
Sampling Plausible Solutions to Multi-body Constraint Problems

Stephen Chenney D. A. Forsyth�

University of California at Berkeley

Abstract

Traditional collision intensive multi-body simulations are
di�cult to control due to extreme sensitivity to initial con-
ditions or model parameters. Furthermore, there may be
multiple ways to achieve any one goal, and it may be dif-
�cult to codify a user's preferences before they have seen
the available solutions. In this paper we extend simulation
models to include plausible sources of uncertainty, and then
use a Markov chain Monte Carlo algorithm to sample mul-
tiple animations that satisfy constraints. A user can choose
the animation they prefer, or applications can take direct
advantage of the multiple solutions. Our technique is ap-
plicable when a probability can be attached to each anima-
tion, with \good" animations having high probability, and
for such cases we provide a de�nition of physical plausibility
for animations. We demonstrate our approach with exam-
ples of multi-body rigid-body simulations that satisfy con-
straints of various kinds, for each case presenting animations
that are true to a physical model, are signi�cantly di�erent
from each other, and yet still satisfy the constraints.

CR Descriptors: I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism - Animation; I.3.5
[Computer Graphics]: Computational Geometry and Ob-
ject Modeling - Physically based modeling; I.6.5 [Simulation
and Modeling]: Model Development - Modeling method-
ologies G.3 [Probability and Statistics]: Probabilistic al-
gorithms;

Keywords: plausible motion, Markov chain Monte Carlo,
motion synthesis, spacetime constraints

1 INTRODUCTION

Collision intensive multi-body simulations are di�cult to
constrain because they exhibit extreme sensitivity to initial
conditions or other simulation parameters. Adding uncer-
tainty to a model helps when looking for animations that
satisfy constraints [3], because it adds physically motivated
degrees of freedom in useful places. For example, we can
control tumbling dice by placing random bumps in speci�c
places on the table, rather than by adjusting the initial con-
ditions of the throw. The bumps are more e�ective because a
small change to a bump part-way through the animation has

�email: fschenney,dafg@cs.berkeley.edu

a limited e�ect on where the dice land, but a small change
in the initial conditions generally has an unpredictable ef-
fect. It is di�cult to design e�cient control algorithms for
the latter case.
As discussed by Barzel, Hughes and Wood [3], adding

randomness to a simulation gives additional bene�ts:

� The real world contains �ne scale variation that tradi-
tional simulation models generally ignore. We can use
randomness to model this variation by, for instance, re-
placing a perfectly at surface with one speckled with
random bumps (the same random bumps used for con-
trol above). Animations generated with the new model
can more accurately reect the behavior of the world.
In training environments, this results in the subject de-
veloping skills more compatible with the real world: a
driver trained on simulations of bumpy roads will be
better prepared for real world road surfaces.

� Visually, procedural animations can be more believable
when uncertainty is added. Without uncertainty, a per-
fectly round ball dropped vertically onto a perfectly at
table moves strangely, a situation that may be improved
by slightly perturbing the collisions to make the ball de-
viate from the vertical.

In a world with uncertainty, we generally expect a con-
strained problem to have multiple solutions. It is di�cult to
know beforehand what solutions are available, which com-
pounds any di�culties a user may have in codifying their
preferences. Hence, it is perverse to use a solution strat-
egy that seeks a single answer, rather, we prefer a technique
that produces many solutions that reect the range of possi-
ble outcomes. While for feature animation a user is expected
to choose the one animation they prefer, other applications
bene�t directly from multiple solutions:

� Computer game designers can use di�erent animations
each time a game is played, making it less predictable
and potentially more entertaining.

� Training environments can present trainees with mul-
tiple physically consistent scenarios that reect the
physics and variety of the real world.

We generate multiple animations that satisfy constraints
by applying a Markov chain Monte Carlo (MCMC) algo-
rithm to sample from a randomized model. A user supplies
the model of the world, including the sources of uncertainty
and the simulator that will generate an animation in the
world. The user also supplies a function that gives higher
values for \good" animations | those that are likely in the
world and satisfy the constraints. Finally, a user must pro-
vide a means of proposing a new animation given an existing
one. The algorithm we describe in this paper generates an
arbitrarily long sequence of animations in which \good" an-
imations are likely to appear.
In this paper, along with the algorithm, we describe the

sorts of models we use and how we sample from them, dis-
cussing examples from the domain of collision intensive rigid-
body simulation. No previous algorithm has been shown for

the range and complexity of the multi-body simulations we
present.

2 RELATED WORK

The idea of plausible motion simulation, including the ex-
ploitation of randomness to satisfy constraints, was intro-
duced by Barzel, Hughes and Wood [3]. They show solu-
tions to constrained problems where, for instance, a billiard
ball is controlled by randomly varying the collision normal
each time it hits a rail. We extend their work by introducing
the idea of sampling (instead of searching), giving a precise
de�nition of plausibility, and by demonstrating MCMC's ef-
fectiveness on a wide range of di�cult examples.

Motion synthesis algorithms aim to achieve a goal by �nd-
ing an optimal set of control parameters and (sometimes) ini-
tial conditions. The goals described in the literature include
�nding good locomotion parameters [1, 8, 14, 16, 23, 25]
and �nding trajectories that satisfy constraints [2, 5, 9, 13,
15, 20, 31]. Some techniques [2, 5, 9, 13, 15, 20, 31] ex-
ploit explicit gradient information, but fail if the problem
is too large (Popovi�c discusses ways to reduce the prob-
lem size [24]) or the constraints are highly sensitive to,
or discontinuous in, the control parameters. Randomized
algorithms, such as simulated annealing [14, 16] (not a
panacea [10, 11]), stochastic hill climbing [8], or evolutionary
computing [1, 23, 25, 28], do not require gradients and may
be suitable for collision intensive systems | Tang, Ngo and
Marks [28] describe an example. Most of these methods re-
turn a single \best" animation, and hence may ignore other
equally good, or even preferable solutions. The evolutionary
computing solutions can exhibit variations within a popula-
tion, which Auslander et. al. [1] refer to as di�erent styles,
but the number of examples is limited by the population
size.

