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Abstract

Large motion data sets often contain many variants of the same kind
of motion, but without appropriate tools it is difficult to fully ex-
ploit this fact. This paper provides automated methods for identify-
ing logically similar motions in a data set and using them to build
a continuous and intuitively parameterized space of motions. To
find logically similar motions that are numerically dissimilar, our
search method employs a novel distance metric to find “close” mo-
tions and then uses them as intermediaries to find more distant mo-
tions. Search queries are answered at interactive speeds through a
precomputation that compactly represents all possibly similar mo-
tion segments. Once a set of related motions has been extracted,
we automatically register them and apply blending techniques to
create a continuous space of motions. Given a function that de-
fines relevant motion parameters, we present a method for extract-
ing motions from this space that accurately possess new parameters
requested by the user. Our algorithm extends previous work by ex-
plicitly constraining blend weights to reasonable values and having
a run-time cost that is nearly independent of the number of exam-
ple motions. We present experimental results on a test data set of
37,000 frames, or about ten minutes of motion sampled at 60 Hz.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction

Large motion data sets are now commonplace in real-world projects
that require expressive character animation. These data sets are
valuable not only because they contain many different kinds of ac-
tions, but also because any particular action can have many vari-
ants. This provides animators with flexibility in selecting motions
appropriate for specific circumstances. In particular, collections of
related motions can serve as raw material for algorithms that make
continuous, parameterized spaces of motion, allowing one to do
things like animate a kick simply by stating where the target is. In
this manner, large motion capture data sets bring us closer to the
goal of being able to create realistic motion simply by specifying
what it is supposed to do.

This goal is still far from reality, however. A family of related
motions is hard to exploit when scattered inside a data set; the in-
dividual motions must first be identified and extracted. To do this,
users currently must scan through the data set and manually crop the
frames of interest. This can be tedious and time-consuming, even
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when the data set is annotated with descriptive labels. For example,
a data file labelled “punch” might contain many individual punches
and related but distinct actions such as dodging a counter-blow.

While there is value in simply seeing what a data set has to offer,
a user often has a particular motion in mind, such as a punch that
targets a specific location. In this case blending techniques can be
applied to the extracted motions to produce a parameterized mo-
tion that gives a user direct control over relevant motion properties.
However, existing methods are designed for small data sets consist-
ing exactly of example motions that evenly (though not regularly)
sample a predetermined range of variation. In a large data set, the
user may find many example motions, some of which are redundant
and some of which are quite dissimilar, and these examples will in
general yield a space of synthesizable motions whose boundaries
are hard to predict in advance.

This paper presents automated tools for locating logically similar
motion segments in a data set and using them to construct param-
eterized motions that provide accurate and efficient control. The
remainder of this section presents an overview of our methods and
a summary of our contributions. Section 2 discusses related work.
Next, Section 3 provides details on how we search for similar mo-
tion segments and presents some experimental results. Section 4
then explains how we build parameterizations and illustrates our
technique on several examples. Finally, Section 5 concludes with a
brief discussion of the advantages and limitations of our methods.

1.1 Overview

1.1.1 Searching Motion Data Sets

Given a segment of the motion data set (the query), our system
automatically locates and extracts motion segments that are “sim-
ilar”, i.e., that represent variations of the same action or sequence
of actions. Our method uses three key ideas, each of which is a
contribution to the problem of searching a motion data set.

1. Multi-step search. Logically similar motions can have very
different skeletal poses (Figure 1), but existing computational
methods can only reliably find motions that are numerically
similar to the query in the sense that corresponding skeletal
poses are roughly the same (see Section 2.1). On the other
hand, in a large data set it is likely that some logically sim-
ilar motions will also be numerically similar. We therefore
add robustness to the search by concentrating on finding these
closer motions and then using them as new queries in order to
find more distant motions.

2. Using time correspondences to determine similarity. A
simple way of measuring numerical similarity is to identify
corresponding frames and compare their average distance to a
threshold value. We complement this by analyzing the corre-
spondences themselves: similar motions are required to have
“clear” time correspondences. This is based on the intuition
that if two motions are similar, it should be easy to pick out
corresponding events.

3. Interactivity through precomputation. To provide interac-
tive speeds, we do not start each search from scratch. Instead,
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Figure 1: Logically similar motions may be numerically dissimilar. Left: A stand-
ing front kick vs. a leaping side kick. Note the differences in the arms, torso posture,
and kick trajectory. Right: While these two reaching motions have somewhat similar
skeletal postures, the changes in posture are in completely opposite directions.

we precompute a match web, which is a compact and effi-
ciently searchable representation of all possibly similar mo-
tion segments.

1.1.2 Creating Parameterized Motions

Once example motions have been located, they can be blended to
make new motions. A blend is effectively a weighted average of
the examples, and the set of all blends forms a continuous space
of related motions. This space can be converted into a parameter-
ized motion through a user-specified parameterization function f
that picks out relevant motion features. For example, f might com-
pute the position of the hand at the apex of a reach or the average
speed and curvature of the root path during a walk cycle.

Abstractly, f maps blend weights to motion parameters. Our goal
is to compute f−1: given a set of target parameters, we want blend
weights that produce the appropriate motion. Since f−1 in general
has no closed form representation, it is common to approximate it
with scattered data interpolation methods that assign each example
motion a blend weight based on the distance between its parame-
ters and the target parameters [Rose et al. 1998]. We use a similar
approach, but offer several improvements over previous work:

1. Automation. The user’s only task is to supply f; our system
handles the rest. In particular, we extend the method of Ko-
var and Gleicher [2003] to automatically register the example
motions so they can be blended.

2. Blend Weight Constraints. Blending can only reliably cre-
ate new motions near the examples, which means only a finite
region of parameter space is accessible. In particular, blend
weights should be convex or nearly convex so the blends will
represent interpolations or limited extrapolations of the exam-
ples. Existing methods place no constraints on blend weights
and can break down when specified parameters are far from
those of the example motions. We ensure that blend weights
are convex or nearly convex, thereby limiting the allowable
amount of extrapolation and projecting unattainable param-
eter requests back onto the accessible portion of parameter
space.

