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ABSTRACT
In this paper we present a method for helping artists make
artwork more accessible to casual users. We focus on the
specific case of drawings, showing how a small number of
drawings can be transformed into a richer object containing
an entire family of similar drawings. This object is repre-
sented as a simplicial complex approximating a set of valid
interpolations in configuration space. The artist does not
interact directly with the simplicial complex. Instead, she
guides its construction by answering a specially chosen set
of yes/no questions. By combining the flexibility of a sim-
plicial complex with direct human guidance, we are able to
represent very general constraints on membership in a fam-
ily. The constructed simplicial complex supports a variety of
algorithms useful to an end user, including random sampling
of the space of drawings, constrained interpolation between
drawings, projection of another drawing into the family, and
interactive exploration of the family.

KEYWORDS: Animation with constraints, geometric mod-
eling

INTRODUCTION
Creating an artwork can be an expensive and labor-intensive
process. If one doesn’t have the requisite time and skill, one
must rely on either pre-created examples from art libraries
or automated generation techniques. Each approach has its
drawbacks. The size of a given art library is bounded, limit-
ing the amount of available variation. Generative approaches
may not create the quality or specific properties of crafted
examples. Either way, the user is likely to need to make ad-
justments to the drawing. This is problematic since, if the
original quality is to be maintained, modifying an artwork
can be nearly as challenging as creating it in the first place.

While ever larger libraries and more facile drawing editors
may help, an alternate approach is to combine libraries with
automated generation. The library is extended to store fam-

ilies of drawings related to the crafted examples, and gen-
erative methods are used to instantiate specific members of
these families. Such an approach is attractive because it pro-
vides users with a collection of existing works of acceptable
quality while simultaneously giving them control over the
specific form of the final result. The central challenge of this
approach is the representation of the families of drawings.
The representation must afford the quality of drawings that
the users demand, be rich enough to express complex fami-
lies of similar drawings, support the generation of members
of the family, and not be too difficult for the library authors
to create.

Ngo et al [12] recently presented a topologically-flexible ge-
ometric construction called asimplicial complexand demon-
strated its use in an interactive editing operation they termed
“tugging”. In their system a user supplied a set of seed
drawings and then specified overlapping subsets (thesim-
plices). A multi-target blending operation could be applied to
the members of a subset in order to produce new drawings,
forming the subset’sinterpolation space. The final simpli-
cial complex was the union of the drawings produced in this
manner by all of the subsets. Multiple simplicial complexes
could be used in the event that a drawing had distinct parts.
Once this structure was created, a user could interactively
explore the family of drawings by dragging on an existing
drawing. For example, if one had a drawing of a smiling
face and wanted to turn it into a frown, one could drag on
a single point on the mouth and have the entire face update
appropriately.

This technique is promising for our goals, but it suffers a key
limitation in that the structure of the simplicial complex must
be specified by hand. This requires an artist to design a col-
lection of drawings such that every interpolation is accept-
able. This task is likely to be unintuitive, and it may even
be impossible in some circumstances. On the other hand,
though it is difficult to anticipate whether the interpolation
algorithm will always succeed, it is comparatively simple for
a human to identify whether a particular drawing is accept-
able. We therefore employ user feedback to classify samples
from the interpolation space of a set of example drawings.
These classified examples are used to construct a simplicial
complex representing the valid regions of the space, which is



in turn the desired family of drawings. We will also show that
this simplicial complex supports useful algorithms outside of
tugging:

Sampling: Randomly generate new legal drawings. For ex-
ample, if one wanted to fill a field with flowers but only
had a few actual drawings, one could build the simplicial
complex and use it to populate the field with distinct flow-
ers.

Morphing: Given two legal drawings, generate a sequence
of drawings that smoothly transform the first into the sec-
ond such that each of the inbetween drawings is legal.

Projection: Find the legal drawing ”closest” to another draw-
ing. For instance, if we had constructed a space of legal
drawings for a cartoon character, we might then create that
character in a particular pose by drawing a stick figure and
projecting it into the legal space.