Multi-body constraint problems are good candidates for
a Design Galleries [21] interface, in which a user browses
through sample solutions to locate the one they prefer. Our
work addresses the sampling aspect of a Design Galleries
interface for multi-body constrained animations, but we do
not consider other aspects of the interface.

3 ANIMATION DISTRIBUTIONS

The MCMC algorithm distinguishes itself from motion syn-
thesis approaches by generating multiple, di�erent, \good"
animations that satisfy a set of constraints, but no \best"
animation. To generate multiple plausible constrained ani-
mations, we must provide a model of the world de�ning:

� The objects in the world and their properties, including
the sources of uncertainty.

� The simulator for generating animations in the world.

� The constraints to be satis�ed by the animations.

For example, in a 2D animation of a ball bouncing on the
table, we might have uncertainty in the normal vectors at
the collision points, a constraint on the resting place of the
ball, and a simulator that determines what happens when a
2D ball bounces on a table with arbitrary surface normals.
We will use this example, from [3], throughout the next two
sections.

A simulator used with our approach need not be physically
accurate, or even physically based. Our 2D ball simulator is
obviously non-physical, and the simulator we use in other ex-
amples has some problems with complex frictional behavior
(section 5.2.3). In any case, we assume that if the simulator
is given a plausible world as input it will produce a plausible

animation, according to some de�nition of plausibility (see
section 3.3).

3.1 Incorporating Uncertainty

We de�ne a function, pw(A), representing the probability
of any possible animation A that might arise in the world
model. Intuitively, pw(A) should be large for animations
that are likely in the world, and low for unlikely animations.
For the 2D ball example, pw;ball(A) should be high if all the
normal vectors used to generate the animation were close to
vertical, and low if most of them were far from vertical. Let
us further insist that pw(A) be non-negative and have �nite
integral over the domain implied by the random variables in
the model, so that we can view pw(A) as an unnormalized
probability density function de�ned on the space of anima-
tions.
Expanding on the 2D ball example, let us describe the

direction of the normal vector for each collision i as an in-
dependent random variable, �i, distributed according to the
(bell-shaped) Gaussian distribution with standard deviation
of, say, 10.0 degrees. In that case we get:

pw;ball(A) /
Y
i

e
�1

2

�
�i

10:0

�
2

which is the product of density functions for each collision
normal. Note that we are ignoring normalization constants,
an omission we justify in section 4. Also, we could in prin-
ciple measure a real table to infer the true distribution of
surface normals, and use that instead.

3.2 Constraints

If we restrict our attention to animations that satisfy con-
straints, we are concerned with the distribution function
pw(AjC), which is the conditional distribution of A given
that it satis�es the constraints C. For the 2D ball example,
if we want the ball to land in a particular place, we could gen-
erate samples from pw;ball(AjC) using an inverse approach:
join the ball's start point to its end point using a sequence
of parabolic hops and then infer which normal vectors were
required to generate such a trajectory. However, using this
approach we cannot directly ensure that the animation we
generate is likely in the world, because it is di�cult to know
which hops to use to get a set of likely normal vectors.
Unfortunately, it is frequently impractical to sample di-

rectly from pw(AjC), because there is no way to �nd, without
considerable e�ort, any reasonable animation in which the
constraints are satis�ed. For example, in multi-body simu-
lations a forward simulation approach doesn't work because
no published algorithm can directly specify a set of control
parameters leading to satisfaction of multi-body constraints,
without doing some form of iterative, expensive search. The
inverse approach also looks intractable: it is not clear how
to set trajectories for all the participants such that, for in-
stance, objects do not pass through each other.
In such cases (like all the examples in this paper), we ex-

pand pw(A) to include a term for the constraints, resulting
in a function p(A). The new intuition is that p(A) will be
large for animations that are likely in the world and satisfy
the constraints, and small for animations that are either im-
plausible in the world or don't satisfy the constraints. We
will refer to p(A) as the probability of an animation. Note
that now even animations that don't satisfy the constraints
have non-zero probability, so if we sample from p(A) we may
get an animation that doesn't satisfy the constraints, which
we must discard.

For the examples in this paper, we de�ne:

p(A) / pw(A)pc(A)

where pc(A) depends only on how well the animation satis�es
the constraints. If we want our 2D ball to land at a point
whose distance, d, from the origin is small, we can de�ne

pc;ball(A) / e
� 1

2

�
d

�d

�
2

which is the Gaussian density function with standard devia-
tion �d, which we discuss in section 5.1. This function gives
higher values for distances near zero, and lower values as
distances increase. Hence, for the 2D ball example:

pball(A) / e
�1

2

�
d

�
d

�
2Y

i

e
� 1

2

�
�i

10:0

�
2

This paper describes a technique for generating anima-
tions such that those with high probability will appear more
frequently than those with lower probability, but even some
low probability events will occur | as in the real world,
unlikely things sometimes happen. In other words, we will
sample according to the distribution de�ned by p(A).

