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Abstract

This work shows that intercepting a low-level graphics library com-
mand stream and reconstructing a declarative representation is prac-
tical and useful, especially for exploring new rendering styles. We
show not only how the basic mechanics of intercepting an OpenGL
command stream lead to a non-invasive extension mechanism for
graphics applications, but also how simply manipulating the stream
severely limits the kinds of styles we can consider. We describe
how our system efficiently reconstructs a declarative representation
of the geometry implicit in the graphics library command stream.
We present a set of application extensions built with this framework
including several stylized renderers. Extensions built using our sys-
tem are capable of changing the rendering style of applications on
the fly at interactive rates.
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1 Introduction

Over the past several years, computer graphics techniques for pro-
ducing intentionally stylized images have emerged. This non-
photorealistic rendering (NPR) has proven interesting not only for
purely aesthetic reasons, but also to enhance comprehension of au-
tomatically generated images. Because of this, NPR techniques
are useful across a wide variety of applications. Unfortunately,
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most NPR methods create images in unique ways—very differ-
ent from traditional rendering methods, and even from other NPR
techniques. Typically, applications must be retrofit or even re-
architected to support new visual styles. This has precluded ex-
tensive experimentation with matching new styles to existing appli-
cations.

Non-invasive methods for altering the behavior of graphics appli-
cations can be used to extend graphics applications without modifi-
cation. These methods work by intercepting calls to the underlying
graphics library and have allowed for a variety of useful changes in-
cluding changing the visual style of interactive graphics programs.
The benefit of these techniques is that they allow new functionality
to be added to existing applications without modifying the applica-
tions. The problem with these techniques is that they obtain only
limited information about what the application is doing—merely
the information inherent in the stream of library calls from the ap-
plication.

In this paper, we explore the potential for creating new and inter-
esting visual styles for interactive 3D applications using only this
limited information in the graphics library command stream. First,
we examine the information obtained by intercepting the stream of
calls to the low level graphics library OpenGL. Directly manipulat-
ing this stream can lead to some simple stylistic changes. Unfor-
tunately, we find this direct transformation too limited to support
many desirable stylized rendering techniques.

More sophisticated NPR techniques require a declarative represen-
tation of the geometry in the scene as opposed to the inherently im-
perative representation contained in the OpenGL command stream.
We will show how such a declarative representation can be con-
structed from the stream of graphics library calls, and we provide
several examples of NPR styles implemented using this represen-
tation. The information provided by such a reconstruction is still
limited, however, so we examine these limitations and their impact
on the types of renderers possible using our techniques.

A benefit of our interception-based stylization is that it allows styl-
ized rendering algorithms to be used with varied programming lan-
guages and programming styles. Even in cases where we do have
the ability to modify the source code of an application program,



it is sometimes simpler to use our interception and reconstruction
techniques to provide stylized rendering. This frees the application
programmer from having to worry about providing data in a form
compatible with renderers, as is common in a scene graph library.
There is a trade off, however. Interception has a performance cost,
and can only provide limited information to a renderer. While our
interception system may not be able to compete with a carefully
hand-crafted application, it can provide interactive performance on
a wide variety of renderers across a wide variety of applications.

In a previous paper [2001], we introduced the concept of non-
invasive stylization of interactive applications. In this paper, we
make a further contribution to the topic by introducing the more
generally useful technique of reconstructing a declarative represen-
tation of the geometry from the OpenGL command stream and pro-
vide a number of new renderers that can work with this limited
data. We present a prototype system called HijackGL that is more
general and efficient than our previous system, and a set of new
renderers that are more efficient and attractive than those presented
previously.

The rest of this paper is organized as follows: We begin by ex-
amining the mechanism of intercepting applications’ calls to the
graphics library, including reviewing the previous work that uses
this technique. We briefly review the stylization capabilities of sys-
tems that are able to manipulate the OpenGL command stream and
show how they are unable to directly support an important class
of NPR techniques. We then consider the problem of reconstruct-
ing a declarative representation of the geometry from the command
stream, and the issues in computing the information required for
NPR algorithms. We describe the reconstruction mechanisms used
by HijackGL and the software architecture this reconstruction en-
ables. Given this representation, we then consider how several NPR
algorithms can be realized within this framework. We conclude by
assessing the apparent limitations of the non-invasive approach.

2 Intercepting OpenGL

Modern operating systems provide access to common functional-
ity to applications through shared libraries. Shared libraries are
similar to traditional libraries, except they are dynamically loaded
and linked at run time rather than statically linked at compile time.
Shared libraries have the advantage that a library may be easily up-
dated or replaced, by just replacing the library file. Since linking
happens dynamically, when a shared library is replaced the next in-
vocation of a program that uses the library will operate with the
updated version.