The remainder of the paper is divided into five sections. In
Section 2, we discuss related work. In Section 3, we explain
why a simplicial complex is an appropriate representation for
a set of legal drawings. In Section 4, we present a method for
constructing a simplicial complex based upon a user’s clas-
sification of artificially-generated drawings. In Section 5, we
describe how each of the preceding algorithms can be imple-
mented in a simplicial complex and show sample results. In
Section 6, we discuss potential areas for future work.

RELATED WORK
Ever since there have been interactive drawing systems, de-
signers have grappled with the problem of creating related
families of drawings. Ivan Sutherland’s Sketchpad system
[19] introduced the concept of an interactive drawing pro-
gram, and it also introduced constraints as a mechanism
for representing what changes were permitted to a draw-
ing. These geometric constraints were considered part of the
drawing itself. Since Sketchpad, other graphics systems have
continued the concept of persistent constraints as a mecha-
nism for defining the related family of drawings. Despite
this, constraint-based drawing has been unpopular as con-
straints have proven to be difficult to specify, debug, and
solve. A survey of the issues in constraint-based drawing
was presented by Gleicher and Witkin in [4].

For representating families of drawings in libraries, con-
straints fail on several points. While Kurlander and Feiner [8,
7] explored the use of determining constraints based on mul-
tiple example drawings, in general it is difficult (or impossi-
ble) to find a complete set of restrictions sufficient for defin-
ing a valid family of drawings. While constraint inference
mechanisms such as in Chimera [7] or Briar [4] make it eas-
ier to create constraints during the drawing process, augmen-
tation of an existing artwork is difficult to execute, test, and

debug. Finally, once a constraint-based representation is con-
structed, not all of the previously-outlined generation opera-
tions are realizable. For example, random sampling is diffi-
cult with most geometric constraint systems.

Generative modeling offers a different method for construct-
ing families of drawings. This approach defines a family of
drawings by a set of rules (a grammar) or a procedure that
generates members of the family. While specific generative
models have been created for various categories of artwork,
such as flowers [13, 14], victorian houses [5], and floral or-
namentation [21], defining a family this way is challenging
enough that the models often are considered research results
in their own right. Moreover, most generative models also do
not support all of the desired generation operations.

Our strategy of building a representation of a set based on a
series of sample classifications is well studied in the artificial
intellegence community. Unfortunately, the established tech-
niques (such as neural nets and decision trees) are designed
for classification rather than generation. Hence they do not
support the tasks we demand.

In the graphics community, systems guided by user classifi-
cation of randomly generated examples have been discussed
for procedurally defined images by Sims [18], and for a wide
range of design tasks by Marks et al [11].

Our representation falls into a class of methods that represent
a space of graphics objects by combining members of an ex-
ample set. Most commonly radial basis functions are used to
perform scattered data interpolation. This has, for example,
been applied to character animation and skinning [15, 3, 9].
The work of Librande and Poggio [10] (the basis for a com-
mercial software package produced by NFX) is the most sim-
ilar to ours. They used radial basis functions to represent a
space of drawings similar to an example set and supported
sampling, morphing, and projection operations. However,
there was no notion of systematically culling portions of the
space deemed unacceptable by the user.

As noted in the introduction, our work is inspired by that
of Ngo et al [12] and may be viewed as the next step to-
ward using a simplicial complex to effectively model a set
of desirable artwork. We have extended their work by pro-
viding a semi-automated method to faciliate construction of
the simplicial complex and by demonstrating that simplicial
complexes support operations other than tugging.

REPRESENTING A SET OF LEGAL DRAWINGS WITH A
SIMPLICIAL COMPLEX
Our goal is to construct a representation of the set of “legal”
drawings similar to the initial set. This requires defining a
space of candidate drawings and deciding upon a representa-
tion for the legal subset of this space. In the following sub-
sections we presentinterpolation spaceas a mechanism for
concisely defining a space of drawings similar to the exam-
ples. We then argue that simplicial complexes are an appro-



priate representation for the legal subset of this space.