3.3 What does \Plausible" mean?

The restrictions on p(A) are quite weak, so we can describe
many types of uncertainty and a wide variety of constraints.
By phrasing the problem as one involving probabilities, we
can leverage a wide range of mathematical tools for talking
about plausible motion, and make strong statements about
the properties of the animations we generate (see section 4).
We can also outline what it means to be physically plausible:

A model, including its simulator, is plausible if the
important statistics gathered from samples dis-
tributed according to p(A) are su�ciently close to
the real world statistics we care about.

This is a very general de�nition of plausibility, because we
say nothing about which statistics we might care about, or
what it means to be su�ciently close. For example, to vali-
date a pool table model we could run simulations of virtual
balls on a table, and analyze video of real balls on a real
table, then compare statistics such as how long a ball rolls
before coming to rest. For entertainment applications, we
would care less about the quality of the match than if we
were trying to build a training simulator for budding young
pool sharks.

Our measure extends the traditional graphics idea of plau-
sibility | \if it looks right it is right" | by allowing for def-
initions of statistical similarity other than a user's ability to
detect a fake. However, for many applications, particularly
involving motion, a viewer's ability to distinguish real from
arti�cial remains the primary concern [17].

4 MCMC FOR ANIMATIONS
We use the Markov chain Monte Carlo (MCMC) method [12,
19] to sample animations from the distribution de�ned by
p(A). MCMC has several advantages for this task:

� MCMC generates a sequence, or chain, of samples,
A0;A1;A2; : : :, that are distributed according to a given
distribution, in this case p(A).

� Apart from the initial sample, each sample is derived
from the previous sample, which allows the algorithm
to �nd and move among animations that satisfy con-
straints.

� If available, domain speci�c information can be incor-
porated into the algorithm, making it more e�cient for
special cases. On the other hand, the algorithm does
not rely on any speci�c features of a model or simulator,
allowing its application in a variety of situations.

Our MCMC algorithm for generating animations begins with
an initial animation then repeatedly proposes changes, which
may be accepted or rejected. Explicitly:

1 initialize A0
2 simulate A0
3 repeat

4 propose Ac from Ai
5 simulate Ac
6 u random(0;1)

7 if u < min
�
1;

p(Ac)q(Ai jAc)
p(Ai)q(Ac jAi)

�
8 Ai+1 Ac
9 else

10 Ai+1 Ai

Line 1 gives initial values to all the random variables in the
world model. On line 4, a new animation, Ac, is proposed
by making a random change to the previous animation, Ai.
The details of this change are application speci�c. For ex-
ample, in the 2D ball model of section 3 it might involve, for
each normal, choosing to change it with probability one half
and, if it is to be changed, adding a random o�set uniformly
distributed on (�5; 5) degrees (for reasons discussed in sec-
tion 5.1). The probability of making changes is de�ned by
the transition probability, q(XjY), which is the probability
of proposing animation X if the current animation is Y . For
the 2D ball, the transition probability is:

qball(XjY) /

�
1

2

�n
�

�
1

5 � (�5)

�
k

where n is the total number of collisions (assumed �xed)
and k is the number of collisions that were changed. The
�rst factor is the probability of choosing the particular set
of normals to change, and the second factor codes the prob-
ability of choosing a particular o�set for each normal that is
changed.
The transition probabilities, along with the probabilities

of the animations, are used in computing the acceptance
probability, which is the probability of accepting the pro-
posed candidate (line 7):

Paccept = min

�
1;
p(Ac)q(AijAc)

p(Ai)q(AcjAi)

�

Often, as in the 2D ball example, the transition probabilities
are symmetric | q(XjY) = q(Y jX) | and will cancel. Note
also that only the ratios of probabilities appear, so we can
use functions that are only proportional to true probability
density functions (section 3.1).
The proposal mechanism is one of the key factors in how

well the algorithm will perform in a particular application.
In practice, proposals are designed through intuitive reason-
ing and experimentation, using past experience as a guide.
In section 5 we describe the motivation for our proposal
mechanisms.
The MCMC algorithm guarantees that the samples in the

chain will be distributed according to p(A), as the number of
samples approaches in�nity and provided certain technical
conditions are met [12]. Hence we can be certain that the

samples our algorithm generates truly reect the underlying
model, and if this model is plausible (section 3.3), the col-
lection of samples will be plausible. It is also the case that
the samples in the chain will never satisfy the constraints
if the underlying model says they cannot be satis�ed. For
instance, if a bowling simulator cannot capture complex fric-
tional e�ects, animations that bowl the seven-ten split can
never be found (see section 5.2.3).

MCMC has been used in graphics to generate fractal ter-
rain that satis�es point constraints [27, 30]. The samples
generated by an MCMC algorithm may also be used to es-
timate expectations, as in Veach's Metropolis algorithm for
computing global illumination solutions [29]. In this paper
we are not concerned with expectations, so we can use short
chains, just long enough to satisfy a user with several di�er-
ent animations

5 EXAMPLES

We are interested in four things when designing an MCMC
algorithm for generating animations:

� Is the motion plausible? We assume that the simulator
produces plausible motion, so we are left to ensure that
the distributions we use for the model are reasonable.

� How long does it take to �nd a sample that satis�es the
constraints?

� How rapidly does the chain move among signi�cantly
di�erent samples, or mix? Chains that mix faster are
desirable because they produce many di�erent anima-
tions quickly.

� How many of the samples satisfy the constraints well
enough to be useful?

The following examples discuss issues in building models,
de�ning constraints and selecting proposal strategies, all of
which inuence the behavior of the algorithm.