Shared libraries provide a mechanism for modifying the behavior
of applications without altering them. Changing the shared library
can change the behavior of an application that uses it. Providing
that the new library provides exactly the same interface as the orig-
inal, applications should be unaware of the change. This provides
a mechanism for temporarily modifying the behavior of an appli-
cation. By causing the linker to dynamically link the application
to an alternate library, different behavior can be effected. Under
Windows and UNIX, this interception can be easily accomplished
by placing the alternate library before the system library in the sys-
tem’s library search path (for example, in the same directory as the
application on Windows).

The intercepting library can make use of the original library by
loading it explicitly. This allows intercepting libraries to act as fil-
ters, optionally “passing through” any calls to the original library,
or using the original library to implement their own algorithms.

Creating such an interception library requires engineering the new

library to faithfully reproduce the interface of the original. It also
requires the library to be created in a way that reproduces enough
of the functionality of the original library so that applications that
use it can function. While this is may require a large amount of
engineering, it is straightforward if the library is well documented.

The intercepting library has no access to the internals of an appli-
cation that calls it. The only information of the application that the
library has access to is the sequence of calls the application makes
to the library, and any global variables shared between the applica-
tion and the library. We refer to the sequence of calls made by the
application to the library, including the parameters of those calls,
the command stream.

For extending existing graphics applications, a low-level graphics
API seems to be the most logical choice. We could choose to in-
tercept a higher level scene graph API, such as OpenInventor; how-
ever, this would severely limit the number of applications our pro-
gram would be useful for. We could choose to intercept at a much
lower level, such as the pixels going to the frame buffer, but this
provides data in too unstructured a form, requiring expensive com-
puter vision analysis to create any structure required for process-
ing. Examples of this approach are the painterly rendering systems
of [Litwinowicz 1997] and [Hertzmann and Perlin 2000].

Most low-level graphics APIs, including OpenGL, do not explic-
itly represent the geometry for full scenes at a time. The command
stream represents a programmatic or imperative representation of
the geometry: it provides a sequence of commands that, when ex-
ecuted in order, draw a picture of the geometry. In contrast, most
descriptions of geometry for geometric processing algorithms, and
high-level APIs (such as Renderman [Upstill 1989] or OpenInven-
tor [Strauss and Carey 1992]) represent geometry declaratively as
triangle meshes with connectivity or subdivision surfaces, for in-
stance.

Our system for graphics application extension, HijackGL, operates
by intercepting calls to the OpenGL graphics library under the Win-
dows operating system. The system could have been equivalently
implemented using another low-level graphics API such as DirectX,
or under a different operating system such as UNIX. OpenGL has
the advantage of being a very common, stable, popular, and well
documented API that we are familiar with.

2.1 Related Work: Intercepting OpenGL

Many existing systems intercept calls to the OpenGL graphics li-
brary for various purposes. The most common category of tools
assist programmers in performance analysis and debugging. SGI’s
glTrace [SGI and Miles 1997] records the sequence of library
calls as they are made to assist in debugging and to allow perfor-
mance monitoring and hardware timing simulation. IBM’s ZA-
Pdb OpenGL debugger [IBM 1998] uses this interception technique
to aid in debugging OpenGL programs. Intel’s Graphics Perfor-
mance Toolkit [Intel 1997–2000] uses a similar method to instru-
ment graphics application performance. None of these tools pro-
vide any facility for changing the behavior of the intercepted appli-
cation.

In 1996, SGI developed a stream codec for OpenGL [SGI and Dun-
woody 1996]. This feature allowed OpenGL command streams and
associated data to be captured and recorded to disk or elsewhere.
This stream capture ability makes it easy to examine and process
streams offline; however, it does not allow for adding new func-
tionality to interactive applications.

WireGL [Humphreys et al. 2001] and its successor
Chromium [Humphreys 2001] also intercept OpenGL to gen-



erate different output like distributed displays. Chromium provides
a mechanism for implementing plug-in modules that alter the
stream of GL commands, allowing the simple transformations we
have presented [2001] or Section 2.2 to be implemented.

All of these previous systems either view the OpenGL command
stream executed by the application, record it, or transmit it. While
Chromium allows for some simple stream transformations, it still
considers the “data” of the application to be the stream itself. All
processing and manipulation of the data is done directly on the
stream representation.

Our own work on non-invasive, interactive, stylized render-
ing [2001] also intercepts the OpenGL stream. This permitted mak-
ing localized changes to the stream, as described in Section 2.2. To
combat the limitations of these localized changes, some of the ren-
derers buffered an entire frame of data and processed it to render the
image. In a sense, these renderers were performing a special-case
of the scene reconstruction described in Section 3. In this paper,
we formalize, generalize and encapsulate this reconstruction, and
provide new and improved rendering algorithms that use it.