Interpolation space
A typical vector drawing may be parameterized by a set of
numbers that includes the position of each point, the thick-
ness of each curve, and the color of each region. These num-
bers are treated as a point in a high-dimensional space called
the image space. We can now attempt to find other points in
image space that are also legal drawings. This requires ad-
dressing two problems. First, in general two drawings will
not have the same number of parameters and the same mean-
ing ascribed to each parameter. To overcome this we assume
that the initial set of drawings has been preprocessed such
that each drawing has the same topology, i.e., the same num-
ber of curves and same number of points on each curve. We
also assume that point correspondences are known. While
this requires extra effort on the part of the artist, methods
exist that help automate these processes [16]. For our ex-
amples we assumed that each drawing had the same number
of curves and built an interface allowing the user to specify
sparse point correspondences. We then evenly added points
to the curves such that every set of corresponding segments
contained the same number of points.

The second problem is that the image space is too large to
work with in its entirety. Moreover, only a small region is
likely to contain interesting drawings. It is hence necessary
to identify a tractable subset. As a first step, we may de-
scribe the configuration in some more convenient coordinate
system. For instance, we might encode rotations and scale
parameters of rigid objects, rather than the positions of each
point. We defineconfiguration space(also called theparam-
eter space) to be the space of these parameters. The mapping
F from configuration space to image space was termed the
“rendering map” by [12].

We can now define a third space existing only “in-between”
the example drawings. Given a set ofn drawings,d1, . . . ,dn,
we define theinterpolation spaceas the set of all convex
linear combinations of these drawings. That is, a drawing
(vector)p is in the interpolation space of the set of drawings
d1, . . . ,dn if and only if

p =
n∑

i=1

αidi

for convex weights (α1, . . . , αn) (that is, eachαi is non-
negative and

∑
i αi = 1). Notice that although interpola-

tion space is embedded in the high-dimensional configura-
tion space, it is itself only of dimensionn− 1. Consequently
a more compact representation of this space is possible by
using only a vector of theαi’s.

Through the use of properly chosen rendering maps, a variety
of methods for combining drawings can be realized using this
framework. For instance, one of the examples in this paper
transforms the drawings into a configuration space of angles

(1) (2)

(3)

Figure 1: Three drawings of two hands (labelled 1
through 3) are used to construct a simplicial complex
representation of the family of valid drawings. Here
a “valid drawing” is defined as one wherein the hands
don’t intersect. The dotted line demarcates the bound-
ary of the initial interpolation space. The underlined
drawings are interpolations; the arrows indicate their
locations in interpolation space.

and edge lengths, realizing the shape interpolation method
described by Sederberg and Greenwood [17]. We believe
that other interpolation schemes may also be applicable to
our method, such as as-rigid-as-possible interpolation [1].

Interpolation space is a(n−1)-dimension simplex in param-
eter space whose vertices correspond to the original draw-
ings. A simplex ink−1 dimensions is defined by the convex
hull of k points, where the vectors defining those points are
linearly independent. In 1 dimension, a simplex is a line; in
2D it is a triangle and in 3D a tetrahedron. Any subset of the
k points of a simplex forms another simplex, called a face of
the original. A vector lies within a simplex if and only if it is
a convex combination of the vertices.

In many cases the interpolation space will contain undesir-
able elements. Hence we identify the portions of interpo-
lation space containing desirable (“legal”) drawings. This
amounts to sampling the simplex at specific points (by ask-
ing the user to classify drawings) and carving away regions
containing illegal elements. Note that the definition of legal-
ity is entirely up to the user - she may reject drawings based
upon unsatisfactory coloring, inadvertent curve intersections,
or shapes that simply don’t “look right” (see Figure 1).

