is simulated on two levels (Figure 1). At the high level, we
adopt a situation-based distributed control mechanism that
gives each agent in a crowd specific details about how to re-
act at any given moment based on its local environment. At
the low level we use a probability scheme which computes
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probabilities over state transitions and then samples to move
the simulation forward. In addition, we use a Snap-Together-
Motion [GSKJ02] process to maintain visual motion quality.
This ensures that there are no artifacts as motions are con-
catenated together over time.

The main inspiration for our approach is the anonymity
offered by crowds. When we look at a crowd, we care only
about what is happening, not who is doing it. This has two
implications. First, the actions of the crowd should be driven
by situations — what is happening — and not by individu-
als. This motivates our situation-based strategy. Secondly,
viewers of a crowd cannot individually identify and track
agents. Rather, viewers are attentive to overall statistics of
the crowd: the direction it’s moving, the apparent agita-
tion of its members, the number of people waiting for the
bus. Hence, the actions of an individual matter only in its
short-term contribution to the crowd’s behavior, and not in
their long-term planning. This motivates our probabilistic
approach to simulation.

A key observation is that a given character is never in
more than a few situations at once. This limits the set of be-
haviors a character requires at any given moment. For exam-
ple, while watching a movie an agent needs to know how to
sit in a theater, but it doesn’t need to remember how it bought
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Figure 1: An overview of our two-level agent architecture.
At the high level, situations control the events that agents
respond to, and provide mechanisms for handling the events.
At the low level, the behaviors resulting from multiple events
are composed with a probabilistic technique to choose the
next action.

the ticket, nor how it uses the bathroom. We exploit this with
composable behaviors. An agent starts off with simple be-
havior models. When it enters a situation, such as approach-
ing a ticket booth, it is augmented with the machinery nec-
essary to purchase tickets. Once a ticket is purchased, the
machinery is removed again.

The first advantage of this approach is ease of authoring;
it breaks the problem of agent design into the design of lo-
cal activities, rather than one monolithic system. Second, re-
use is enhanced; the core behavior and actions can be used
in any environment and the situation specific modules can
be shared wherever situations are shared. Third, efficiency
is improved; at any given moment an agent only has infor-
mation for the situation that they are in — not all of the in-
formation for the entire environment. Finally, de-centralized
control of agents makes overall performance scalable, espe-
cially when a large crowd is simulated; each situation takes
care of only a small number of agents.

The situation-based approach puts an emphasis on envi-
ronment design because overall crowd movement depends
on the situations present in the space and where they are
located. For specifying situations, we adopt a painting in-
terface. It allows the user to specify a particular situation
by drawing it on the environment directly. Situations can be
easily composed by overlaying several in one area.

The next section provides an overview of our approach,
followed by a review of related work. Section 4 explains the
probabilistic simulation scheme. Section 5 presents the de-
tails of our situation-based approach. We close with several
experiments and discussion of future work.

2. Overview

The aim of our simulation is to produce the moment to mo-
ment actions of individuals in a crowd. At a given instant in
time, an individual may perform any number of actions, but
in our system the set is limited to those that we are able to an-
imate. Because we use motion synthesis based on connecting
clips of existing motion (Snap Together Motion [GSKJ02]),
the individuals have a finite repertoire of actions (the avail-
able clips), and therefore at any instant they will have a dis-
crete set of choices for what action to do next. The sequence
of such discrete choices represents the behavior of an agent
over time.

Snap Together Motion constrains the set of transitions
from one state to the next (for now, consider a state to be
a position and orientation) to the small set of movements
that can plausibly follow the current state. The set of ac-
tions forms a directed graph where the nodes represent states
where different choices are available, and the edges repre-
sent the actions that can be performed in that state. The use
of a directed graph, or finite state machine, is a common
mechanism for synthesizing the movements of characters in
interactive systems.