2.2 Stream Transformations

Once the OpenGL interception mechanism is in place, some very
simple but useful stream transformations can be made. The simplest
transformations change the operation of a single library call. For
example, one simple method is to cause every triangle to be drawn
in wireframe. This may be done by simply drawing a triangle’s
outline every time a triangle should be drawn. This is useful for
observing how the geometry changes in programs that use level-of-
detail methods. Other similar changes include perturbing normals
and colors, quantizing color values, or making objects translucent.

Changing the stream directly like this can support interesting exten-
sions, but this method is limited. These modifications are “local” in
the sense that they cannot consider information contained in other
parts of the stream when making changes. This means that infor-
mation like connectivity cannot be obtained. Also, since the stream
is processed serially, there is no easy way to reorder operations; for
example, to draw all the polygons in a scene in a sorted order. All
the performance evaluation and debugging tools cited earlier can
be implemented by processing the stream of graphics commands in
this manner.

In a previous paper [2001], we explored some of the potential for
stylistic alterations possible with these local stream transforma-
tions. Some of these included a simple depth-cued wireframe ren-
derer, a very simple pencil-sketch renderer that drew the outlines
of every triangle in the scene, and a colored-pencil style that drew
sketchy approximations of each triangle with quantized colors.

There is a great potential for even more effects to be implemented
by local transformations. For example, we might consider perform-
ing non-linear color shifts (to better meet the usability concerns of
partially color blind users), non-linear spatial distortions (for ex-
ample, to zoom in on regions of interest yet retain context of the
whole scene), or even selective omission of various geometric el-
ements. However, any such local transformation of the stream is
fundamentally limited.

2.3 Stylized Rendering Techniques

Stylized rendering is a rapidly growing area of computer graph-
ics. See [Reynolds 1999–2002] for a an excellent annotated bib-

liography. Techniques for stylized1 rendering fall into three broad
categories: 3D techniques that render images based on geometric
descriptions, image post-processing methods that alter existing im-
ages, and interactive methods that enhance users’ inputs. For styl-
ization of existing applications, the third category is inappropriate.

It is possible to apply image-processing stylization algorithms to the
output of 3D graphics applications. The processing would occur in
the frame buffer after rasterization. We have not considered such an
approach because the methods are usually more costly (since they
involve per-pixel operations, and reading images from the frame
buffer which is expensive on modern graphics hardware), and of-
ten needs to reconstruct information that existed in the geometric
representations available before rasterization.

Most stylized rendering algorithms operate on a declarative descrip-
tion of the geometry. Because these algorithms rely on non-local
properties of the geometry, or simply wish to avoid the artifacts
of the underlying representation, they must consider the geometric
models as a whole. For example, many existing stylized rendering
algorithms require silhouette edges [Lake et al. 2000; Hertzmann
and Zorin 2000], front-to-back ordering of polygons, surface pa-
rameterizations [Praun et al. 2001; Hertzmann and Zorin 2000], or
implicit shape representations [Bremer and Hughes 1998]. Others
operate by processing subdivision surface meshes [Hertzmann and
Zorin 2000] or multi-resolution meshes [Lake et al. 2000].

To achieve stylized rendering that might truly be called “artistic,”
even more information than just the geometry is required. To better
convey information, a renderer needs to understand the commu-
nicative goals of the image [Seligmann and Feiner 1991], or at least
to know what and why a scene is being drawn. Such information is
most certainly not in an OpenGL command stream, and is unlikely
to be contained in generic geometric representations.

3 Reconstructing Geometry

To be non-invasive, we must limit our system to obtaining only the
OpenGL command stream from applications. Given that many ex-
isting stylized rendering algorithms require a declarative represen-
tation of the geometry, we are faced with two options. We could
devise new algorithms that function on the command streams, as
we did previoiusly in [2001], or we can devise a scheme to recon-
struct the necessary declarative representations from the OpenGL
stream. Because we hope to draw on the wide ranging literature of
existing algorithms, we choose the latter approach. An additional
argument in favor of reconstruction is that it is unclear that stream
transforms can support rich enough visual styles. Rather than de-
bate which representation is better, we chose to construct a system
that can produce both.

The types of declarative representations used for stylized renderers
are different from the internal representations used by many inter-
active graphics programs. Many OpenGL programs have no need to
sort objects or primitives because of z-buffering hardware and have
no use for silhouette edges or connectivity information. Therefore,
they often neither compute nor contain explicit representations of
this information.