For sampling to be feasible, the interpolation space must be
of a reasonably small dimension, say, at most five or six.
Since the initial drawings are presumed to be difficult to ob-
tain, we simply assume that there will be few enough of them
to make sampling practical. In the event that there are more
drawings but only subsets of them can be meaningfully in-
terpolated, we can treat each of these subsets independently
and merge the results.



Representing the Legal Subset With a Simplicial Complex
A variety of methods may be used to reconstruct the legal
space from the sampling. In general the samples will not be
regularly spaced, and hence the problem is one of scattered
data interpolation. Radial basis functions have been a popu-
lar method [15, 9, 10], but they are limited in the topologies
they can represent (e.g., they can not contain holes). To avoid
placing artificial restrictions on how the user can define the
legal space, we use a more topologically general data struc-
ture: the simplicial complex. A simplicial complex is a set
of simplices such that any simplices which intersect do so
by sharing a face. The component simplices need not be of
the same dimension and the simplicial complex may not be
connected. The legal region in Figure 1 is represented as a
simplicial complex.

In addition to the geometric interpretation, a simplicial com-
plex may also be viewed as an embedded graph. In this case
each vertex of a simplex is a node and each 1D face is an
edge. Similarly, a simplicial complex can be treated as a hy-
pergraph [2], which is similar to a graph except “edges” may
involve more than two points. These edges correspond to
faces at which simplices intersect.

Simplicial complexes facilitate many useful calculations. Due
to the simple geometry of each simplex, it is easy to test
whether a given point is inside the complex. Travel between
adjacent simplices is straightforward since the connection is
simple. The graph and hypergraph representations allow us
to draw on algorithms developed for those data structures.

CONSTRUCTING THE SIMPLICIAL COMPLEX
We will now describe how to construct a simplicial complex
representing the set of legal interpolations. This construction
involves two phases: sampling and reconstruction. In the
sampling phase we pick points from the interpolation space
(henceforward called sample points) for the user to classify.
Since the user may cease answering questions at any time,
point selection must be guided by heuristics that attempt to
maximize information content. During reconstruction these
samples are interpolated to approximate the legal region of
interpolation space. We emphasize that the only task required
of the user is answering a series of yes/no questions; the un-
derlying simplicial structure need never be presented.

Sample Point Selection
We use two heuristics to decide which drawings to present to
the user. First, we would like to select sample points from the
simplex in a hierarchical fashion, learning about the coarse
structure of the space before filling in finer details. This
is done by progressively dividing the simplex into smaller
simplices and then selecting sample points from these sub-
simplices. The following algorithm implements the subdivi-
sion (Figure 2). First, sample points are placed at the mid-
point of each edge in the initialnd-dimension simplex (i.e.,
each line segment connecting two vertices). Edges are added
between these sample points such that the simplex is subdi-

Level 0

Level 1

Level 3

Level 2

Figure 2: The left column illustrates the subdivision
scheme for a 2D simplex. Classified and unclassified
sample points are represented as, respectively, dark
and light dots. The right column shows the subdivision
scheme for a 3D simplex with sample points removed
for clarity.

vided into a set of non-overlapping sub-simplices of dimen-
sion nd. In 2D, each new edge naturally partitions the rel-
evant simplex; in higher dimensions, the sub-simplices are
defined as maximal cliques of the resulting graph. Once all
of the sample points have been classified, the process repeats:
new sample points are placed at the midpoint of each edge of
each simplex and then the simplices are subdivided.

In two dimensions, there is only one way to attach the mid-
points to perform the subdivision, but in higher dimensions
care must be taken so the newly-added edges don’t cre-
ate overlapping sub-simplices. The appendix contains pseu-
docode for an algorithm that determines how to add edges to
subdivide a simplex of arbitrary dimension. Note, however,
that once a subdivision scheme is generated it can be saved
for future use.

Deeper levels of resolution may contain many points, and
therefore we should not expect the user to classify all of
them. This requires us to prioritize the order in which the
samples are presented to the user. One reasonable heuris-
tic is to bias the sampling toward learning the borders of the
space. This can be achieved by preferring sample points near
an equal mix of legal and illegal neighbors to those near, say,
only legal neighbors.