3. Accuracy. If the examples are not sufficiently close in pa-
rameter space, direct application of scattered data interpola-
tion may yield inaccurate results (Figure 2). We correct this
by automatically sampling the set of valid blends in order to
densely sample the accessible region of parameter space.

4. Efficiency. Large data sets may contain many example mo-
tions. We automatically identify and remove redundant ex-
amples to reduce storage requirements. Also, while previous
methods have used scattered data interpolation algorithms that

Figure 2: Left: Six example reaching motions create a sparse sampling of param-
eter space that leads to an inaccurate parameterization. The dots indicate parameter
samples and the yellow sphere shows the desired location of the wrist. Right: We
automatically generate a denser sampling that provides greater accuracy.

require O(n) time for n examples, our method’s run time is
nearly independent of the number of examples.

2 Related Work

2.1 Searching for Motion

Our search problem is related to time sequence retrieval, which has
been studied by the database community for over a decade. Given
a distance metric and a query time sequence, the task is to search
a database for time sequences whose distance to the query is ei-
ther below a threshold ε or among the k smallest. Most proposed
solutions follow the GEMINI framework proposed by Faloutsos
et al. [1994]. First, a low-dimensional approximation is extracted
from each time series in the database. Example approximations in-
clude the first few coefficients of a Fourier [Agrawal et al. 1993] or
wavelet [Chan and Fu 1999] transform, the average values in ad-
jacent windows [Keogh et al. 2001], and bounding boxes [Vlachos
et al. 2003]. Next, a distance metric is defined over this approxima-
tion that underestimates the true distance between the time series.
Finally, the approximated signals are stored in a spatial data struc-
ture such as an R-tree [Guttman 1984].

This approach provides efficient pruning of portions of the
database that are distant from the query while keeping dimension-
ality low enough that spatial access methods remain viable [Böhm
et al. 2001]. However, one drawback is that a direct numerical com-
parison is used to determine similarity. With existing metrics, a
large distance may reflect either that motions are unrelated or that
they are different variations of the same action, and there is no
way to distinguish between these two cases. On the other hand,
a small distance is a reasonable indicator of similarity because it
implies that individual poses are numerically similar. Our strategy
is hence to find close motions and then use them as new queries
to find more distant motions, allowing us to use lower and more
reliable distance thresholds without sacrificing the ability to find
motions that are numerically distinct from the query. This strategy
is inspired by manifold learning algorithms that use local neighbor-
hoods of points to infer the structure of a low-dimensional mani-
fold embedded in a high-dimensional space [Roweis and Saul 2000;
Tenenbaum et al. 2000]. Jenkins and Matarić [2002] used a simi-
lar strategy to extract motion primitives from human motion data,
although their focus was on controlling robot motion, rather than
producing high-fidelity animation. A second limitation of existing
search algorithms is that they assume the distance between indi-
vidual data elements (i.e., skeletal poses) can be computed with an
Lp norm. Frame distance metrics that represent orientations with
quaternions [Lee et al. 2002; Wang and Bodenheimer 2003] fail
this criterion. We allow arbitrary distance metrics to be used for
individual frames.

Content-based database retrieval has appeared in a number of
graphics contexts, including images [Castelli and Bergman 2001],
video [Veltkamp et al. 2001], and 3D models [Funkhouser et al.
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2003]. To search motion capture data sets, Cardle et al. [2003] used
a variant of the GEMINI framework discussed earlier in this sec-
tion. Liu et al. [2003] automatically extracted keyframes for each
motion in a database and used these keyframes to construct a hier-
archical tree of clusters of motions, with deeper levels of the tree
corresponding to joints deeper in the skeletal hierarchy. To process
a query, the closest leaf cluster was found and its motions were di-
rectly compared against the query. This algorithm also uses a direct
numerical comparison to determine similarity, and it is designed to
compare entire motions against a query, whereas our algorithm is
also able to compare subsections of motions.

In order to automatically construct transitions, several recent re-
search efforts have identified locally similar regions in a motion
data set [Arikan and Forsythe 2002; Arikan et al. 2003; Kim et al.
2003; Kovar et al. 2002; Lee et al. 2002; Wang and Bodenheimer
2003]. We, in contrast, are interested in finding entire motions that
are similar. For the case of rhythmic motion, Kim et al. [2003]
automatically identified similar motions by using beat analysis to
segment a motion data set and then clustering motions based upon
a similarity metric. Our method applies to more general data sets
and is geared toward content-based search rather than clustering.

The problem of searching for motions is related to that of gen-
erating descriptive labels. Arikan et al. [2003] used support vector
machines to automate the process of annotating a motion data set.
While their technique was not designed to provide precise bound-
aries between different actions, even a coarse set of annotations can
make database search more efficient and robust (see Section 3).

2.2 Parameterizing Blends

Wiley and Hahn [1997] and the Verbs and Adverbs system of Rose
et al. [1998] pioneered the technique of building parameterized mo-
tions from blends of captured examples. Subsequent papers have
further developed the underlying blending mechanisms [Kovar and
Gleicher 2003] and have provided new methods for parameterizing
the space of blends [Rose et al. 2001; Park et al. 2002]. This previ-
ous work has assumed that the example motions have been identi-
fied and cropped from the original data set, whereas we provide an
automated method for extracting them. Additionally, we show how
to build accurate parameterizations that offer greater run-time effi-
ciency than previous methods and that guarantee that blend weights
have reasonable values. The remainder of this section expands on
previous work relating to the parameterization of blends.

Many methods for building parameterized motions do not ensure
that the actual parameters of synthesized motions are the same as
the desired parameters. This is reasonable for qualitative properties
like “happiness”, where strict accuracy is not necessary [Unuma
et al. 1995; Rose et al. 1998]. Similarly, strict accuracy is unnec-
essary if blending is not being used to directly control parameters
of interest. For example, while Park et al. [2002] used blending
to create locomotion with specified speed and curvature, the ac-
tual path of the root was determined through a user-specified tra-
jectory. Nonetheless, in many cases accurate parameterizations are
essential. Rose et al. [2001] improved the accuracy of scattered
data interpolation by adding additional samples to parameter space.
Specifically, they identified sets of target parameters for which the
approximation was particularly poor and used gradient descent to
find blend weights that yielded those parameters. We offer an alter-
nate solution based on more directly sampling the space of blends.
The general strategy of sampling the space of blends was previously
used by Wiley and Hahn [1997] to obtain regular samplings of pa-
rameter space and by Zordan and Hodgins [2002] to generate dense
sets of example motions as an aid for inverse kinematics tasks, al-
though these efforts were not focused on improving the accuracy of
parameterization. Also, we expand on this previous work by show-
ing how to restrict blend weights to reasonable values and how to
sample in a way that scales well to large numbers of examples.