The behavior of an individual character is its sequence of
actions. A particular sequence stems from a set of choices:
in each state, the character must choose which state to move
to next. An action selection method is an algorithm for mak-
ing the choices. Changes in the method give a character dis-
tinctive behaviors. Our challenge is to create action selection
methods that work for crowd simulation and meet our goals
of authorable and scalable behaviors.

We exploit the observation that when individuals are
anonymous their specific actions may appear somewhat ran-
dom. Consider a man crossing a busy city street at a particu-
lar instant. There are many actions he may choose: he might
continue walking across the street; he might turn around and
walk back the way he came; he might glance to the side
to check to see if a car is disobeying the traffic signals.
If we knew the individual, his choice might be clear: we
might know that a particular person is prone to remember-
ing that he forgot something in his office while crossing the
street. For an individual we know little about (a member of a
crowd), we cannot say for certain. We thus model the action
choice probabilistically; a person crossing the street is more
likely to keep crossing, but there is some chance that he may
turn around and walk back.

When a new state is required, our probabilistic action
selection method considers the choices that the character
has for its next state, creates a probability distribution as to
which choice is likely to be taken, then samples from this
distribution to determine the course of action. The challenge,
then, becomes determining the probability distributions such
that the sequence of action choices leads not just to plausible
behavior of the individual, but also the desired behavior of
the entire crowd.
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Complex behavior (and a correspondingly complex dis-
tribution function) is often made from a number of simpler
pieces. For example, a person walking in the city will be
avoiding others, trying to move towards a goal, trying to
obey traffic laws, and so on. We define behavior functions
that describe the actions for each of these simple behaviors
through probability distributions. We compose distributions
to create the final action selection method. In this way we
combine simple functions into more complex aggregate be-
haviors. Behavior functions are discussed in detail in Sec-
tion 4. A behavior function may depend on many things. For
example, it may depend on the location of the individual (the
middle of the street is not a good place to stop), what the
agent is able to “sense” (wait until the signal says “walk” be-
fore crossing), or even an aggregate controller that attempts
to regulate the crowd (if there are too many people on one
side of the street, it is more likely for an individual to cross
so that things are better balanced).

Our situation-based approach determines which behavior
functions are currently influencing a character, and hence de-
termines the overall behavior of each agent. When a charac-
ter enters a situation, such as crossing the street, our system
extends the character to enable appropriate behavior. Primar-
ily, it adds temporary behavior functions to the character that
are composed with its existing ones, allowing it to choose its
actions more wisely. Situations may also add actions to the
character - an individual need not know how to look both
ways unless she or he is crossing the street. In fact, even the
character’s ability to sense its environment can be adapted
to the situation. Only when in the street crossing situation
does the character need to know how to sense the status of
the crossing signal. When the character leaves the situation,
all of the situation-specific extensions are removed. Section
5 describes the details of extending the behaviors of agents.

3. Related Work

For the general purpose of generating human-like behav-
iors, many researchers have proposed cognitive agent ar-
chitectures [FTT99, WCP*, ACO1] that are comprised of a
knowledge representation, algorithms that learn new knowl-
edge, and modules that plan actions based on the knowl-
edge. These systems are not scalable because their complex-
ity grows at least as rapidly as the overall environmental
complexity.

Rule-based schemes, such as Reynolds’ boids mod-
els [Rey87] are fast enough for use with large numbers of
agents. Commercial systems, such as Softlmage/Behavior,
Al-Implant, Character Studio 4.0 and Massive [Koe] also ap-
pear to be rule-based. These systems are not scalable from
an authoring perspective. Creating crowds for complex en-
vironments is extremely time-consuming and error prone.
Real-time systems of the type we are concerned with can-
not touch-up poor behavior in the way that offline film pro-
duction can. Hierarchical schemes have been proposed to ad-
dress scalability [FMS00, MTO1]. In particular, Musse et. al.
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endows crowds with different levels of autonomy for hierar-
chical crowd behaviors [MTO1], but complex individual be-
haviors have not been demonstrated.