Our goals in building HijackGL were to provide a system that al-
lowed the greatest possible range of renderers to be applied to the

1We prefer to use the term stylized rendering rather than the more com-
mon non-photorealistic rendering because little in computer graphics is
truly photorealistic. Intentionally non-photorealistic is too cumbersome a
term, and we are not arrogant enough to call the output of our algorithms
artistic; however, this term is often applied to this class of imagery.



greatest possible range of applications, and to maintain interactive
performance. These concerns drive the system design described
in this section. In Section 5 we assess how successful we are at
achieving these goals.

3.1 Declarative and Imperative Representations

Parsing the OpenGL command stream on the fly and constructing a
useful higher-level representation poses many challenges. Because
OpenGL is an extremely flexible API and it reflects an imperative
model that maps well to graphics hardware, the command stream
does not directly correspond to a declarative representation of the
geometry. In contrast, recent work shows the OpenGL command
stream can be viewed as an assembly language program with each
command corresponding to a single instruction [Peercy et al. 2000].

The hardware-centric drawing model does provide a lowest com-
mon denominator for managing the complexity of the API. Ulti-
mately, OpenGL turns streams of commands into hardware specific
rasterization commands. Most OpenGL commands either update
the library’s internal state (which determines where and how the
primitives will ultimately be rasterized), or draw primitives that are
ultimately broken down into lines and triangles.

Constructing a useful declarative representation of the geometry re-
quires more than simply buffering all of the stream data for each
frame. While buffering all of the information is an important step,
we also must construct a meaningful representation of that infor-
mation sufficient for the algorithms we wish to employ.

To demonstrate some of the more basic issues in reconstructing ge-
ometry from an OpenGL stream, consider interpreting a program
that draws a cube with its faces colored differently. Ultimately, we
would like to tell the renderer “there is a cube” or even, there are
8 vertices connected into 6 faces, by 12 edges, with a certain set
of details. While OpenGL gives programmers a wide variety of
ways to specify the cube, these two geometric descriptions are not
among them. Instead, an OpenGL program instructs the graphics
hardware to draw the cube one primitive at a time. For each primi-
tive, the geometric information for each vertex must be provided. In
the case of the cube, each vertex must be specified multiple times,
once for each primitive 2. OpenGL provides a number of methods
for specifying the primitives: it provides for all of the numeric data
types in the language (integral, floating point, . . . ) and a variety of
equivalent mechanisms for generating primitives (individual trian-
gles, quadrilaterals, triangle strips, . . . ).

3.2 Processing the Command Stream

The first step in processing the OpenGL command stream is to ho-
mogenize the data. HijackGL homogenizes data in different ways.
First, simple data type homogenization is performed. All incoming
data values are translated to a common format. For example, vertex
location data and texture coordinates are converted to full double
precision3 four-vectors. Next, higher-level primitives like quadri-
laterals, triangle strips, and triangle fans are converted to collections
of more fundamental primitives. That is, quads are represented by
pairs of triangles, and triangle strips and fans by collections of tri-
angles. This is done so that all the surface geometry in the scene

2Because each face has a different normal, the OpenGL mechanism for
sharing vertices does not apply.

3In hindsight, this was a poor decision. Single precision would have pro-
vided better performance and there are few applications that require double
precision and even fewer graphics devices that support it.

may be examined by walking a list of triangles without having to
write code to support each possible surface primitive type.

The next step in processing is to build data structures that represent
geometry as entities, rather than drawing instructions. In OpenGL,
we must distinguish between a vertex, which is what OpenGL uses
to describe the primitives that are drawn, and a location which is a
position in space. In OpenGL, vertices have several attributes in-
cluding location, color, normal, and texture coordinate. A vertex is
instantiated with the OpenGL command glVertex. When this com-
mand is issued, all of a vertex’s attributes are fixed. The location of
the vertex is set by parameters to the glVertex command, and all the
other attributes are set by the current OpenGL state. OpenGL does
not keep track of vertices any longer than is necessary to raster-
ize the primitives associated with it. In contrast, HijackGL buffers
vertices for entire frames at a time.

Because vertices have many attributes, different vertices may share
the same location. More generally, any two vertices differ if and
only if one or more of their attributes differ. For example, in the
cube described above, there are eight points but twenty-four differ-
ent vertices because for the different faces, the vertices have differ-
ent normals and colors.

HijackGL stores a hash table for each vertex attribute. Hashing
is used to recognize and remove duplicate values. Removing dupli-
cate values for locations is necessary to compute connectivity infor-
mation described later. Hashing is also used with other attributes to
reduce the amount of memory required to run HijackGL. Because
we must cache associated data for every value, the memory foot-
print of each vertex attribute can be large enough that sharing is
necessary to avoid excessive memory usage. The size of data for
a single frame can be very large, depending on the complexity of
the scene. Storing vertex attributes with every vertex directly can
consume a lot of space. Using hash tables to only store the unique
values reduces the space requirements. For example, scenes that
contain many vertices that vary only in their locations only store a
single instance of the shared color, texture coordinate, and normal
that vertices refer to. This is potentially a very large savings over
storing every vertex attribute explicitly. For scenes that do contain
very many unique values, the hashing does not save much space. In
practice, many applications duplicate many vertex attributes.