A number of previous efforts have performed scattered data
interpolation by computing a best-fit linear map between blend
weights and motion parameters and then adding radial basis func-
tions centered on each example [Rose et al. 1998; Park et al. 2002;
Rose et al. 2001]. This can produce blend weights containing large
negative weights [Allen et al. 2002], and if the user requests param-
eters far from the examples, blend weights are based purely on the
linear approximation and hence are effectively arbitrary. Also, the
run time of this algorithm is O(n) for n example motions. We pro-
pose instead using k-nearest-neighbors interpolation, as suggested
by Allen et al. [2002]. This allows us to explicitly constrain blend
weights to reasonable values, project points outside the accessible
region of parameter space back onto it, and compute blends in time
that is nearly independent of the number of example motions.

One popular application of parameterized motion is to control
inverse kinematics (IK) tasks such as reaching [Wiley and Hahn
1997; Rose et al. 2001]. Grochow et al. [2004] recently introduced
an alternate approach based on using motion capture data to con-
struct probabilistic models of individual skeletal poses.

3 Searching for Motions

A motion is a continuous function M(t) that is regularly sampled
into frames M(ti), where each frame is a skeletal pose defined by its
joint orientations and the position of the root joint. Given a query
motion Mq that is a segment of some motion in the data set, our
goal is to find other motion segments that are similar to Mq, i.e.,
segments that represent variations of the same action. We refer
to these as matches. One challenge in finding matches is that in-
dividual frames are high-dimensional objects with non-Euclidean
distance metrics [Kovar et al. 2002; Lee et al. 2002]. As a result,
traditional methods for organizing the data into a spatial hierarchy
(such as a BSP-tree) can not be directly applied [Böhm et al. 2001].
A second challenge is that logically similar motions may be numeri-
cally dissimilar in the sense that corresponding poses may have very
different joint orientations and angular velocities (Figure 1). Tradi-
tional search algorithms implicitly equate numerical similarity with
logical similarity, and as a result they have difficulty distinguishing
motions that are unrelated from those that are different versions of
the same kind of action (see Section 2.1).

Our search strategy is to find “close” matches that are numeri-
cally similar to the query and then use them as new queries to find
more distant matches. Our algorithm for determining numerical
similarity allows arbitrary metrics for comparing individual frames,
and timing differences are factored out to allow matches to be of
different duration than the query. A user executes a search by pro-
viding a query and a distance threshold that is used to determine
whether two motion segments are numerically similar. Numeri-
cally similar matches are then identified and automatically submit-
ted as new queries, and the process iterates until no new matches
are found. Since each match spawns a new query, it is crucial that
individual queries be processed quickly. In particular, we would
like searching to be fast enough that the distance threshold can be
tuned interactively. To make this feasible, we preprocess the data
set into a match web, which is a compact and efficiently searchable
representation of all motion segments that, given a sufficiently large
distance threshold, would be considered numerically similar.

One difficulty is that numerically similar motions may not be
logically similar. For example, the overall structure of a man walk-
ing looks much like that of a woman walking, and reaching for an
object appears quite similar to simply touching it. This problem is
hard to correct because it involves high-level understanding of what
motions mean. For an unlabelled data set, we require users to in-
dependently confirm that matches have the correct meaning. How-
ever, most large data sets contain some sort of descriptive labels —
if nothing else, a filename or location in the directory hierarchy can
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Figure 3: Time alignments must be continuous, monotonic, and non-degenerate.

serve as clues to a motion’s contents. When labels are present, we
limit our search to semantically relevant parts of the data set.

In the remainder of this section, we describe our criteria for de-
termining whether two motion segments are numerically similar,
explain how to build match webs and use them to quickly answer
similarity queries, and present experimental results.

3.1 Criteria for Numerical Similarity

Two criteria are used to determine numerical similarity:

1. Corresponding frames should have similar skeleton poses.

2. Frame correspondences should be easy to identify. That is,
related events in the motions should be clearly recognizable.

Both criteria involve frame correspondences, so we first discuss
how to obtain these. We require the set of frame correspondences to
form a continuous, monotonically increasing, and non-degenerate
mapping between frames, which we call a time alignment (Fig-
ure 3). The non-degeneracy condition limits the time alignment’s
slope to be between 1

k and k for some k ≥ 1, which in the discrete
case means that at most k frames of one motion can be mapped
to a single frame of the other. Intuitively, this restricts motions to
being locally sped up or slowed down by at most a factor of k.
Given a distance function d for individual frames, dynamic pro-
gramming can be used to compute an optimal time alignment that
minimizes the total distance between matched frames. See Bruder-
lin and Williams [1995] and Kovar and Gleicher [2003] for details.
Several options exist for the frame distance function; we use the
one suggested by Kovar et al. [2002].

An analysis of the time alignment determines whether two mo-
tion segments satisfy the numerical similarity criteria. We start by
computing d for every pair of frames, forming a grid of distances
where cell (i, j) specifies d

(
M1(ti),M2(t j)

)
(Figure 4). The time

alignment is a path on this grid from the lower left to the upper right
that minimizes the total cost of its cells. To test the first criterion, we
find the average value of the cells on this path and compare against
a user-specified threshold ε . We use the average value rather than
the total in order to measure distance independently of path length.