The simplest algorithm would count the number of legal and
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Figure 3: The diffusion process iteratively estimates
the uncertainty at each sample point at the current
subdivision level, allowing them to be prioritized for
their presentation to the user. Above are uncertainty
estimates for the first four iterations on an example
configuration.

illegal neighbors of each unclassified point, but this doesn’t
address the fact that edges may connect to other unclassified
points. For this reason we use an iterative algorithm for as-
signing interest values to each unclassified point. First, all
legal points are set to 1, all illegal points are set to -1, and all
unclassified points are set to 0. Then every unclassified point
p with neighborsx1, . . ., xn is assigned the value

v(p) = tanh(
1
n

n∑

k=1

v(xk))) (1)

wherev(xk) is the value ofxk at the beginning of the current
iteration. Note that Equation 1 has the largest absolute value
whenp has either all legal or all illegal neighbors, and it
equals 0 ifp has an equal number of legal and illegal neigh-
bors. After iterating a small number of times, the sample
point with the smallest absolute value is selected. Ties are
broken randomly. Figure 3 shows the results of applying this
algorithm to a particular sample point configuration.

Final Construction
Once the user has indicated that she no longer wishes to clas-
sify drawings, we must interpolate the sample points to form
the final simplicial complex. First the value-assigning algo-
rithm from above is run on any remaining unclassified sam-
ple points. Those points are deemed legal or illegal according
to the sign of the calculated value. Then any edge containing
an illegal vertex is removed and the maximal cliques of the
resulting graph become the simplices of the final simplicial
complex.

The process of identifying the maximal cliques is greatly
simplified by observing that the points of any maximal clique
must be fully contained in one of the simplices generated at
the deepest level of subdivision, which we refer to as leaf
simplices. We first locate all leaf simplices withnd positive
points. Each such set ofnd points is a simplex in the final
simplicial complex. We then search the remaining leaf sim-
plices for those withnd−1, nd−2, . . . , 1 positive points, each
time making sure that we do not attempt to add a simplex that
is subsumed by one we have added previously (this ensures
we only extract the maximal cliques).

One can imagine other algorithms for constructing the final
simplicial complex. For example, one could partition the
interpolation space into cells via a generalized Voronoi di-
agram, remove cells whose interiors contain negative sam-
ple points, and triangulate the remaining cells to ensure the
resulting structure is a simplicial complex. However, this
would not change the qualitative structure of the final simpli-
cial complex, and as the reconstruction is imprecise to begin
with, we feel our simpler scheme is more appropriate.

USING THE SIMPLICIAL COMPLEX
In this section we describe how each of the algorithms men-
tioned in the introduction may be implemented using a sim-
plicial complex of legal drawings. Figure 4 shows the three
examples used in this paper and their corresponding simpli-
cial complexes.

Sampling
Random legal drawings can be drawn from the simplicial
complex by choosing a random simplex and then selecting
a random point therein. The latter is implemented as fol-
lows: if the parameter vectors corresponding to the vertices
of the chosen simplex arep1,p2, . . . ,pk, then we generate a
convex set of random numbersλ1, λ2, . . . , λk and calculate∑

i(λipi).

If we want uniform sampling, then selecting the initial sim-
plex is a subtler problem as we must decide how to weight
the simplices. One obvious solution is to make a simplex’s
weight proportional to its volume. Various formulas ex-
ist for this calculation, such as the Gram determinant and
the Cayley-Menger determinant[6]. However, in general the
simplicial complex will contain simplices of differing dimen-
sionality, making direct volume comparisons meaningless.
We chose to handle this problem by allowing a user-defined
“sampling density”ρ and multiplying the volume of every
k-vertex simplex byρk−1. Regardless, in our examples we
found that doing “correct” sampling didn’t produce apprecia-
bly different results.