At the other extreme, physics inspired approaches, such
as a social force models [HM95, HFVO00] or particle sys-
tems [EE97, GLM99, BMdBO03], can create realistic crowd
flow but are only applicable to situations such as emergency
evacuations, in which crowd behavior is limited and interac-
tions with the environment are minimal.

In order to reduce the complexity of controlling
crowds yet retain detailed behaviors, several sys-
tems [FBT99, TLCCO1, FMS98] have attached information
to the environment to guide the characters within it. Simple
examples include driving and pedestrian simulators that
embed lane or pathway information in the model. Our
approach also embeds information, such as planned paths,
into the environment, but, in addition, we include the
behaviors to interpret that information.

The most commercially successful system of this type is
the computer game, The Sims [FWO01], in which objects ad-
vertise services, such as “satisfy hunger”, and define a pro-
cedure that is run when the character responds to the service.
The Sims highlights the authoring advantage of a rich envi-
ronment: part of the game’s appeal is the ability to easily
add new objects and have characters respond to them. The
Sims add behaviors by enforcing a specific, linear plan to
the interacting agents. If the desired object-specific behav-
ior is not amenable to a simple plan, the approach breaks
down. For instance, a “mingle with a crowd” behavior could
not be added. Such interactions must be part of the charac-
ters innate behavior, increasing its complexity. In contrast,
our method adds “behaviors” that interact on equal terms
with the existing behaviors and have all the power of rule-
based state machines. This allows for much simpler under-
lying characters and more complex extension behaviors.

Similar to The Sims, Kallmann and Thalmann [KT98]
describe smart objects: objects that provide a plan for their
use. The character, upon approaching an object, is told to
execute a specific sequence of steps. For instance, an elevator
informs a character to push the button, wait, then enter when
the door opens. This approach is similar to ours in that the
characters are provided all necessary information from the
environment directly. However, in our approach the situation
is more general concept that includes non physical effects
such as friendship among characters. Moreover, rather than
indicating a specific behavior to a character at a particular
time, our situations propose a composable behavior that can
be combined with others. One result of this is that characters
in our system do not always respond to the same object in
the same way, just as real people behave.

Robotics algorithms have been applied to animate multi-
ple characters. Bayazit et. al. [BLAO2] uses a global road
map to set collision-free paths for multiple characters, and
similar methods have been introduced [Feu0O]. Tsi-Yen Li
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et. al. proposed the Leader-Follower model [LJCO1], the
main goal of which is to generate collision-free paths for
characters. Since their focus is on path planning for mul-
tiple characters, complex behavior such as "find an empty
seat and sit down, then watch a movie" cannot be simulated.
In our approach, collision avoidance is achieved through a
behavior function that penalizes states which may cause a
collision by giving low probability to them.

We need good motion data to produce visually plausible
crowds. Many example-based motion synthesis techniques
based on blending have been proposed [RCB9S, KG03].
They typically interpolate several motions to synthesize a
desired new motion. For example, to get a walking motion
with a particular speed, similar walking motions are found
in the motion set and interpolated to get the desired walk. In
our system, on the other hand, we use appropriate motions
directly without any interpolation because we assume that a
behavior can be represented with a series of motions. There-
fore, to simulate a particular behavior, we only need to de-
termine which motions are appropriate and select one, rather
than creating a new motion. Performance is improved with
this approach because we don’t use search and interpolation.

Tecchia et. al. [TCO00, TLCO2] describe a real-time,
image-based alternative to motion-captured data for crowds.
However, the realism of image-based approaches is limited
by the amount of imagery that must be stored in order to
handle arbitrary, close-up viewing conditions.

4. Probability Scheme

As described in Section 2, the behavior of an agent comes
from its choices about which actions to take. At each
time step of the simulation, the agent has a state s =
{t,p,0,a,s™ }, where ¢ is the time, p is a 2D position vector,
6 is an orientation, a is an action and s~ is a list of previous
states. The position and the orientation indicate the spatial
disposition of the character. The action is directly linked to a
motion clip and determines which clip should be played for
the current frame. The past states are used by the behavior
mechanism to give some correlation in the agent’s behav-
ior over time. Without some previous state information it is
difficult to enforce behaviors like “walk in a straight line”.
The aim of the probabilistic state selection mechanism is to
choose a next state given the current state.