The second criterion can be interpreted in terms of the local op-
timality of the time alignment. If a cell on the time alignment is a
horizontal or vertical 1D local minimum, then the frame correspon-
dence is strong in the sense that holding one frame fixed and varying
the other only yields more dissimilar skeletal poses. To illustrate,
consider the top of Figure 4, which shows the distance grid for two
different walk cycles. The magenta path on the left is the calcu-
lated time alignment and the highlighted cells on the right show all
of the horizontal and vertical 1D minima. Note that nearly every
cell on the time alignment is one of these minima. This is because
frames at the same point in the locomotion cycle are far more simi-
lar than frames that are out of phase. The bottom of Figure 4 repeats
this analysis for two kicking motions. While the average distance
between corresponding frames is about 5 times higher, frames at
related parts of the kick (chambering, extension, and retraction) are
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Figure 4: Comparing time alignments (magenta cells on the left) with local minima
locations (yellow cells on the right). Darker pixels show smaller frame distances. Local
minima locations were not used when computing the time alignments. Top: Two walk
cycles. Bottom: Two kicks.

Figure 5: Local minima (magenta) are extended to form the valid region (yellow).

still more similar than pairs of unrelated frames. This is again re-
flected in the local minima of d: about 60% of the time alignment’s
cells are 1D minima, and the rest are close to 1D minima.

Ideally every cell on the time alignment would be a local mini-
mum, since then each correspondence would be “obvious”. In prac-
tice, however, this is overly restrictive. The finite sampling rate
causes noise in the exact location of minima, and motions that have
stretches of similar frames (e.g., pauses) produce basins in the dis-
tance grid where the locations of minima are effectively arbitrary.
We therefore instead require cells on the time alignment to be near
1D minima. To enforce this, we compute all 1D local minima and
extend each one along the directions in which it is a minimum (hor-
izontal, vertical, or both) until a cell is encountered whose value
is at least α percent larger than the minimum’s value, where α is
defined by the user (see Figure 5; we set α to 15%). We call the
resulting region on the grid the valid region. The time alignment is
restricted to the valid region, which involves a simple modification
of standard dynamic programming algorithms. If no time align-
ment can be created under this restriction, then the motions fail the
second criterion and are considered dissimilar.

3.2 Match Webs

We now turn to the problem of precomputing all potential matches
for each motion segment in the data set. Without loss of general-
ity, we limit the discussion to finding segments in a single motion
M1 that are numerically similar to another (possibly identical) mo-
tion M2; if a data set has many motions, then they are compared
pairwise. Consider the distance grid formed by computing d for
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Figure 6: Any subregion of an optimal time alignment for M1[a,b] and M2[c,d] is
an optimal time alignment for two shorter motion segments M1[a′,b′] and M2[c′,d′].

every pair of frames and let Mi[q,r] denote the motion segment
Mi(tq), . . . ,Mi(tr). Two motion segments M1[a,b] and M2[c,d]
are potentially similar if there is some distance threshold for which
they are numerically similar under the criteria of Section 3.1. For
this to hold, there must exist at least one time alignment starting
at cell (a,c) and ending at cell (b,d) that is everywhere inside the
valid region and obeys the restrictions shown in Figure 3. If not,
then M1[a,b] and M2[c,d] cannot be numerically similar. Other-
wise, dynamic programming provides the optimal time alignment
between M1[a,b] and M2[c,d].

Two observations can now be made that allow us to compactly
represent all potentially similar motion segments. First, if cells
(a,c) and (b,d) can be connected with a valid time alignment, then
it is likely that nearby pairs (a± δ ,c± δ ), (b± δ ,d ± δ ) can also
be connected. In other words, we can perturb the boundaries of
M1[a,b] and M2[c,d] to find other potentially similar motion seg-
ments. It therefore makes sense to identify locally optimal pairs
of motion segments where the time alignment has a locally mini-
mal average cell value. Second, any subsection of the optimal time
alignment for M1[a,b] and M2[c,d] is itself an optimal time align-
ment for motion segments inside M1[a,b] and M2[c,d] (Figure 6).
This is a natural consequence of optimality: the path connecting
any two cells on a time alignment must be optimal because other-
wise we could choose a different path that would lower the overall
cost. Hence an optimal time alignment represents an entire family
of potentially similar motion segments, not just a single pair.

In light of these observations, we search for long paths on the dis-
tance grid that correspond to locally optimal time alignments. We
start by looking for chains of 1D minima that satisfy the continu-
ity, monotonicity, and non-degeneracy restrictions. First, we locate
all minima that have no neighbors to the left, bottom, or bottom-
left, since these cannot be in the interior of a chain. Then for each
of these minima we form a chain by iteratively searching the top,
right, and top-right cells for other minima, making sure along the
way that the non-degeneracy condition is not violated. Since some
local minima are spurious — for example, walk cycles that are 180
degrees out of phase have local minima at frames where the legs
are closest together — some of these chains will not be meaningful.
As a heuristic, we simply remove chains below a threshold length
(0.25s in our implementation). Each remaining minima chain is a
locally optimal time alignment since moving any cell increases the
average distance.

Since the precise location of an individual minimum is some-
what arbitrary (Section 3.1), nearby minima chains that ought to be
connected may be separate. To be conservative, we consider con-
necting any two chains as long as the connecting path is inside the
valid region of the grid and has a length (measured via Manhattan
distance) less than a threshold L, which was 2s in our implementa-
tion. For each chain C, we identify other chains C′ in the vicinity.
We then compute for each cell Ci on C the optimal path to each cell
on C′ whose Manhattan distance to Ci is less than L. The path with
the smallest average distance is retained as the final connection, or

Figure 7: To build a match web, we compute the distance between every pair of
frames, find chains of local 1D minima, and add bridges that connect nearby chains. A
match web built at low resolution may be refined at a higher resolution.

1 2 3 4

Figure 8: To refine a chain, it is first padded (1) and upsampled (2) to form a
search region. New endpoints are then found via local search (3) and connected with
an optimal path (4).

bridge, between C and C′. Note that because bridges must be in-
side the valid region, nearby chains may not be connectable. Also,
this restriction makes bridge calculation more efficient because the
dynamic programming algorithm processes fewer cells.

The result of this procedure is a network of paths on the dis-
tance grid, some of them minima chains and others bridges between
chains (Figure 7). This network represents all potentially similar
pairs of motion segments, and we refer to it as a match web. Start-
ing from any cell on any path of the match web, we can generate
a time alignment by travelling further down the path and possibly
branching off onto connecting paths. While this time alignment is
not necessarily optimal, it is close to optimal since every cell is ei-
ther a local minimum or has a distance value close to a nearby min-
imum. Also, match webs can be stored compactly since we need
only retain the grid position and value of each cell on each path.