5.1 A 2D Ball

In the 2D ball example of section 3 a ball bounces on a table,
starting in a �xed location and undergoing, for simplicity, a
�xed number of collisions. For each collision we specify a
random normal vector. The aim is to sample these normal
vectors such that the ball comes to rest close to a particular
location. As a speci�c case, we will drop the ball from above
the origin at a height of 4:5D, where D is the diameter of
the ball, use �ve collisions, and specify that it come to rest
near x = D on the sixth collision.

The simulation model is: the ball moves ballistically be-
tween each collision, when the velocity of the ball is reected
about the corresponding normal vector and the normal com-
ponent of velocity is scaled by 1p

2
. This model is not physi-

cally plausible (for instance, we are ignoring rotation e�ects),
but for this example we value simplicity.

5.1.1 Uncertainty and Constraints

The probability of an animation is described in section 3.1,
but probabilities (the values of density functions) can be
very large numbers, so in practice we work with their log-
arithm. In this case, with x the horizontal position of the
sixth collision:

log(p(A)) = �
1

2

�
x�D

�d

�2
�

1

2

X
1�i�5

�
�i

10:0

�2
+C

for some constant C, which will cancel out when computing
the acceptance probability.

The value of the constraint standard deviation, �d, has a
major e�ect on the samples generated by the chain. Say we
choose a small value for �d, corresponding to a very tight
constraint because only values of x very close to D give high
values for p(A) and all other landing points have very low
probability. From the initial animation, the chain will move
to some high probability animation close to the constraint.
But, once there, almost no new proposals are accepted (most
candidates will be far from the constraint and have very low
probability) and the user sees few di�erent animations | an
undesirable situation.
Alternatively, say we choose a large value for the stan-

dard deviation, corresponding to a weak constraint. Then
p(A) is relatively high for a wide range of landing positions.
The result is undesirable: the chain will contain many high
probability animations that are far from the constraints.
Hence we must choose a value for �d that is high enough

to promote di�erent samples but low enough to enforce the
constraint. In this example we use a value of 0:1D, where D
is the diameter of the ball, which, as �gure 2 shows, leads to
the generation of very di�erent samples that generally are
close to the constraint. In this case, the algorithm is not
very sensitive to the exact value for �d (anything within a
factor of �ve works �ne) and it is possible to experimentally
evaluate a few values on short chains and choose the best,
which in this case took only a few minutes.
In other applications there is no guarantee that we can

achieve both good constraints and good mixing. In such
cases the algorithm must run for many iterations to generate
di�erent samples, which may take prohibitively long. The
tumbling dice example of section 5.4 is a borderline example
in which we can satisfy constraints but mixing is poor. In
such cases it is possible to run multiple chains in parallel.

5.1.2 Proposals

The proposal mechanism, which speci�es normal vectors for
a candidate animation, Ac, given those for the current ani-
mation, Ai, provides a means of moving around the space of
possible normal vectors:

for j = 1 to 5

Ac:normal[j] Ai:normal [j]
if random(0;1) < 0:5

Ac:normal [j] Ac:normal [j] + random(�5;5)

This proposal changes some of the normals by an amount
between minus one half and half their standard deviation
of 10:0 degrees. For good mixing it is important to allow
more than one normal to be changed at once, because the
e�ect of each change on the landing position (and hence
the constraint) can then cancel. The alternative, changing
only one normal, makes it very di�cult to change the �rst
collision normal, because any but the smallest change will
move the ball far from the desired landing position, and
hence be rejected. The size of the o�set we add is chosen to
allow both small changes and relatively large changes, but
not so large as to shift the normals too far from their mean in
one step, which would reduce their probabilities and result
in rejection of the candidate animation.

5.1.3 An Example Chain

We ran the MCMC algorithm and generated a chain contain-
ing one thousand samples (many of these are repeats, arising
when a candidate is rejected). Figure 2 plots the horizontal
resting position of each sample. The �rst sample was ini-
tialized with randomly chosen normals, and came to rest a
long way from the constraint. But within twenty iterations
the chain moved toward a good location. The bumpiness of

Figure 1: Three sample paths from the 2D ball example,
plotting the trajectory of the center of the ball (although the
plot is 3D, the ball moves only in 2D). The green target
is centered on the constraint. Each red arrow is located at
a collision point and indicates the direction of the normal
vector used at that point. Note that in each example one
of the earlier normals pushes the ball toward the constraint,
and later normals re�ne the �nal position. One ball bounces
slightly away from the constraint before moving toward it,
which is not implausible.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

0 100 200 300 400 500 600 700 800 900 1000

x

(
b
a
l
l

d
i
a
m
e
t
e
r
s
)

Iteration

Sequence of Final Positions

Figure 2: The resting position of the �rst one thousand
samples in a chain for the 2D ball example. The roughness
of this graph indicates good mixing, and most samples are
close to the constraint (the majority within 0:1D). The posi-
tion of the �rst few samples are far from the constraint (o�
the graph), but the chain moves to samples within twenty
iterations.

the graph indicates good mixing, because at spots would
indicate many repetitions of one sample as candidates were
rejected. The majority of animations have the ball coming
to rest within 0:1D of the desired position, indicating that
�d is su�ciently small to enforce the constraint.

Three (randomly chosen) samples from the chain are
shown in �gure 1. They do not di�er greatly from what
one would expect: the ball tends to take an early bounce to-
ward the constraint and keep moving in that direction, with
later collisions adjusting it's �nal position.