The link between actions and motions means that we have
a finite set of possible choices for the next action — it has
to be one of the available motion clips. Each potential next
state has an associated probability representing the chance
of being selected. Our behaviors modify these probabilities
on the fly, as well as the set of potential states. Note that this
is conceptually similar to probabilistic finite state machines
typically used for character AI [WPO1], but in our approach
both the state graph and the transition matrix are modified
at run time. Our state transitions also represent lower level
behavior compared with traditional finite state machines.

4.1. Behavior functions and behavior composition

When examining the movement of a crowd in real life, we
easily see that there are many different factors that influence
the behavior of an agent. For example, people might change
their route depending on whether or not there is a person or
object nearby. Or, if they have a target place that they are
moving toward, they usually go as straight as possible. To
simulate crowd behavior realistically, we need a way to take
account of these various kinds of factors and synthesize a
complex behavior that reflects them. More specifically, given
the possible next states, we need a way to judge these states
from the point of view of different factors and then compose
transition probabilities to reflect all factors.

Each influence on the agent is encoded in a behavior and
special functions called behavior functions perform the task
of transforming a behavior into a set of transition probabili-
ties on states. For example, the “overlap behavior function”
takes care of avoiding other agents. The “Don’t turn behav-
ior function” checks if a state transition causes too much
change in orientation. The behavior functions judge the po-
tential state transitions with their own rules independently
and return the probabilities.

Suppose the set of possible next states is
S ={s1,82,...,8m}, where s; is a particular state. Note
there are m states. A behavior function, k, evaluates all
states in S and calculates their probabilities. A prototype
behavior function is shown below.

Behavior function k(States S[|, Prob P[])
{

For state s in set S do:
x = evaluate(s)
Pi(s) = sigmoid(x, ar)

The evaluate routine inside a behavior function is a gen-
eral function that can use any information available to it,
such as the state of various features of the environment or the
past state of the agent or distance from a position in the envi-
ronment. The evaluation function characterizes a conceptual
notion of “behavior” that the behavior function is trying to
model. Considering these information, the evaluate function
returns any real value. Then, the value is normalized to the
range [0, 1) using a sigmoid function:

1

) = 1 e

ey
We do this to make composition of behaviors more stable.
The constant o determines the slope of the curve and be cho-
sen differently for each behavior function. The values we use
range from 1.0 to 10.0.

The primary reason for using behavior functions is that we
are able to compose several component behaviors to synthe-
size more complex behaviors that embody all the influences
of the component behaviors. Composition of behaviors is
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Figure 2: The behavior functions compute the probability of
input states independently. The probability distributions that
are computed from behavior functions are then composed.
Finally, the next state is selected through sampling on the
composed probability distribution.

simply the multiplication of the probabilities the behavior
functions produce (see Figure 2). That is,

P(s) = [TP(s)
k=1

where 7 is the number of composed behavior functions, s
is a possible next state, the Py (s) is a probability distribu-
tion from k" behavior function and P’(s) is an unnormal-
ized probability distribution function. We use multiplication
because it allows one behavior to veto a state transition (by
setting its probability to 0). Finally, re-normalization should
be performed on the final composed probability distribution
to ease sampling. For each state s;:
P'(si)
P(Sl) ZT:]P/(SJ')

Once we have a final probability distribution, the simula-
tion algorithm chooses the particular state transition to per-
form by sampling according to P(s). The sampling allows
the character to choose not only states with high probabil-

ity but also states with low probability, even though it’s not
frequent. This gives the crowd an element of randomness.

4.2. Default states and behaviors

If an agent is not in any specific situation, we would still
like it to exhibit certain default actions. This relieves the
user from having to specify a situation for every point in
the world. The default state transitions in our system are the
identity transition (which does not change the agent’s state),
five walking actions with different turn angles and six turn-
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ing in place actions with different angles. Each transition
takes a character from one position and orientation in the
environment to another, and has an associated motion clip.