Match webs can be constructed more efficiently by building
them at a low resolution and then refining them at higher resolu-
tions. The lowest resolution match web is built by downsampling
M1 and M2 and running the algorithm described above. Each min-
ima chain is then refined as shown in Figure 8: first, the chain
is padded and upsampled to form a search region, then new end-
points are placed at the smallest-valued cells in the vicinity of the
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Figure 9: A simple search example for the query M1[a,b]. There are three potential
matches: M2[c1,c2], M2[c1,c4], and M2[c3,c5].

old endpoints, and finally these points are joined with an optimal
path. Each bridge is handled similarly, except the endpoints are
restricted to be on the refined versions of the chains it connects.
Figure 7 shows an example of refining a low-resolution match web.

3.3 Searching With Match Webs

Given a match web for M1 and M2, a query motion segment
M1[a,b], and a distance threshold ε , we now explain how to locate
numerically similar motion segments in M2. The search algorithm
essentially intersects the match web with the rectangle defined by
the region from row a to row b, as shown in Figure 9. Let a match
sequence be a sequence of cells formed by selecting any cell of any
path on the match web and then travelling down that path, possibly
branching off onto connecting paths. We are interested in finding
all match sequences that span from row a to row b. We start by
finding every path that contains a cell in row a. For each such path,
the leftmost (i.e., earliest) cell in row a serves as the initial cell
of a match sequence. We check whether the path contains cells in
row b, and if so, we return a match sequence formed by appending
all cells up to the last one in row b. We next consider branching
off onto connecting paths to search for additional match sequences.
This is done by walking down the path until we either reach its end
or a cell in row b, adding cells to the match sequence as we go and
recursively processing each connecting path that is encountered.

Each match sequence is a time alignment between the query and
a potential match in M2 defined by the match sequence’s first and
last columns. Any match sequence whose average cell value is
greater than ε is discarded. While each remaining match sequence
technically provides a match to the query, some of these matches
significantly overlap and hence are redundant. In Figure 9, for ex-
ample, this is true of M2[c1,c2] and M2[c1,c4]. To remove these
redundancies, we sort the matches in order of increasing average
distance and place them in an array. The first element of this array
is then returned as a match, and every other element that overlaps
with it by more than a threshold percentage σ is discarded. This
procedure iterates until no matches are left.

So far we have found the matches that are closest to the query,
which we call first-tier matches. To find more distant matches,
the search algorithm is repeated for each first-tier match, yield-
ing second-tier matches. This continues until no new matches are
found. In this manner a graph is built where the nodes are mo-
tion segments and edges between nodes indicate that the segments
are numerically similar. We call this data structure a match graph
(Figure 10). Each edge is associated with a time alignment and is
assigned a cost equal to the average value of the time alignment’s
cells. We define the distance between two nodes as the cost of the
minimal-cost connecting path on the match graph. The match graph

Figure 10: An example match graph. The query is in the dotted box and the other
nodes are matches. Edges indicate numerical similarity.

can by itself be of interest since it depicts numerical similarity re-
lationships in the matches. To illustrate, Figure 10 shows a match
graph where the query was a front kick; note the progression from
front kick to standing side kick to leaping side kick.

When processing queries other than the initial query, we must
decide whether each “new” match is a heretofore unseen motion or
a duplicate of an existing match. When doing this, we must account
for the fact that, in practice, duplicates will overlap a great deal but
not span identical intervals of frames. Let M be the current query
and M′ be a newly identified match. We start by comparing M′

against each node and record the one with the greatest degree of
overlap, Mmax. If this maximum overlap is less than a tolerance
σ , M′ is added to the match graph as a new node along with an
edge connecting it to M. If the maximum overlap is greater than σ ,
then the frame interval of Mmax is averaged with that of M′ and an
edge is added between M and Mmax. Otherwise, M′ is discarded.
Appropriate values for σ and σ depend on the query. In general,
we have found σ ≈ 80% and σ ≈ 20% to work well, but queries
involving multiple periods of a cyclic motion (e.g, walking) require
larger values of σ to allow greater overlap in distinct matches.

3.4 Experimental Results

We tested our match web implementation on a data set contain-
ing 37,000 frames, or a little over 10 minutes of motion sampled
at 60Hz. This data was divided into thirty files ranging in length
from 3s to 75s, and it included both motions where the actor per-
formed a scripted sequence of specific moves and motions consist-
ing of random variations of the same action. The former class of
motions included picking up and putting back objects at predefined
locations, walking/jogging in a spiral at different speeds, stepping
onto/off of platforms of various heights, and sitting down/standing
up using chairs of various heights. The latter class of motions con-
sisted of kicks, punches, cartwheels, jumping, and hopping on one
foot. All experiments were ran on a machine with 1GB of memory
and a 1.3GHz Athlon processor.

Figure 11 shows some query motions and the sets of the matches
returned by our system. In each case, the entire search process took
less than half a second. Manually cropping matches from the data
set with similar precision would be quite tedious, especially in the
case of the walking query, where 95 matches were identified.

The remainder of this section provides details on the processing
time and storage needed to build match webs and execute searches,
presents results on the accuracy of the search, and briefly discusses
some advantages and limitations of our approach.

Time and Storage. We initially constructed a match web for the
entire data set by building a low resolution version at 10Hz and then
refining it in two stages, first to 20Hz and then to 60Hz. The total
computation time was 50.2 minutes. Without compression, the size
of the match web on disk was 76.2MB. While this is three times the
size of the original data, it nonetheless comfortably fits into main
memory. Applying a standard compression algorithm (Lempel-Ziv
encoding, as implemented in gzip) reduced the size by a factor of
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Figure 11: In clockwise order from the upper left, search results for reaching,
kicking, walking, and jumping. Query motions are green and matches are blue.

three to 24.6MB. Finding matches for a 1.5s query took on average
0.024s. Since each match is used as a new query, the time needed
for a full search depends on how many matches are found — for
example, finding 100 matches would take about 2.4s.