5.2 Bowling

In this scenario the aim is to animate any particular ten-
pin bowling shot (a goal suggested by Tang, Ngo and
Marks [28]). The physical model is implemented by an
impulse-based rigid-body simulator [6]. We model the bowl-
ing ball, the lane with simpli�ed gutters and side walls, and
the pins. All the models are roughly based on the rules of
bowling, including variations allowed by those rules (details
may be found in the CDROM version of this paper):

� The ball is simulated as a sphere, with variable radius,
density, initial position, initial velocity and initial an-
gular velocity.

� The lane is �xed with regulation length and width, and
includes rectangular gutters and side walls starting in
line with the front pin.

� Each pin, of �xed shape and mass, has its initial posi-
tion on the lane perturbed by a small random amount.

The coe�cients of friction and restitution between all the
components are �xed. The probability pw(A) is proportional
to the product of the distribution functions for each of the
random variables in the model.

5.2.1 Constraints

The simulation begins with a subset of pins speci�ed by
the user, so we can specify the initial conditions for bowl-
ing spares. The user also sets the constraint by stating
which pins should be knocked down and which should re-
main standing. We are unable to propose candidates for the
MCMC algorithm that are certain to satisfy the constraints
(section 3.2), so we assign non-zero probability to every pos-
sible outcome, but assign higher probability to those out-
comes that are closer to the target, and the highest prob-
ability to outcomes matching the target. This is achieved
with the Gibbs distribution function:

pc(A) / �
k+m

for some constant � > 1 with k the number of pins that end
up correctly standing or knocked down, and m the number
of standing pins that have not moved far beyond their initial
position. Animations that do not meet the goals will some-
times appear in the chain (they have non-zero probability),
but these would not be shown to a user. The samples that
remain are correctly distributed according to the conditional
probability p(AjC), the distribution of animations in which
the constraints are fully satis�ed. The constraint involves
a term derived from the pins' �nal position because some
simulations result in the pins being pushed but not knocked
down | behavior we wish to discourage.
The value of � a�ects the proportion of animations in

the chain that must be discarded for not satisfying the
constraints. High values for � give animations satisfying
the constraints much higher probability, making them more
likely to appear in the chain. But the chain mixes better if
some \bad" animations appear. Say only perfect animations
appear, then getting to a signi�cantly di�erent animation re-
quires making a big change that also happens to get all the
pins correct, which is unlikely. If some pins are not correct, a
big change only has to get the same number of pins correct,
and they can be di�erent pins. A low value for � makes
it easier to accept an animation with some incorrect pins,
make big changes, and then move toward a di�erent, fully
correct state.
For this example, we used � = e

2:5, which gives a wide va-
riety of animations that satisfy the constraints. Animations
that improve the constraints are favored enough to ensure
that good animations come up often, but not so much as to
inhibit mixing.
Our use of the Gibbs distribution was motivated by other

applications of the MCMC algorithm, such as counting the
number of perfect matchings in a graph. It is known [18] that
there is an optimal � that balances the concerns outlined
above, but that the algorithm is relatively insensitive to its
exact value. Experience suggests that many applications
may exhibit similar behavior [26]: there exists a range of

Strike �!

Six-seven Split �!

Spare �!

Figure 3: Frames from three bowling examples. The initial conditions for the ball and the pin locations are random variables.
Given an initial and �nal pin con�guration, the MCMC algorithm samples particular values for the random variables that lead
to the desired shot. In this case, we demanded a strike, a six-seven split and the corresponding spare.

values for � that give the chain good properties, and one
such value may be found through experiment. Our results
are consistent with this (also see section 5.3).

5.2.2 Proposals

Our proposal mechanism for bowling randomly chooses to
do one of several things:

� Sample new values for all the random variables.

� Change the radius, density or initial conditions of the
ball.

� Change the initial position of some pins.

The details are given in the CDROM version of this paper.
The �rst proposal strategy, which changes every random

variable in the simulation, serves to make very large changes
in the simulation. These are desirable as a means of escaping
low probability regions, which we discuss in more detail in
the next example (section 5.3). The other transitions are
based on ideas similar to those in section 5.1: we must move
around among possible values for the random variables, and
we wish to do so with both large and small steps, but not
so large as to make the new value highly unlikely under the
model.

5.2.3 Sample Animations

We tested this model with three sets of constraints:

� Bowl a strike.

� Bowl a ball that leaves a six-seven split.

� Bowl the spare that knocks down the six-seven split.

Frames from example animations appear in �gure 3. The
strike example is the easiest, because strikes are quite likely
given our simulator. Bowling the six-seven spare is not dif-
�cult either, because the various solutions probably form
a connected set in state space, so once a single solution is
found, the others can be explored e�ciently. Bowling the
ball that leaves a six-seven split is the hardest example, in-
tuitively because it is hard to knock down the pins behind
the six pin while leaving it in place.
We also attempted to bowl the seven-ten split (�gure 4).

This shot depends on the precise frictional properties of the
ball and lane. Our simulator's friction model could not cap-
ture the required e�ect (we are not aware of any that can),
so we could not make the shot. This demonstrates that
the MCMC algorithm will only generate samples that are
plausible according to our model (section 4). Our simula-
tion model says that balls never take really big hooks, so we
never see animations involving big hooks, regardless of the
constraints.

5.3 Balls that Spell

In these experiments we drop a stream of balls into a box
partitioned into bins so that, when everything has come to
rest, the balls form letters or symbols (�gure 5). We don't

Pin 10Ball sliding Friction grips

Pin 7

Figure 4: The seven-ten split, in which the aim is to knock
down both the seven and ten pins in one shot. The technique
used by bowlers relies on the fact that a bowling ball will slide
while spinning about an inclined axis, then, at some point,
friction will cause the ball to grip, converting the angular
momentum of the spin into linear momentum across the
lane (dashed line). The seven pin must be struck behind
its center of mass, so that it initially moves away from the
ten pin (dotted line), bounces o� the wall and moves back
across the lane to hit the ten pin. Our simulator cannot
model friction well enough to simulate this shot (we are not
aware of any that can).

care which ball ends up in which designated bin. We use
an impulse-based rigid-body simulator, as in the bowling
example.