To determine whether vertices share the same location or normal,
we must place them into a common coordinate system so that their
positions can be compared. It is important to note that there is
no notion of a “world” coordinate system in OpenGL. Because
OpenGL gives the programmer flexibility in how coordinate sys-
tems are defined, we choose to convert all positions and normals
to eye coordinates (i.e. using OpenGL’s MODELVIEW matrix, or
in the case of normals, the inverse transpose MODELVIEW ma-
trix). Once we have transformed locations to eye space, the values
are truncated slightly because the least significant bits may differ
slightly due to numerical precision limits. Once in this format, a
simple hash value is computed using the binary representation of
the floating point values.

Using the hashing idea further to remove duplicates, HijackGL
stores many objects including all OpenGL primitives in hash tables.
This is illustrated in Figure 1. Vertices reference Locations, Colors,
Texture Coordinates, and Normals. In turn, Points reference sin-
gle Vertices, Line Segments reference pairs of Vertices, Triangles
reference triples of Vertices, and Quadrilaterals reference pairs of
Triangles. In addition to these OpenGL primitives, HijackGL stores
some structures it computes itself in the same manner. For example,
Edges reference pairs of Locations.
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Figure 1: The data structures of HijackGL’s declarative representation of geometry.
This figure does not show the complete set of information tracked by HijackGL. Rather,
it is meant to indicate the overall structure.

3.3 Computing Additional Information

While processing the stream of commands and building our data
structures, HijackGL computes connectivity information. Edges
are recorded as line and triangle primitives are added to the data
structure. Figure 1 shows a hash table of edges kept by HijackGL.
Edges reference two locations (as opposed to vertices). In addition,
lines reference a single edge, and triangles reference three edges.
As edges are added to the hash table, if they come from triangles,
two triangles are remembered from each edge as “neighbors”. This
resulting winged-edge-like data structure encodes the connectivity
of the geometry. Also, silhouette edges (defined as those edges
whose neighbors overlap when projected to the screen) are flagged,
and the sharpness of edges (defined by the angle between an edge’s
neighbors) is recorded.

While a more clever algorithm for computing connectivity informa-
tion and silhouette edges might be faster, our simple technique fits
well inside HijackGL, and it is fast enough to maintain interactivity
with many applications.

Several applications, including popular games, do their own light-
ing. In this case, the application never sends normals to OpenGL.
To handle this, HijackGL computes the face normals of triangles as
an approximation.

Many NPR styles benefit from knowing geometry information in
screen-space. Therefore, HijackGL computes the screen-space lo-
cations of vertices when it stores them.

3.4 Assumptions and Inferences

The reconstruction mechanism just described computes useful
information given the command stream. However, there is
much more information that we might like for constructing non-
photorealistic renderers and other extensions. For example, we
might like to know what geometry comprises logically distinct ob-
jects. This would allow us to treat different objects separately.
We might also like to know what objects should be considered
foreground objects and what might be considered background ob-
jects. More practically, we might like to know which objects should
be changed and which should not. For example, stylizing user-

interface elements can make a program difficult or impossible to
use.

Unfortunately, this kind of information is not explicitly represented
in the stream. In order to reconstruct any of this information, we
must either make guesses and assumptions about how the program
we are intercepting operates or we must have some prior knowledge
of the program’s operation. We choose not to examine the latter
case, because this solution is not general. However, we note that
if this kind of information is desired, it can be obtained by using
HijackGL as a tool to monitor the commands the application in
question is executing.

There are some simple assumptions and guesses that operate rea-
sonably well in a number of cases. For example, many programs
use OpenGL’s transformation matrix stack to position different ob-
jects. We can make the assumption that whenever the transfor-
mation matrix changes, a logically distinct object is being drawn.
While this certainly does not work all the time, it works well for
some applications.

Ultimately, the lack of high-level information of an application’s
intent in drawing places a fundamental limitation on the capabili-
ties of the interception approach. We will explore this limitation in
Section 5 .

3.5 Software Architecture

The buffering and reconstruction performed by HijackGL to en-
capsulate the geometry information creates a good abstraction for
renderers to process. HijackGL then provides the infrastructure for
renderers and extension modules to use our reconstructed geometry.