Using just the names of the data files, we next divided the data
set into six categories: cartwheels, fighting, reaching, locomotion,
jumping/hopping, and miscellaneous. Each individual data file,
however, still contained multiple actions; for example, one “reach-
ing” file contained six reaching motions, many walk cycles, and
some motion of the actor readying himself. Separate match webs
were built for each category, which took a total of 3.4 minutes and
consumed 45MB of disk space without compression. Searching the
reaching and locomotion match webs, which each comprised about
a quarter of the data, took on average 0.006s for a 1.5s query, or
about a quarter of the time needed in the unlabelled case. These re-
sults may be interpreted as follows. Building a match web requires
O(n2) time for a data set of n frames, and so dividing the data set
into six pieces should reduce computation time by roughly an or-
der of magnitude (see Section 5 for more discussion on scalability).
On the other hand, motions in different categories tend to be dis-
similar and hence have sparse match webs, so dividing up the data
set produces a more modest savings in storage than in computation
time. The reduced search time stems from our search algorithm
being linear in the size of the data set, so smaller data sets yield
proportionately faster searches.

Accuracy. To test the accuracy of the search results, we first re-
stricted searches to data files in the same semantic category as the
query. We entered queries of walking, jogging, jumping, hopping,
punching, cartwheeling, sitting down/standing up, stepping onto/off
of platforms, kicking, and picking up an object. For each query
we attempted to find a distance threshold that would find all log-
ically similar motion segments (identified manually) and nothing
else. This was possible for all but the last two queries. For the kick
query, we were able to find all kicks involving the same leg except
for a spinning back kick. This kick was sufficiently different that it
did not have strong time correspondences with any other kick (cri-
terion 2 in Section 3.1). For the query of a character picking up
an object from a shelf, the system returned every motion involving
reaching to the shelf, but in half the cases the character was putting
the object back. A human can distinguish these motions because
the reaching arm is initially hanging downwards when picking the
object up and bent when putting it back (see Figure 12). However,
this difference is sufficiently subtle relative to the rest of the motion
that our system could not discern it.

We next ran the same experiments using the original, unlabelled
data set. The results were identical, with two exceptions. First,
more matches were returned for the walking query, since some mo-
tions not labelled as locomotion contained short segments of walk-
ing. Second, for the reaching query we found that any distance

Figure 12: Due to their strong numerical similarity, our system confuses picking
up an object (left) with putting it back to the same location (right).

Figure 13: Left. Relative to a middle reach (1), a high reach’s (2) numerical
distance is comparable to looking over one’s shoulder (3), but it is closer in terms of
graph distance. Right. For a query of a lower-left reach (1), any threshold that returns
an upper-right reach (2) as a first-tier match also returns spurious matches, such as
walking (3).

threshold large enough to return all of the data set’s 17 reaching
motions also included spurious matches. This is because some
reaching motions were sufficiently different than the others that,
in terms of our numerical similarity metrics, they were comparable
to logically unrelated motions such as looking over one’s shoulder
(Figure 13). However, when sorted in order of increasing distance
to the query, the first 17 matches were the true reaching motions.

Discussion. Our search algorithm defines matches as motion seg-
ments that are either close to the query or connected to it via a se-
quence of close intermediary matches. This allows one to find dis-
tant matches while still using smaller, more reliable distance thresh-
olds that prune unrelated motion segments. For example, given a
query of someone reaching to the lower left, any distance thresh-
old large enough for an upper-right reach to be considered close
(i.e., a first-tier match) also produced many spurious matches, such
as walking motions (Figure 13). On the other hand, using a lower
threshold and multi-step search correctly identified the upper-right
reach as closer to the query than any other non-reaching motion.

Nonetheless, some matches may be sufficiently far from the oth-
ers that to find them one must use a threshold which will also return
spurious matches. Since these spurious matches are used as new
queries, they can lead to additional spurious matches. Two possi-
ble solutions are to incorporate semantic information, which prunes
the space of candidate matches, and to sort the matches based on
shortest-path distance to the query, on the assumption that spuri-
ous matches have a greater total distance than true matches. In our
experiments, both of these were successful.

If one logical match is very far from the others, then it may not
be possible to generate clear time correspondences with any other
match (that is, the second criterion of Section 3.1 would fail). In
this case, that match will not be part of the match web and cannot
be found by our system. We believe this is reasonable because our
ultimate goal is to blend the matches to create parameterized mo-
tions, and a match that is this different from the others is unlikely
to yield successful blends.

4 Parameterizing Motion

Once example motions have been collected, they can be blended to
create new motions [Wiley and Hahn 1997; Rose et al. 1998]. Sev-
eral blending algorithms are in the literature; we use the one sug-
gested by Kovar and Gleicher [2003]. While a synthesized motion
can be adjusted simply by varying the blend weights, in general
blend weights have no simple relationship to motion features. To
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provide more intuitive control, we parameterize the space of blends
according to a user-supplied parameterization function f that com-
putes relevant properties of the initial query motion Mq. For the
following discussion, we assume that the inputs to f are joint po-
sitions and orientations. This allows a wide range of properties to
serve as the basis for the parameterization, including the location of
an end effector at a point in time; the average, minimum, or maxi-
mum angular velocity of a joint; or features of aggregate quantities
such as the center of mass.

Abstractly, f maps a set of blend weights w to a parameter vec-
tor p. Our goal is to invert this function: given a set of parame-
ters, we want blend weights that produce the corresponding mo-
tion. Unfortunately, in general f−1 has no closed form represen-
tation. Moreover, since the number of examples is almost always
greater than the dimensionality of the parameter space, f is a many-
to-one function, and thus computing f−1 is an ill-posed problem.
In light of this, we use scattered data interpolation to construct an
approximate representation of f−1 from a set of discrete samples
(p1,w1), . . . ,(pn,wn). The ith example motion Mi is associated
with a sample where p = f(Mi) and w has 1 in the ith position and 0
everywhere else. Given a new set of parameters p′, nearby param-
eter samples are identified, and their blend weights are averaged
according to the distance to p′. This procedure uses the sampled
blend weights to restrict the set of possible output blend weights,
making the computation of f−1 well-posed.