Several different default behavior functions are combined
to produce a sequence of states appropriate for a character
wandering through an environment.

o ImageLookup Behavior : This behavior gets a bitmap de-
scribing the obstacles in the environment, and gives zero
probability to states that cause the character to enter a
place where some objects are located. Otherwise, it gives
high probability.

o TargetFind Behavior : If the character has a goal po-
sition, this behavior gives high probability to states that
make the character move toward the position. Otherwise,
it gives low probability. Basically, this behavior is for
moving characters from one place to another through
path planning. We use the Probabilistic Road Map (PRM)
method [KL94, OS94] in which many way-points are dis-
tributed randomly in the environment and linked together
with Dijkstra’s all-pairs shortest path algorithm including
visibility. Since we compute all-pairs paths between two
way points in a preprocessing step, at run-time we can find
any path in real time.

e Overlap Behavior : This behavior gives zero probability
to states that cause a collision with another character. Oth-
erwise, it gives high probability. The collision detection
algorithm used in our system is a simple adaptive spatial
subdivision.

These default behaviors are always composed unless an
agent is in a situation that specifically ignores them (see Sec-
tion 5.2).

5. Situation and pluggable character architecture

Our basic assumption is that an environment consists of a
set of different situations and only a few characters are un-
der the same situation at the same time. A situation is dis-
tinguished from other situations by what typical behaviors
the crowd can show. That is, the situation in our system
controls the behaviors of a local group of agents. This pro-
vides distributed control over the crowd because we can give
situation-specific behaviors to characters only when they
need them. In addition, our approach provides composabil-
ity among multiple situations so that agents can respond to
the complex scenario when several different situations are
combined.

A situation can be any circumstance that has typical local
behaviors. From observations of real people, we easily see
that one of the most important factors that affect agent be-
havior is its spatial location. For instance, a behavior for get-
ting on or off a bus can be seen only at the bus stop. There-
fore, we can set the “bus stop” situation around the bus stop.
The relationship between people is another important factor
in determining behavior. Friends usually walk together when
they move. Therefore, “walking-together” is a typical behav-
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Figure 3: When an agent is under a situation, it gets all the
information from the situation directly. This includes states,
behavior functions, sensors and event rules.

ior that can be seen among people with friendship. It means
that “friendship” can be another situation. We categorize all
situations into two different kinds.

e Spatial situation: The situation has a region that it af-
fects in the environment (e.g, bus stop, ticket booth, ATM
machine). This situation cannot be moved after definition
(which can be at run-time) but can be deleted at run-time.

e Non-spatial situation: This situation (e.g friendship,
group) does not have any region in the environment be-
cause it is attached to the crowd directly, not to the envi-
ronment. Therefore, this situation can only be set at run
time and agents are explicitly added or removed from the
situation by the user.

The structure of a situation is shown in Figure 3. The be-
havior functions implement behaviors specific to the situa-
tion, the sensors provide sensing capability for characters to
catch events, states are state transitions (motion clips) that
are used only for the local behaviors, and the event rule is
a way to relate events to specific behaviors. When a charac-
ter is under a situation, all these components are added to its
representation at the same time. For a spatial situation, the
components are added when the character first enters the sit-
uation’s region of influence. For non-spatial situations, the
character is affected when the user assigns the situation to it.
The components are removed from the agent when it leaves
the situation’s region or the situation is otherwise removed.
This dynamic adding and removal of behaviors enables us to
achieve scalable agents.

The first thing a situation does to an agent under its in-
fluence is extend its states by adding new transitions to the
agent’s current state transition graph.We refer to this as ex-
tending the graph. At the same time, this increases the num-
ber of states available for selection by the probabilistic selec-
tion mechanism. An example of an extended graph is shown
in Figure 4. In essence, each situation has its own small state
transition graph that is grafted onto the agents existing graph
by connecting new transition edges. Each situation knows
where in the agent’s default graph its own small state graph

DEFAULT STATES

EXTENSABLE STATES

Figure 4: The states are organized as a graph structure and
the graph is extended by adding a new sub-graph when the
agent is in some situation.

should be linked to. There can be multiple transitions be-
tween the existing graph and the new portion.