The uncertainty in this world arises from the shape of the
partitions and the location from which each ball is dropped.
The top surface of the partitions depends on a set of partition
vertices, each of which is randomly perturbed about a default
position. Each ball is dropped from a random location.

The constraint we impose is that, when all the balls have
come to rest, each ball is in a designated bin. We �x the
maximum number of balls, so if each ball falls into a desig-
nated bin there can be no ball in an undesignated bin. We
face a situation in which we cannot propose animations that
are certain to completely satisfy the constraints, so, as for
the bowling example, we use the Gibbs distribution for the
constraint probability pc(A) / �

k , where k is the number of
balls in designated bins at the end of the animation.

To facilitate mixing we allow the number of balls in the
simulation to vary between zero and the minimum number
required to form the word, by ipping each ball between ac-
tive and inactive states: inactive balls do not take part in
the simulation. If all the designated bins are �lled, removing
a ball frees up a bin for another ball to move into, making
a signi�cant change to the animation. Removing the ball
entirely, rather than just having it go into an undesignated
bin, reduces the amount of interaction between the balls,
possibly making it easier to make acceptable proposals. It
also speeds the simulation when balls that aren't contribut-
ing anything are removed. Our initial experiments used a
�xed number of balls, and the chain failed to mix well.

The probability of an animation depends on how many
balls are participating, the initial locations of the balls and
the o�sets of each partition vertex.

5.3.1 Proposals

The proposal algorithm we use performs one of �ve actions:

� The change-all strategy: change all the partition ver-
tices and change all the balls.

� Change a subset of partition vertices.

� Change an active ball.

� Activate some balls (possibly none).

� Deactivate some balls (possibly none).

Example 1 �!

Example 2 �!

Figure 5: Two examples of the spelling balls model, in
this case spelling \HI" in a seven by �ve grid. The shape
of the boxes is allowed to vary slightly, as are the initial
conditions of each ball. Our algorithm chooses box shapes
and ball initial conditions that lead to the formation of a
speci�c word.

The change-all strategy appears as a means of escaping from
low probability regions (�gure 7). When an animation is
found that satis�es the constraints, subsequent animations
tend to also satisfy the constraints, but their probabilities
degrade. This occurs because the reduction in probability
for a partition vertex change may be quite small, and such
proposals are likely to be accepted. The downward trend can
continue, moving the chain into a region of low probability.
Then, a change-all proposal can reset all the partition ver-
tices to much higher probability values, and even though the
constraints are no longer satis�ed, the net change in prob-
ability will be positive and the proposal will be accepted.
This change-all e�ect is good for mixing, because the next
fully correct sample will generally be very di�erent from the
last.

The second and third proposals are designed to move
around the state space by modifying balls or partitions, sim-
ilar to proposals in previous examples. The proposals to ac-
tivate or deactivate some balls let us change the number of
balls in the simulation. The proposal strategy we use makes
the probability of adding or deleting any given ball inde-
pendent of the maximum number of balls. We �rst tried
a proposal that chose a single ball and ipped its status,
but if the maximum number of balls in the scenario is large,
the probability of removing a ball goes up as more balls are
activated while the probability of adding a ball goes down,
making it di�cult to get all the balls into the simulation.

The considerations in choosing a value for � in this ex-
ample are identical to those in the bowling example (a bal-
ance between good animations and good mixing), with an
additional requirement due to the change-all e�ect: the con-
straint probability should be balanced against the model
probability (in this case the probabilities of the partition
vertices). If the constraint probability is too high, almost
no change in partition vertices can overcome a well satis�ed
constraint. Good balance is achieved when a much better set
of model values can overcome a constraint that is satis�ed
but uses poor model parameters.

As a speci�c example, we chose a bin designation that
spells \HI" on a seven by �ve grid (�gure 5). We used � = e

5

for this word. A plot of k, the number of designated bins
that are �lled, for each iteration of an example chain is shown
in �gure 6. The important feature of this graph is that the

0

2

4

6

8

10

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
iteration

Number of correct balls: lambda=5

Figure 6: The number of correctly positioned balls for
each of twenty thousand iterations of the \HI" model, with
� = e

5. The maximum number of correct balls is ten. The
chain �nds its �rst good animation after around six thou-
sand iterations (we have seen chains that �nd good anima-
tions within one thousand samples). This graph indicates
good mixing because the chain spends only a short period of
time near similar solutions, then makes signi�cant changes
before rapidly moving to a new good solution.

3540

3550

3560

3570

3580

3590

3600

3610

3620

3630

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

l
o
g
(
p
(
A
)
)

iteration

Probability of Samples

Figure 7: The value of log(p(A)) at each iteration of the
chain in �gure 6. The graph is quite bumpy, indicating good
mixing. The dashed vertical lines correspond to all the iter-
ations where the number of correct balls drops sharply (�g-
ure 6), yet all those iterations show a sharp rise in proba-
bility. This e�ect, due to the change-all proposal strategy,
is discussed in the text.

chain tends to rapidly reach correct spellings, stays there for
a short period, then drops back to incomplete spellings. The
twenty thousand iterations shown here took a few hours to
compute on a 200MHz Pentium Pro PC.