Renderers for HijackGL are dynamically loaded plug-in modules.
One of these modules is loaded for use when an application starts.
HijackGL then intercepts all the OpenGL calls and builds a declara-
tive representation of the geometry data. When an image is required
(for example, at the end of a frame, or when a read-framebuffer
command is encountered), HijackGL calls the plug-in module. The
plug-in module may then process the reconstructed data and call
into the system’s OpenGL implementation to draw images on the
screen. HijackGL also supports a mode where plug-in modules may
execute once in response to a keypress. This is useful for creating
extensions like screen-capture modules, as described in Section 4.5.

Because of our declarative data representation, it is very easy to
implement simple renderers in HijackGL. For example, a simple
wireframe renderer would essentially consist of a for-loop to walk
over every edge in the scene and draw it. Adding a single condition
to check the silhouette flag on each edge would make a silhouette
edge renderer. To draw solid geometry, another for-loop that walks
all the triangles and renders them is all that must be added. Our
most complex renderer to date, the pencil sketch renderer of Sec-
tion 4.2, is about 500 lines of code.

4 Example Renderers

In this section, we examine several plug-in renderers that we
have constructed for HijackGL. Ideally, these renderers would
be straightforward implementations of standard stylized rendering
techniques. However, because of the fundamental limitations of the
type of information interception can provide (Section 3.4 and Sec-
tion 5), the pragmatic limitations of our current implementation,
and our efficiency concerns, we have had to develop modified ver-
sions of existing algorithms to meet our needs.



The renderers chosen here were selected because they demonstrate
the utility of geometric reconstruction and the potential and prob-
lems of interception-based approaches. We do not claim that these
renderers provide the visual quality that state of the art, hand-coded
stylized rendering applications provide. However, they are of suf-
ficient quality to be interesting, and further, we are able to provide
our renderers across a wide variety of existing applications. Much
of the visual appeal that results from our demonstrations comes
from choosing well-designed applications.

4.1 Wireframe Rendering

In Figure 2 we show a wireframe renderer running on HijackGL. A
wireframe renderer is easy to produce with our system. As stated in
section 3.5, this renderer is essentially a single for-loop that walks
the list of edges in the scene and draws them.

Wireframe renderers are not often considered very artistic styles,
but they are useful. For example, to see how a level-of-detail algo-
rithm operates, it is often ineffective to examine the running appli-
cation itself. In fact, many level-of-detail algorithms are designed
to minimize the overall visual changes as the underlying geometry
changes. With a simple plug-in wireframe renderer, it is easy to see
what is happening with the underlying geometry as levels-of-detail
change.

While this renderer does not explicitly need a declarative repre-
sentation to operate, its implementation becomes very simple and
straightforward with this representation.

An improved wireframe renderer may accent the silhouette edges
and sharp edges. This gives enough information to make the shape
apparent but does not clutter the view with all the internal structure.
This simple style is difficult or impossible without reconstructing
the geometry so that silhouette edges may be computed.

4.2 Pencil-Sketch Rendering

In previous work [2001] we presented a very simple pencil sketch
renderer that simply drew triangles in white, and then outlined them
with jittered, sketchy lines. This renderer operated by making lo-
cal stream transformations. It was not convincing because it was
effectively a wireframe renderer, showing the structure of the trian-
gle mesh. A more sophisticated renderer in that paper draws pencil
strokes that cover multiple triangles, but this renderer was too inef-
ficient for interactive use.

Figure 4 shows an improved, interactive pencil-sketch style ren-
derer running on a demo of the game Quake III Arena by id Soft-
ware. This renderer is implemented as a plug-in module for Hi-
jackGL. The module takes advantage of connectivity information
to render silhouette and sharp edges with thick dark lines. These
edges help convey the shape of geometry. Pencil-sketch textures
are applied to each triangle in the scene with an orientation that
varies smoothly with surfaces’ orientations. This is accomplished
by choosing a “stroke direction” that is perpendicular to the pro-
jection of the triangle’s normal onto the view plane. A pencil-
sketch texture with strokes all going in one direction is applied
to the triangle by choosing texture coordinates such that the pen-
cil stroke direction is perpendicular to the projected normal. This
causes smooth surfaces to have consistent shading. Since we have
computed the positions of vertices after perspective projection, we
can draw the triangles and apply the pencil-sketch texture in screen
space and thus the pencil strokes remain at constant density across
images.

This pencil sketch renderer is inspired by the work of [Lake et al.
2000]. However, their method always forces sketch textures to be
applied in the same orientation relative to the screen while our pen-
cil sketch renderer allows the sketching direction to vary with the
surface orientation. Specifically, we choose the sketching direc-
tion to be perpendicular to the projection of the surface normal bi-
ased upwards in screen space. This procedure guarantees that the
sketching direction will vary smoothly for smooth surfaces, and will
change sharply for discontinuous surfaces.