5.1. Virtual sensors and memory

The events control the action of local behaviors in a situa-
tion. That is, depending on what happens in the environment,
different events are sent and these change the agent’s behav-
iors. The events are captured by virtual sensors which are
attached to the character by a situation. The captured events
are stored in a list in character’s virtual memory structure.
When a situation attaches a sensor, the sensor creates an en-
try in this list and updates it whenever the character uses the
sensor. The contents of virtual memory are wiped out when
they are no longer in the situation.

In our system, we use four different sensors to catch four
different events.

e Empty sensor : This sensor checks for the presence of
any agents in a particular position in the environment.

e Proximity sensor : This sensor maintains the distance
from a character to a particular position in the environ-
ment.

e Signal sensor : This sensor checks whether or not a signal
in the environment is on.

e Agent sensor : This sensor checks a particular agent’s
motion and behavior including position and orientation.

Given events captured from sensors, the event rules in-
form the agent which behavior functions to evaluate and
compose, and can provide arguments to behavior functions
that depend on the sensor. For example, suppose a charac-
ter is in a “crosswalk situation”, then the situation attaches
a signal sensor to the character to catch the traffic sign. The
associated behavior rule checks the sensor and applies a be-
havior suited either to waiting (if the light says don’t walk)
or to crossing the street. These dynamic behaviors are com-
posed with others to determine the character’s actions. In our
system, the event rules are encoded as Python script files and
loaded automatically when simulation begins.

(© The Eurographics Association and Blackwell Publishing 2004.
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Figure 5: Left: Spatial situations can be easily set by draw-
ing directly on the environment. Situation composition can
be specified by overlaying regions. Right: Non-spatial situ-
ation can be set on the crowd by grouping participants.

5.2. Situation Composition

In general, agents are under several situations at the same
time. This is especially true of non-spatial situations such as
group membership that must be composed with behaviors
for fixed areas like a bus stop. In our system, the compo-
sition of two situations is similar to taking their set union:
any state belonging to either is extended onto the graph, and
any behavior function required by either is added, as are any
Sensors.

Some situations must prevent certain behaviors from oc-
curring. For example, in the bench situation, to make an
agent sit down at a specific position, the ’don’t turn” default
behavior should be ignored in composing the behaviors. This
is achieved through event rules that specifically delete the
undesirable behavior from the composition.

5.3. Painting interface

The situation-based approach puts an emphasis on environ-
ment design because the crowd’s behavior depends on where
a particular situation is located (for the case of spatial situ-
ation) and what situations the agents are in. For specifying
a particular situation on the environment, we adopt a paint-
ing interface. This allows us to specify situations easily by
drawing their regions on the environment directly like draw-
ing a picture on the canvas. Painting is particularly useful for
spatial situations. For non-spatial situations, we use standard
techniques to select the agents to whom the situation should
apply.

The painting interface is based on a layered structure
where each layer represents a region for a situation and is
saved as a bitmap file. The layered structure makes situation
composition easy because it is done by overlapping several
layers. Figure 5 shows the painting interface for spatial and
non-spatial situations.

6. Experiments and Results

We have performed experiments on a PC with a 1.3GHz
Athlon processor and 1GB of memory. At the design stage
of a crowd environment, a physical environment and situ-
ations that will be fixed for the simulation are defined with
the painting interface. At run-time, non-spatial situations and
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Figure 6: Top: Plan of the street environment (numbers in-
dicate situations). Bottom: 3D view of the street.

run-time spatial situations are specified. The actual environ-
ment file is a Python script including links for situation files
which are also encoded as Python scripts. Once all the situ-
ations and the environment are set, crowds are created either
manually by the user or automatically by the program, and
then simulated.