Figure 6 shows some results for sampling. We constructed a
simplicial complex for the islands and then sampled both by
randomly assigning weights throughout interpolation space
and by confining sampling to the simplicial complex. The
scale of the drawings obscures some of the subtler self-



Figure 4: The three examples used in this paper. The
top shows 3 islands, the middle shows 4 cartoon fig-
ures, and the bottom shows 4 flowers. In the latter two
cases we present two views of the 3D simplicial com-
plex of valid interpolations. 3D simplices (tetrahedra)
are in blue, 2D simplices (triangles) are in green, and
1D simplices are in red. All drawings are modifications
of drawings found on a web-based clip-art library.

intersection problems, but at least a few of the drawings in
the unconstrained sampling are clearly incorrect.

An obvious use for sampling is crowd generation (such as
for a wallpaper scheme), as it provides a reliable way of
quickly generating distinct drawings. If one wanted new
drawings “like” a particular drawing, then one could pref-
erentially weight the sampling to be near the corresponding
point in the simplicial complex.

Morphing
A legal morph can be generated between a source drawing
and destination drawing by finding a path in the simplicial
complex that connects the two corresponding points. First,
if either the source or the destination is not one of the ver-
tices of a simplex, we create a path connecting it to such a
vertex. We can then treat the simplicial complex as a graph
and use Dijkstra’s algorithm to find a lowest-cost path con-
necting the two verties. A given edge is weighted by theL2

distance between the endpoints inimage space, not parame-
ter space. That is, we define the distance between drawings
as the sum of the squared distance between corresponding
points. The advantage of this is that distance is meaningfully
defined regardless of how drawings are parameterized.

The path produced by this algorithm is piecewise linear, and
so the resulting animation may appear jerky. This can be
resolved by fitting a spline to the path’s vertices. While the
spline may extend beyond the boundaries of the legal space,
it ought not be noticeable if these deviations are small. Still,
if such deviations are a problem then spline tension may be
used to constrain the path tighter to the simplicial complex.

This algorithm is not optimal in the sense that it doesn’t find
the shortest possible path, which requires traversing the in-
terior of individual simplices. While in practice the short-
est path is unlikely to be appreciably different from the path
our method produces, it is of intellectual interest to consider
how to calculate it. One approach is to use an active contour
algorithm of the sort found in the computer vision commu-
nity [20]. The starting path would be obtained as above and
the energy terms would consist of the total arc length of the
path plus a penalty term for extending past the boundaries of
the simplicial complex.

This constrained morphing algorithm is particularly useful
in two cases. First, it can create reasonable morphs in cases
where direct interpolations fail, as in Fig. 6. Second, if one
has to make a large number of morphs within a particular
set of drawings (say, if one is animating a cartoon charac-
ter), then it is convenient to be able to specify two poses and
automatically generate a correct morph.

Projection
A drawing K can be projected into the legal space in the
sense that we can find the drawing that is geometrically the
most similar. This can be done by finding the point in the
simplicial complex that is closest toK in theL2 sense. As
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Figure 5: The point K is projected into the simplex p0,
p1, p2 at the point K′

with morphing, we measure distance in image space.

For the moment we will assume that the functionF map-
ping the image space to the parameter space is linear. If this
is true, then every simplex in parameter space has a corre-
sponding simplex in image space. We will first consider the
case where we want to projectK into a single simplexS
with image space verticesp0,p1, . . . ,pr. If r = 0, thenS is
a single point and the solution is trivial. Otherwise, consider
the barycentric coordinates ofS with originp0 and spanning
vectorsd1, . . ., dr, wheredi = pi − p0 (see Figure 5).
A point is insideS iff it can be expressed as

∑r
i=1(αidi)

such that theαi’s are convex. Now, the point inS closest
to K will also be closest to the projectionK′ of K into the
linear subspace spanned by thedi’s. K′ can be expressed
as a weighted combination ofd1, ...,dr by finding the least-
squares solution of the following linear system

Dα = K− p0, (2)

where theith column ofD is di. A least-squares solution to
equation 2 can be found by solving the normal equations,

DT Dα = DT (K− p0) (3)

Note that the resulting system is quite small: at mostnd − 1
by nd − 1 for nd drawings. In our implementation we solved
this system via the singular value decomposition, which was
chosen for its stability.