The change-all e�ect is evident in this chain. Figure 7
plots the probability of the sample for each iteration. Places
are marked where there is a sharp reduction in the number
of correct balls, and these correspond to sharp increases in
probability. At each of these sharp changes, a change-all
proposal has been accepted that replaces a poor set of parti-
tion vertex o�sets with a much more likely set, even though
this breaks the constraint.

We experimented with di�erent values of �, both higher
and lower, but they lead to less satisfactory chains. Values of
� that are too low result in chains that have trouble �nding
correct animations, because the chance of accepting a poor
proposal (from the point of view of the constraints) is too
high. Values of � that are too high make it less likely that a
change-all proposal will be accepted, and also make it hard
for the chain to abandon poor near-solutions. It takes only
a few thousand iterations to see enough of the chain to know
how lambda should be changed, and the range of acceptable
values is reasonably large (our experiments show that chains
with � = e

5�1 are not much worse than those for � = e
5) so

little time must be spent in tuning parameters.
We also performed a larger experiment, with 30 of the

105 bins on a �fteen by seven grid to be �lled (�gure 8).
In this example we used a value of � = e

7:25 after experi-
menting with other values of � between six and eight. The
higher value for � is required because there are more parti-
tion vertices and more balls. The greater number of partition
vertices allow the change-all proposal to remain e�ective at
higher � values, so we still see adequate mixing. In fact,
higher � values are required to make it harder for a change-
all proposal to succeed, so that the chain has enough time
between major changes to converge to good animations.

5.4 Random Tables with Dice

This summarized example demonstrates objects bouncing on
a random table, coming to rest in constrained con�gurations.
Dice are used as random number generators in the real world
because they are exceptionally hard to control [3], yet our
technique is capable of �nding animations in which dice come
to rest near a particular place with a particular face showing.
The 2D ball example (section 5.1) used a very simple table

model, with two main drawbacks due to the use of indepen-
dent normals at each collision:

� An object bouncing in place will appear to have the
table change underneath it as a di�erent normal vector
is chosen for each collision.

� Nearby points on the table are not correlated, as points
on a real, bumpy table would be, which reduces the
plausibility of the animations.

In this example we use a continuous, bumpy surface for
the table. Rather than describe random normals directly,
we specify a random b-spline surface via control points on
a grid with �xed spacing but random vertical o�sets. We
can also specify random restitution and friction values at
the control points, to be interpolated by the spline, thus
extending the model to include the concept of springy or
sticky regions on the table (such as spilt beer). The b-splines
de�ning the table shape and properties de�ne random �elds
over the surface. In principle, we could measure real tables,
model their particular random �elds, and use those in our
simulation.
The simulator used in this example simulates only one

object at a time bouncing on the random b-spline surface.
It uses special techniques to manage the large number of
control points required for a table with �ne bumps.
In this example, constraints can be de�ned for any aspect

of the object's 3D state at any point in time. Initial condi-
tions for the object are speci�ed by constraining its state at
the start of the simulation (t = 0). The probability of an
animation in this world contains components for the control
vertices de�ning the table's shape, friction and restitution,
and a component for each constraint on the object.
An animation generated from this type of scenario is

shown in �gure 9. Each of six dice is dropped and told to

Example 1 �!

Example 2 �!

Figure 8: Balls that spell ACM. The box contains 105 bins, of which 30 are designated to contain balls. We show two
animations, one on each row, generated from a single chain. Each has the bins being �lled in a di�erent order, evidence that
the chain produces a good mix of samples.

Figure 9: A composite of six sample animations showing
the control of a single bouncing die. Each die in the im-
age was animated separately. Each had a di�erent target
location and desired side-up, but started with the same dis-
tribution on initial conditions.

land in a speci�c place showing a speci�c side up. The dice
are treated individually and do not interact | the table is
not the same for each die. It took an hour or so of processing
time to �nd a good animation for each die (a few hours for
the complete animation). However, the chain does not mix
well, so it takes many hours to �nd signi�cantly di�erent
animations.

Proposals were made by changing one control point at a
time, or one initial condition component at a time, or every-
thing at once, the choice being made according to user sup-
plied relative probabilities. Changes were made by adding
a random o�set to the current value, resulting in symmetric
transition probabilities.

The ability to make changes at any point in the simula-
tion, through the surface control points, makes it easier to
�nd good animations in this world. Control points near the

�rst few collisions get the die somewhere close to the tar-
get, and later collisions re�ne the location. This is not an
explicitly coded strategy, rather it emerges naturally from
the chain. However, a better proposal strategy might make
explicit use of the behavior.

6 FUTURE WORK

The models we use arise naturally in the real world, and we
provide a means of verifying the plausibility of simulations.
With further work it should be possible to experimentally
obtain more accurate models, and test simulation algorithms
on such models, to obtain results like those of Mirtich et.
al. [22].
It is an open problem to determine the di�culty of a

particular example without experimentation. Computation
time can be adversely a�ected because the simulation itself
is slower, or more iterations are required to �nd good anima-
tions, or both. For example, our bowling and spelling ball
examples take comparable times to compute, the former due
to slow simulation and the latter due to di�cult constraints.
Simulation time dominates the cost of each iteration, so it is
reasonable to spend more time making better proposals to
improve mixing and hence reduce the total number of itera-
tions. For example, in the bowling simulation we might bias
changes in the ball's initial conditions according to which
pins were knocked down.
Constraints in our approach are speci�ed as probability

density functions, which allows almost any type of con-
straint. In particular, it might be possible to constrain col-
lisions or other events to occur at speci�c times (or frames).
This would allow physically-based animations to be chore-
ographed to music, or collisions to occur at frame bound-
aries.
We have only touched on the possibilities of plausible mo-

tion with constraints, focusing entirely on rigid body dy-
namics. Our techniques may also work in other domains
that are hard to constrain, including group behaviors [4]
and deformable objects [8]. Another goal is to develop real
time systems in which speci�c events are forced to occur in
a plausible manner. For example, in a computer game we
might like the monster to surprise the player in a particu-

lar way, with a plausibility model that takes into account
the viewer's knowledge of the monster's state and how it
moves [7].