To verify our approach, we tested our system on three dif-
ferent environments, which are the street environment, the
theater environment, and the field environment. To clarify
the location of situations within an environment, we put an
identifying situation number in parenthesis and use the num-
bers in the associated figures.

6.1. Street Environment

In this environment, we made two crosswalks and two side-
walks on a city street (Figure 6 and Figure 7). One crosswalk
has a traffic sign and the other one does not. For the cross-
walk with a traffic sign, we composed two situations: the
“crossing street” situation (1) and the “traffic sign” situation
(2). For the unsigned crosswalk, we just used the unsigned
“crossing street” situation (4). Also, in the middle of street
away from the two crosswalks, we put an “in-a-hurry” situa-
tion (3). At the beginning of simulation, people are walking
on the sidewalk. But when they meet the crosswalks, they
begin to respond to the situations. At the crosswalk with a
traffic sign, they first check the traffic sign using a sensor
that is provided by the situation, and wait for the traffic sig-
nal before crossing. At the crosswalk without a traffic sign,
on the other hand, people just cross the street. Meanwhile,
if they are in the “in-a-hurry” situation, they cross the street
without using crosswalks. The “in-a-hurry” situation adds
running transitions to the agent’s state transition graphs, al-
lowing the crowd to run rather than walk when crossing in
an unmarked area.

Due to the sampling strategy, some people who are trying
to cross the street might be turning back to the sidewalk at
the middle of crosswalk. To solve this problem, we can ad-
just the weighting constant o in equation 1 for the crossing
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Figure 7: Crowd behavior in a game engine.

behavior function so that once they are crossing the street,
they continue to walk until they reach the other side of cross-
walk.

6.2. Theater Environment

In this experiment, we made a complex theater environment
in which there are four different rooms. These rooms are a
ticket booth, a lobby, a movie room, and restrooms. In each
room, we set several situations and have some of them over-
lapped and hence composed. Figure 8 shows the theater en-
vironment. The various regions are:

e Ticket booth : In the ticket booth, we set a “horizontal
queue” situation (10) and a “follow” situation (11). When
agents enters the “horizontal queue” situation, they stand
in a line and try to buy a ticket, one by one. After that, they
are guided by the “follow” situation and enter the lobby of
the theater.

e Lobby : In the lobby, we set two “gathering” situations
(5,6), a “stay-in” situation (9), another “horizontal queue”
situation (7), a “talk” situation (12) and three “vending
machine” situations (8). Among the two gathering situa-
tions, one (5) is composed with a “talk” situation (12). For
the case of (6), only a “gathering” situation is used. When
agents meet the “gathering” situation (6), they gather
around for a predefined duration and then spread apart. On
the other hand, in the case (5), they gather around for the
predefined duration as well, but also sometimes show the
talking behavior due to the “talk” situation. At the “vend-
ing” machine situation, the crowd stops for a little while,
and then moves forward. It is intended to simulate pur-
chasing something from the machine (we were limited
by available motion). The “stay-in” situation covers the
lobby and restroom and keeps the crowd in those areas
before the movie time. This situation adds a signal sen-
sor to all agents in the area. If the signal from the sensor
is off, they stay in the lobby or the restrooms. Otherwise,
they move to the movie room through path planning.

e Restroom : In the restroom, we put three “bench” situa-

9 Lobby
Store
* 7 Vending machine
8
1

10
Ticket booth

Figure 8: Left: Plan of the theater environment(the number
indicates situations) Right: 3D view of the theater.

tions (3), and three “exclusive” situations (2). The “exclu-
sive” situations prevent more than one person from getting
into the same restroom at the same time.

e Movie room : In the movie room, we set three “seat”
situations (1). Each situation makes seven characters sit
down in the region, one on a seat. When people are in the
situation, they are provided empty sensors and proximity
sensors. Using these sensors, they know which seats are
empty and which seats are occupied. If they find an empty
seat, they move there and sit down.