The approximation to f−1 becomes more accurate as the parame-
ter space is sampled more densely, and in the limit the samples pro-
vide a lookup table that directly maps parameters to blend weights.
Uniform sampling is also desirable because clusters of samples can
skew the approximation. For instance, if the closest neighbors are
all duplicates of the same sample, the approximation simply returns
that sample. However, the sampling of parameter space provided
by the example motions is not guaranteed to be dense or uniform,
and hence the approximation of f−1 may be inaccurate (Figure 2).
To correct this, we generate blends to create additional samples of
f−1, with the goal of ensuring that the parameter space is sampled
densely and uniformly. This requires addressing the following is-
sues:

1. Motion registration. Motions must be registered in time be-
fore they can be blended. We exploit the structure of the match
graph to automatically register the example motions.

2. Sampling strategy. To scale to large numbers of examples,
we sample subsets of blend weights by finding sets of exam-
ple motions that are nearby in parameter space. These blend
weights are constrained to reasonable values that represent ei-
ther interpolations or limited extrapolations.

3. Fast interpolation that preserves constraints. We use a k-
nearest-neighbors technique that is efficient for large example
sets and respects blend weight constraints.

In the remainder of this section, we provide more details on each
of these matters and conclude with some example results.

4.1 Registration

Motions are registered in time through a timewarp curve s(u),
which is a continuous analogue of a time alignment. If there are
Ne example motions, then each point on s is an Ne-dimensional
vector specifying a set of corresponding frame times. Each dimen-
sion of s is required to be strictly increasing so that given a frame
of motion, the associated point on s can be uniquely identified.
While early work in motion blending constructed timewarp curves
manually [Rose et al. 1998], more recent work [Kovar and Gle-
icher 2003] has automatically determined frame correspondences

by minimizing the distance between matched frames. This is ac-
complished through the same dynamic programming methods that
were discussed in Section 3. While this strategy works well when
motions are close, it can fail for more distant motions. For example,
if two reaching motions target very different locations (Figure 1),
then frames at the apex of each reach are the most dissimilar in the
two motions. The optimization will hence explicitly avoid match-
ing these frames together.

This problem can be avoided by using “in between” motions to
infer the timing relationship between distant motions. We start by
using Dijkstra’s algorithm to identify the shortest path from the
query Mq to every other motion in the match graph. Any edge
that is not on one of these shortest paths is discarded. For each
remaining edge, we use dynamic programming to calculate a new
time alignment for the nodes it connects. This is reasonable since,
by construction, edges on the match graph only connect close mo-
tions with “obvious” time correspondences (Section 3.1). We next
fit an endpoint interpolating, strictly increasing spline to the time
alignment to generate a proper timewarp curve [Kovar and Gleicher
2003]. Given a frame of Mq, we can now find the corresponding
frame in any other motion by walking down the shortest path, using
the timewarp curve at each edge to convert the frame of the current
motion to the corresponding frame of the next motion. In this man-
ner for any frame Mq(tq) we can generate a frame correspondence
(Mq(tq),M1(t1), . . . ,MNe−1(tNe−1)). Finally, to generate a time-
warp curve for the entire match graph, we sample Mq to generate a
dense set of these frame correspondences and fit an Ne-dimensional,
strictly increasing, endpoint interpolating spline.

If any part of the parameterization function involves the skeletal
configuration on a specific frame Mq(t0), then this frame index t0
is converted to the corresponding index u0 on the timewarp curve.
This allows the parameterization function to be computed for any
other example motion and for any blend of the examples.

4.2 Sampling

While our goal is to produce a dense sampling of parameter space,
we only have direct control over the blend weights. A simple strat-
egy is hence to indirectly sample the parameter space by densely
sampling the blend weights. However, this is infeasible for large
example sets because the dimensionality of the blend weight space
is proportional to the number of examples, and so the number of
samples needed to achieve a given sampling density grows expo-
nentially with the number of examples. Moreover, such a sampling
would be redundant because f is a many-to-one function — the
same region of parameter space would be covered repeatedly by
different sets of blend weights.

These difficulties can be avoided by limiting blends to subsets
of examples that are nearby in parameter space. Intuitively, the
goal of sampling is to fill in the gaps in parameter space, and the
most natural strategy for filling any given gap is to combine the
closest example motions. For example, imagine the examples are
various reaching motions and we want to sample blends that reach
near chest height. This could theoretically be done by combining
motions that reach to the ground with ones that involve standing on
tiptoes, but it is more sensible to instead combine example motions
that reach within a similar region.

We can turn this intuition into an algorithm as follows. First, we
compute the parameters of each example motion. To approximate
the accessible region of parameter space, we compute a bound-
ing box and expand each dimension by a fixed percentage about
the central value (20% in our implementation). We then randomly
sample points in this region and for each find the d + 1 example
motions with the closest parameters, where d is the dimensionality
of the parameter space. We use this number of neighbors because
it is the minimum necessary to form a volume in parameter space.
The weight of every other motion is set to zero, and a random set
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of weights is generated for the neighbors under the restriction that
these weights be nearly convex, or valid. Specifically, we require

−δ ≤ wi ≤ 1+δ , ∑
i

wi = 1, (1)

where δ controls the allowable degree of extrapolation. In par-
ticular, when δ = 0 only interpolation is allowed. A random set
of valid blend weights can be calculated as follows. Let S be
the sum of all blend weights that have been assigned values; ini-
tially S = 0. While unassigned weights exists, randomly select
one of these weights w. If w is the last unassigned weight, set it
to 1− S. Otherwise randomly assign it a value from the interval
[max(−δ ,−δ −S),min(1+δ ,1+δ −S)]. This ensures that both w
and S+w have a value in the range [−δ ,1+δ ]. The latter condition
is important because it guarantees that the final weight is valid.

To prevent parameter samples from being too close, for each new
sample the closest existing sample is found and the former is dis-
carded if the distance is below a threshold. In our experiments,
which focused on joint positions, this threshold was half an inch.