4.3 Blueprint Rendering

We created a simple blueprint rendering style using HijackGL
shown in Figure 5. This renderer draws translucent white lines on a
blue background to give the impression of a blueprint drawing. The
lines are only drawn on silhouette and sharp edges, and the lines are
extended beyond their end points to further suggest a blueprint or
draft-drawing style. Dimension lines are drawn for selected edges
greater than a certain length to further suggest a blueprint style.
We would like the edges that have dimension lines drawn for them
to change with low frequency because randomly switching every
frame can be distracting. However, HijackGL does not get any
inter-frame coherency information, so we cannot do this reliably.
However, since many applications draw their scenes the same way
from frame to frame, we make the assumption that edges that ap-
pear in the same place in the edge list are in fact the same from
frame to frame. This works extremely well for some applications
and the dimension lines change with low frequency. However, this
fails with other applications, causing distracting flicker. g

4.4 Cartoon Rendering

Figure 6 shows a cartoon-style renderer running on a research an-
imation system. This module is a direct implementation of the al-
gorithm presented in [Lake et al. 2000]. We implemented this algo-
rithm to demonstrate that implementing an existing popular style in
HijackGL is possible.

The fundamental algorithm is straightforward. Very simply, tradi-
tional diffuse lighting is computed per-vertex by computing the dot
product of the unit surface normal with a unit vector in the direction
of the light. Then the material color of the surface is scaled by this
resulting value to obtain the final color. Cartoon rendering is char-
acterized by a harsh quantization of lighting values. Often, objects
are rendered in a two-tone fashion: the parts of objects illuminated
directly appear bright, while those that are not illuminated directly
appear as darker versions of the material color.

To simulate this, we compute the dot product of the surface normal
and the direction to the light like normal, but instead of scaling
material color values directly, we instead quantize the dot product
value, using it to index into a one-dimensional texture map. This
one dimensional texture map is made up of two or three constant
color segments, ranging from near black to near white. By using the
dot product as a texture coordinate in this one dimensional texture,
we effectively quantize the dot product value. We apply this texture
map to the objects in the scene and configure OpenGL to multiply
the objects’ material colors by the texture map, thereby properly
two-tone shading the objects. The result is rather convincing, as
seen in Figure 6.

While this renderer is a common style, by implementing it in Hi-
jackGL, we can automatically apply it across many applications—
even to those whose source code we do not have.



Figure 2: Wireframe renderers. Left: Original application. Center: Wireframe renderer that displays all edges. Right: Wireframe renderer accenting silhouette edges.

4.5 Other Applications

While our focus in this paper is the use of HijackGL for stylized
rendering, we briefly consider some other relevant uses here. In
each case, a plug-in renderer makes use of the reconstructed geom-
etry to extend applications non-invasively.

Generating different output from graphics programs is useful for
many tasks. Often, generating high-quality output for print media
from a graphics program requires programming investment. Extra
code must be added to render to a high-resolution off screen buffer,
and then write that buffer to disk. This is reasonably straightfor-
ward; however, if scalable vector art is desired or required for print
media, complex code to do projections and generate properly sorted
primitives must often be added. With our techniques, an extension
similar to the gl2ps library [Geuzaine 2001] can be implemented
and then used with any OpenGL application. We have built a mod-
ule for HijackGL that generates Adobe Illustrator vector art files
from 3D applications. This module takes advantage of the recon-
structed scene information to sort triangles from back to front. We
note that this module could be chained with a visual style change
module to produce vector output of one of our stylized renderers.

Chromium and its predecessor, WireGL [Humphreys et al. 2001]
exist primarily to generate different output. Their system, like ours,
uses library interception techniques and sends OpenGL commands
to a cluster of machines that render to a tiled display for large format
output. However, because our reconstruction step removes many of
the redundant values in an OpenGL stream, it may be possible to
send less information across the wire to the cluster of renderers.

Figure 3 demonstrates the results of our geometry capture module.
This extension works by processing the reconstructed scene data
and writing a 3D file format of the scene data. Without the re-
constructed scene data, the models we generate would effectively
be bags of disjoint triangles. Instead, because we compute con-
nectivity, we may convert our data to any standard mesh boundary
representation. After we have taken a 3D scene capture, we can
then view and manipulate this data in a common modeling or an-
imation package, such as Maya. This module allows us to extract
3D models from any program that displays them using OpenGL.

5 Capabilities and Limitations

Intercepting OpenGL and reconstructing a declarative scene data
representation has obvious advantages over hand-crafting new ren-
derers within each application. The interception mechanism allows
us to implement new rendering styles that can be applied across a
wide range of applications. By constructing a declarative represen-
tation of the scene geometry from the OpenGL stream, we enable
a broad class of rendering algorithms that either require data in this
form or are simplified by its availability.