6.3. Field Environment

In order to show that situations can be set at run-time, we
create a simple field environment and put a relatively large
crowd of 200 agents in the environment (Figure 9). At run-
time, a “follow” situation (1) is set by the painting interface.
Due to this situation, the crowd flow through the region and
gathers at its end. At that point, we set a “group” situation
(2) on them (a non-spatial situation). At the same time we
disable the “follow” situation, which results in the crowd
spreading around. However, if we compose a close behav-
ior function with the “group” situation, they gather back.

6.4. Performance measurement

To explore the performance of our approach, we conducted
three tests. First, we measured the average memory use of
500 agents for 2,000 simulation steps as the situational com-
plexity of the environment increased. We built up an empty
room with the painting interface and put an increasing num-
ber of randomly selected situations in the environment. As
we increased the number of situations, we computed the
memory usage at each of 2000 simulation steps before aver-
aging across steps. To examine the rate of growth of simula-
tion time as a function of situational complexity, we repeated
the experiment but this time computed the average amount of
time spent on animating the environment (excluding render-
ing) per frame of motion, or %th of a second. The results are
shown in Figure 10. Note that the complexity grows slowly
as a function of the number of situations, suggesting our ap-
proach is successful.

(© The Eurographics Association and Blackwell Publishing 2004.
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Figure 9: Top Left: A crowd is reacting to a “follow” situa-
tion. Top Right: We set a “group” situation on the crowd
without adding any other behaviors. Bottom left: Due to
the group situation, the crowd spreads around (we have dis-
abled the “follow” situation. Bottom right: people gather
back when we compose a “close” situation with the group
situation.

x 10

o
=4
2

N
o

Avg memory use 0.008 Avg simulation time

3

.1 Eo000

= 0.004

o

0.002

Memory use (byte)
Simulation time(sec)

o
a

o
o

2 4 6 8 10 2 4 6 8 10
# of situations # of situations

Avg simulation time

simulation time(sec)

100 200 300 400 500
# of characters

Figure 10: Top Right: The average memory use of 500 agent
for 2,000 simulation time. Top Left: The average simulation
time of 500 agents for 2,000 simulation time. Bottom Left:
The average simulation time of crowd with the fixed number
of situations.

We also examined the cost of simulating increasing num-
bers of agents with a fixed number of situations (10). Again
we averaged the time taken to simulate each frame of mo-
tion. The results are shown in Figure 10. Even for 500 agents
we can compute all the behavioral and motion information in
around 2.5ms, representing less than 7.5% of the itme avail-
able for each frame.

(© The Eurographics Association and Blackwell Publishing 2004.

7. Discussion

In this paper we have introduced a new framework for syn-
thesizing virtual crowds in complex environments. At the
high level, we use a situation-based approach that provides
a scalable mechanism to control the local behaviors of the
crowd. At the low level of the framework, we adopt a prob-
ability scheme that composes the influence of several be-
haviors to drive a realistic motion synthesis system. We
have demonstrated that our framework can create complex
crowd behaviors through the composition of situations and
the composition of behaviors while minimizing data stored
in each character.

There are several ways in which we could improve our
system. We have not experimented with situations that con-
trol the density of the crowd or other multi-agent statistics.
This could be done with more intelligent situations that acted
as simulation entities in their own right by dynamically ad-
justing the behaviors they add to agents. From an efficiency
standpoint, in our current system we assume that all crowds
go through the simulation step at the same time. In order
to simulate a massive crowd like 10,000 people, we need to
avoid this work in some way, possibly by composing longer
pieces of motion that hence require less frequent transitions.

Finally, while our probabilistic composition framework is
efficient and works well in the situations we have experi-
mented with, it has limitations as the time scale of actions
increases. In other words, the agent needs to remember more
and more past states in order to piece together long run-
ning actions. We would like to explore other mechanisms
for combining behaviors.

Our method is a significant advance in scalable behaviors
for characters. Architectures such as ours will be essential
for controlling the design complexity of virtual agents as the
environments they populate continue to evolve.
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