The matrix multiplies in Equation 3 are potentially expensive
if the drawings contain a large number of parameters. How-
ever, we can greatly reduce the necessary computation by
recognizing that every column ofD is simply a linear combi-
nation of the original drawingsP1, . . . ,Pnd

. Hence we have

di · dj =
nd∑

m=1

nd∑

n=1

βmγn(Pm ·Pn), (4)

where
∑

(βmPm) = di and
∑

(γnPn) = dj . If we precom-
pute and store the dot product of every pair of drawings, then
only n2

d calculations are necessary for each entry ofDT D.

Once we have foundα, there are three possible scenarios.
First, say that one of the elementsαi is negative. This means
that any attempt to travel alongdi towardK′ will take us
outside of the simplex. Hence the solution we seek is in the
hyperface that excludespi. So, if there are negative elements
in α, we remove the corresponding vertices and repeat the
process on the smaller simplex. The second scenario is where
the elements ofα are all positive but sum to a value greater
than 1. This means the solution must lie on the hyperface
that excludesp0, and so we removep0 from the simplex and
iterate. The third and final scenario is when the elements ofα
are positive and sum to a value less than or equal to 1. Then
K′ is inside the simplex and is the closest point toK.

The projection ofK into the simplicial complex can now
be found by projecting it into each simplex and selecting
the projection that minimizes theL2 error. SinceK will be
projected multiple times, we use the same trick as in Equa-
tion 4 and precomputePi · K. If speed is still a problem,
we can project into fewer simplices by using a branch-and-
bound algorithm. Recall that the original interpolation space
was partitioned into a tree-like hierarchy of volumes while
we were constructing the simplicial complex. Starting at the
root node (original simplex), we project into each child sim-
plex, calculate the distance to the projection, and store the
simplex-value pairs in a priority queue. We then remove the
smallest-valued element of the queue and check whether it’s
a leaf node. If it is, we are done. If not, we repeat the process.
Since the projection into a leaf simplex will never be closer
than the projection into its parent, we are guaranteed to find
the closest projection.

If F is not linear, in general a simplex in parameter space
will not correspond with a simplex in image space. In this
case projection is a nonlinear optimization problem with no
easy general solution. However, if a simplex in parameter
space is small, then its transformation into image space may
be approximated as a simplex. Thus, we can implement pro-
jection in the nonlinear case by 1) subdividing each simplex
until it is sufficiently small, 2) transforming the vertices of
each simplexS into image space and treating them as cor-
ners of a simplexS′, and 3) projectingK into S′ as outlined
above. This will take longer than in the linear case, since in
general neither Equation 4 nor branch-and-bound are appli-
cable.

Figure 6 shows an example of projection. Projection is use-
ful as a way of automatically filling in details given a gen-
eral shape. A potential application is conversion of a set of
drawings (such as of a cartoon character) into another set of
similar topology but different detail (such as a different char-
acter). In our current implementation, it is still necessary
to generate point correspondences between one of the origi-



nal drawings and the drawing to be projected. However, if a
group of drawings are all registered to one another, then only
one would have to be registered with the original set.

Tugging
Ngo et al [12] have shown in earlier work how to implement
tugging with a simplicial complex; in fact, they handle the
more general case where the interpolation space is the Carte-
sian product of multiple simplicial complices. We will briefly
summarize their algorithm for the case of a single simplicial
complex. Say the current configuration of the drawing places
it in the simplexS and the user attempts to drag a particu-
lar point on the drawing. This is equivalent to attempting to
change the original image-space vectorx to a new vectorx′.
The desired direction of change isCx = x′ −x. This can be
converted to a direction in parameter space via the equation

JCα = Cx. (5)

HereCα is the projection ofCx into the linear space defined
by the barycentric coordinates ofS andJ is the Jacobian of
x with respect toα. This system can be solved safely via
the singular value decomposition. By starting at the original
location inS and travelling alongCα, we match the user’s
attempted modification as much as possible. If we encounter
a boundary (hyperface) ofS before fully traversingCα, then
there are two cases. If the boundary leads to adjoining sim-
plices, then we continue travelling in the simplex that has
the closest projection toCx. If there is no adjoining simplex,
then we recalculate Equation 5 replacing the original simplex
with the hyperface.