4.3 Interpolation

Given a new set of parameters p̃, we use k-nearest-neighbors in-
terpolation to find blend weights w̃ that produce those parameters.
Let the k nearest neighbors be p1, . . . ,pk, in order of increasing
distance, and let wi be the blend weights associated with pi. w̃ is
approximated as

w̃ =
k

∑
i=1

αiwi. (2)

Following Allen et al [2002], each αi is initially assigned the value

αi =
1

D(p̃,pi)
−

1
D(p̃,pk)

, (3)

where D computes the distance between two parameters (Euclidean
distance in our implementation) . These weights are then normal-
ized so they sum to 1. Since the αi are nonnegative and sum to 1, w̃
is inside the convex hull of the wi, and it is straightforward to show
that w̃ therefore satisfies the conditions in (1). This ensures that any
parameters specified by the user will produce a motion within the
space of valid blends. In particular, parameters that are not attain-
able are projected onto the accessible region of parameter space.

As a result of our sampling procedure, at most d +1 elements of
each wi are nonzero. This implies that w̃ will in the worst case have
k(d + 1) nonzero weights, and in practice there are fewer because
nearby parameter samples tend to have the same set of nonzero
weights. Since motions with zero weight can be ignored in the
blending calculation, the asymptotic run time of our algorithm is
independent of the number of examples. This analysis neglects the
cost of finding the k nearest neighbors, but we have found that even
a brute force nearest neighbor calculation is negligible relative to
the cost of computing a blend.

4.4 Results and Applications

We have implemented the above algorithms and used them to cre-
ate a variety of parameterized motions; see Table 1 for a summary.
In each case we generated a thousand parameter samples using the
method described in Section 4.2. The time needed to generate these
samples varied from 1.7s to 6.7s, and after eliminating redundant
samples the storage cost was 8.2% of the example motion data
in the worst case and 3.2% on average. In all of our experiments
new motions could be synthesized in real time, and these motions
matched the user’s target parameters to within visual tolerance as
long as they were within the accessible region of parameter space.
We set k = 12 when performing nearest neighbor interpolation.

Motion # Examples Parameterization
reach 6 apex of reach
walk 96 final root position on ground
kick 4 target location
sit 2 lowest height of hips

step up 4 heel height when on platform
punch 7 target location
hop 4 final root position on ground

cartwheel 11 final root position on ground

Table 1: Parameterized motions built in our experiments.

Figure 14: Visualization of the accessible locations for the ankle of a kick (upper
left), wrist of a reach (lower left), and final position of a walk cycle (right). Large red
cubes show parameters of example motions; small grey cubes are sampled parameters.

In addition to providing more accurate parameterizations, the
sampled parameters can be used to visualize the range of synthe-
sizable motions. Figure 14 shows some cases where this can be
accomplished simply by drawing markers at the location of each
parameter sample. Another application of our methods is automatic
removal of redundant example motions, which can reduce the pa-
rameterized motion’s memory footprint. For each example motion,
we compute its parameters and see if they can be reproduced within
a user-specified tolerance by interpolating nearby examples. If so, it
is discarded. For our parameterized walk, we removed all example
motions where the final root location could be reproduced to within
a quarter inch, reducing the number of motions from 96 to 46. The
parameterized walk also shows the scalability of our scattered data
interpolation method: including all 46 example motions in a blend
takes an order of magnitude longer than using our algorithm.

The automation provided by our system makes it feasible to ex-
periment with unusual parameterized motions. Starting with 34s
of cartwheel data, we built a parameterized motion where the user
could control the final position of a sequence of cartwheels. The to-
tal amount of time needed to build the match web, identify a partic-
ular cartwheel, execute a search for other cartwheels, and generate
parameter samples was less than thirty seconds.

5 Discussion

This paper has presented automated methods for extracting logi-
cally related motions from a data set and converting them into an
intuitively parameterized space of motions. One contribution of
this work is a novel search method that uses numerically similar
matches as intermediaries to find more distant matches, together
with a precomputed representation of all possibly similar motion
segments that makes this approach efficient. A second contribution
is an automatic procedure for parameterizing a space of blends ac-
cording to user-specified motion features. This algorithm samples
blends to build an accurate approximation of the map from motion
parameters to blend weights, and it uses a scalable scattered data
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interpolation method that preserves constraints on blend weights.
We conclude with a brief discussion of the scalability and gener-

ality of our methods.

Scalability. For our test data set, which we believe is sizeable rel-
ative to what is used in current research, the time and space costs
for building and storing a match web were quite manageable. How-
ever, a match web for a data set of n frames takes O(n2) time to
construct and O(n2) space to store. The time costs can be mitigated
by using a multi-resolution construction method (as discussed in
Section 3.2) and by computing match webs for different pairs of
motions in parallel, and storage can be reduced through compres-
sion algorithms. Nonetheless, for massive databases it will not be
feasible to build match webs for every pair of motions. A simple
solution is to partition the database into independent modules based
on semantic content and compute match webs separately for these
modules. Since a very large database will contain many unrelated
motions, such a division would be natural and is likely to already
be reflected in the organization of the data files. The development
of alternatives to match webs that are asymptotically more efficient
yet have similar performance characteristics is left for future work.

While our parameterization algorithms apply in theory to pa-
rameter spaces of arbitrary dimensionality, in practice they are
limited by the quantity of available data. Roughly speaking, we
need at least enough examples to cover every combination of min-
imum/maximum values for individual parameters (the “corners” of
the space), and more examples can provide higher quality results.
The number of necessary example motions is hence exponential in
the number of parameters. Developing methods to ease the data re-
quirements while preserving motion quality is left for future work.
Generality. While we have focused on parameterization functions
involving joint positions and orientations, our methods allow pa-
rameterizations based on abstract properties like mood. For quali-
tative features like these where accuracy is less meaningful, we can
simply skip the sampling step of Section 4.2 and apply scattered
data interpolation directly to the example motions.

Motion sets found by our search engine are not guaranteed to
be blendable. For example, one of our query motions consisted of a
character stepping toward a shelf, picking up an object, and walking
away. While our system correctly identified the eight other picking-
up actions in the database, in three of these the initial step was with
the wrong foot, and so these motions had to be discarded. Similarly,
we tried to construct a parameterized leaping motion but found the
blended body trajectory to be physically implausible. More gen-
erally, the only reliable way of determining whether motions can
be successfully blended is to create and look at specific blends. In
light of this, one of the primary advantages of our system is that it
greatly speeds and simplifies the process of experimentation.
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