The non-invasiveness of the interception approach does have its
cost over hand-tuned renderers built right into applications. The
most obvious is performance. HijackGL requires an application’s
data to pass through the OpenGL interface and be reconstructed
into geometry before being sent to the renderer. A renderer that
can directly access the application’s data structures clearly has less
overhead. Despite this performance cost, HijackGL is still capa-
ble of providing interactive performance on complex geometry. For
example, our unoptimized HijackGL prototype is able to achieve
more than 20 frames per second on a standard Quake III Arena
benchmark. It is difficult to characterize the performance implica-
tions of our technique because it depends on the performance of the
underlying graphics system. For instance, on an application that
does not stress the graphics system, our overhead may account for
an order-of-magnitude or more decrease in performance. For ap-
plications that are limited by the speed of the graphics system, our
overhead may be insignificant. We have seen both these extremes
and examples that lie in the middle. We have encountered very few
applications that are made too slow to be interactive by our system.

The interception approach has limitations in its generality and re-
sulting quality as well. The information available from the OpenGL
stream is limited. As discussed in Section 3.4, we have no knowl-
edge of why an application is drawing what it is drawing. For
example, if an application chooses to display its menu or control
panel by painting a texture onto a polygon (a common practice in
many games), we have no way to distinguish this from scenes that
we would like to stylistically render. Similarly, we have no way
to differentiate semantically different objects that should be treated
differently, or to apply internal application data in making render-
ing decisions. For example, in a shooter game such as that shown
in Figure 4, we cannot treat the enemy characters differently from
the scenery, nor can we change the characters’ color based on the
state of their AI, effects that would be easy if we were to change the
applications source code.

Another class of limitations of our technique is that we must decode
the OpenGL stream, which is a sequence of instructions designed
to create a particular image, not just to relay the scene geometry.
Clever programmers use a wide variety of tricks to create their vi-
sual effects. In essence, the interceptor must de-stylize the appli-
cation before re-stylizing it. At worst, a programmer might use
the OpenGL machinery to perform computations completely un-
related to rendering, such as the hardware assisted path planning
of [Lengyel et al. 1990].

One potential route to resolving these issues is to adopt a “mildly in-
vasive” strategy. We would still use an OpenGL interception mech-
anism, but provide OpenGL extensions to allow an application to
give hints about its intent as well as to provide a faster path to pro-
viding the scene geometry.

A final category of limitations stems from the incompleteness of
our prototype. While HijackGL implements enough of OpenGL to
allow for many interesting applications and renderers to be created,



Figure 3: On the left is a scene from the Quake III Arena demo. On the right is the geometry of this scene captured as a model and loaded into Maya.

it does not track all of the OpenGL state or recreate all of its func-
tionality. In principle the entire OpenGL state could be tracked,
although given the complexity of the OpenGL state machine this
would be difficult to implement and efficiently store over time such
that the current state for each primitive could be recovered.

While the interception approach has its limitations, re-engineering
all existing applications with all desirable renderers is also an im-
practical approach. Using our interception mechanisms and geo-
metric reconstruction techniques we have created a system that can
connect a wide variety of stylized rendering algorithms to a variety
of existing applications.

Even within the limitations of interception, there is still much to
be done. Our prototype must be made more robust, complete and
efficient. Many additional rendering styles, such as pen-and-ink,
are possible given only the geometric information we have. Other
output mechanisms, such as writing geometric data for high-quality
rendering is possible, as are debugging aids and analysis tools. Pro-
viding more information than just geometry, either through heuris-
tics or mildly invasive hinting, will open up even more opportunities
for extensions.

Visual style changes are useful for many applications. For exam-
ple, a visualization application may render in a fashion that is in-
adequate to make the data comprehensible to the scientist. With
our system, the renderer could effectively be replaced with one ex-
plicitly designed to help visualize some specific data. A different
example comes from accessibility software. Many programs are
not written with visually impaired people in mind. A non-invasive
extension built using our techniques might increase contrast or em-
phasize shapes in such a way that enables visually impaired peo-
ple to use programs they could not earlier. Other uses of visual
style change include prototyping new renderers with existing appli-
cations, examining level-of-detail or culling algorithms in action,
or simply putting new twists on old computer games. With our
interception-based approach, changing the visual style of an exist-
ing application is possible and practical.
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Figure 4: HijackGL’s pencil sketch renderer running on id Software’s Quake III Arena demo.

Figure 5: A blueprint renderer applied to Quake III Arena.

Figure 6: A cartoon renderer shown on a character in a research animation system.