Figure 6 shows snapshots of the tugging process.

CONCLUSION AND FUTURE WORK
In this paper we have presented a technique for converting
a set of drawings into a more useful form. This was ac-
complished by sampling the set of interpolations in order
to reconstruct the subset that produces acceptable results.
This subset was in turn represented as a simplicial complex,
which facilitated implementation of algorithms for manipu-
lating and generating drawings similar to the initial set.

The key property of our work is that the representation for
related families of drawings is both easy to construct and ca-
pable of supporting generative tasks. The authoring of the
simplicial complex from a set of registered drawings requires
a user only to answer a series of yes/no questions evaluat-
ing generated drawings. Users need answer only as many
questions as they have patience for, although answering more
questions yields a more accurate representation.

In practice, the difficult step is obtaining registered sets of re-
lated drawings. Without the development of automatic tools
for determining correspondences, it requires non-trivial ef-
fort to prepare “found” drawings for usage in our system,
despite the fact that it reads a standard file format (postscript

files as generated by Adobe Illustrator). Given the challenge
of such automation, we expect that our tool would be most
useful in cases where the drawings are specifically authored
to work with our system.

We believe that there are no conceptual difficulties in apply-
ing our approach to other data, such as 3D models. The only
place where our system makes any interpretation of the vec-
tors that represent drawings is in the user interface. Extend-
ing our system to more sophisticated interpolation schemes,
such as [1], mainly requires devising multi-target versions of
them.

The limitation to a small number of drawings is inherent in
our approach: a higher dimensional space is too large to
sample effectively. In practice, this limitation is not very
restrictive as we rarely encounter large sets of sufficiently
similar drawings. In the event that we do, we expect that
the best approach will be to manually divide the examples
into smaller subsets and construct simplicial complexes for
each subset independently. The union of these simplicial
complexes would then form the simplicial complex for the
original ensemble. Such an approach even more closely re-
sembles that of Ngo et al [12]. Indeed, one could imagine
applying our subdivision process to add detail to their manu-
ally constructed simplices.
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APPENDIX: SIMPLEX SUBDIVISION
We present here pseudocode for subdividing a simplexS
with verticesV = {v1, v2, . . . , vn} such that the sub-simplices
don’t overlap, as discussed in section 4.1. Here a hyperface
refers to a simplexS′ generated from anyn− 1 vertices ofS
and an anchor refers to the point fromS not contained inS′.

Subdivide( simplexS )
h = an empty stack of hyperfaces;
b = an empty queue of sub-simplices;
q = an empty queue of points;

// Snew is a “corner” of S
Snew = {v1 and the midpoint of every edge containingv1};

b.add(Snew );
h.push( every hyperface ofSnew);

while !h.empty()
face = h.pop();
q.clear();
for every pointpi in S // vertices and midpoints

isV alid = true;
for every hyperfacehnew of the simplex

face.vertices(),pi

if hnew has already been encountered and
does not separatepi andhnew.anchor

isV alid = false;
break;

if isV alid
q.add(pi );

if !q.empty()
v = the point inq closest toface
Snew = v and every vertex inface
b.add(Snew )
h.push( every hyperface ofSnew )

return all new edges added in forming the simplices inb

Since every hyperface connects to at most two points and
these points are on opposite sides, no sub-simplices intersect.
Since we attempt to attach every hyperface to two points, the
sub-simplices entirely fill the original volume.