Acknowledgements

We thank Ronen Barzel, John Hughes and Joe Marks for
their very extensive and helpful comments on this work in
general and on earlier drafts of this paper.

References
[1] Joel Auslander, Alex Fukunaga, Hadi Partovi, Jon Chris-

tensen, Lloyd Hsu, Peter Reiss, Andrew Shuman, Joe Marks,
and J. Thomas Ngo. Further Experience with Controller-
Based Automatic Motion Synthesis for Articulated Figures.

ACM Transactions on Graphics, 14(4):311{336, October
1995.

[2] Ronan Barzel and Alan H. Barr. A Modeling System Based
on Dynamic Constraints. In Computer Graphics (SIG-
GRAPH 88 Conf. Proc.), volume 22, pages 179{188, August
1988.

[3] Ronan Barzel, John F. Hughes, and Daniel N. Wood. Plau-
sible Motion Simulation for Computer Graphics Animation.
In Computer Animation and Simulation '96, pages 184{197,

1996. Proceedings of the EurographicsWorkshop in Poitiers,
France, August 31-September 1, 1996.

[4] David Brogan and Jessica Hodgins. GroupBehaviors for Sys-
tems with Signi�cant Dynamics. In Proceedings of the 1995
IEEE/RSJ International Conference on Intelligent Robots
and Systems, volume 3, pages 528{534, 1995.

[5] Lynne Shapiro Brotman and Arun N. Netravali. Motion

Interpolation by Optimal Control. In Computer Graphics
(SIGGRAPH 88 Conf. Proc.), volume 22, pages 309{315,
August 1988.

[6] Stephen Chenney. Asynchronous, Adaptive, Rigid-Body

Simulation. SIGGRAPH 99 Technical Sketch. In Conference
Abstracts and Applications, page 233, August 1999.

[7] StephenChenney, Je�rey Ichnowski, and David Forsyth. Dy-
namicsModeling and Culling. IEEE Computer Graphics and
Applications, 19(2):79{87, March/April 1999.

[8] Jon Christensen, Joe Marks, and J. Thomas Ngo. Automatic
Motion Synthesis for 3D Mass-Spring Models. The Visual

Computer, 13(3):20{28, January 1997.

[9] Michael F. Cohen. Interactive Spacetime Control for Anima-
tion. In Computer Graphics (SIGGRAPH 92 Conf. Proc.),
volume 26, pages 293{302, July 1992.

[10] Afonso G. Ferreira and Janez �Zerovnik. Bounding the Prob-
ability of Success of Stochastic Methods for Global Opti-
mization. Computers and Mathematics with Applications,
25(10):1{8, 1993.

[11] George S. Fishman. Monte Carlo : concepts, algorithms,
and applications. Springer-Verlag, 1996.

[12] Walter R Gilks, Sylvia Richardson, and David J Spiegelhal-
ter. Markov Chain Monte Carlo in Practice. Chapman &
Hall, 1996.

[13] Michael Gleicher. Motion Editing with Spacetime Con-
straints. In Proceedings 1997 Symposium on Interactive 3D

Graphics, pages 139{148, April 1997. Providence, RI, April
27-30.

[14] Radek Grzeszczuk and Demetri Terzopoulos. Automated
Learning of Muscle-Actuated Locomotion Through Control

Abstraction. In SIGGRAPH 95 Conference Proceedings,
pages 63{70. ACM SIGGRAPH, August 1995.

[15] Radek Grzeszczuk, Demetri Terzopoulos, and Geo�rey Hin-
ton. NeuroAnimator: Fast Neural Network Emulation and
Control of Physics-BasedModels. In SIGGRAPH 98 Confer-
ence Proceedings, pages 9{20. ACM SIGGRAPH, July 1998.

[16] Jessica Hodgins and Nancy Pollard. Adapting Simulated
Behaviors for New Creatures. In SIGGRAPH 97 Confer-
ence Proceedings, pages 153{162. ACM SIGGRAPH, August
1997.

[17] Jessica K. Hodgins, James F. O'Brien, and Jack Tum-

blin. Perception of HumanMotionWith Di�erent Geometric
Models. IEEE Transactions on Visualization and Computer
Graphics, 4(4):307{316, 1998.

[18] Mark Jerrum and Alistair Sinclair. Approximating the Per-
manent. SIAM Journal of Computing, 18:1149{1178, 1989.

[19] Mark Jerrumand Alistair Sinclair. The Markov ChainMonte
Carlo Method: an approach to approximate counting and
integration. In D.S.Hochbaum, editor, Approximation Al-
gorithms for NP-hard Problems. PWS Publishing, Boston,
1996.

[20] Zicheng Liu, Steven J. Gortler, and Michael F. Cohen. Hier-
archical Spacetime Control. In SIGGRAPH 94 Conference

Proceedings, pages 35{42. ACM SIGGRAPH, July 1994.

[21] J. Marks, B. Andalman, P.A. Beardsley,W. Freeman, S. Gib-
son, J. Hodgins, T. Kang, B. Mirtich, H. P�ster, W. Ruml,

K. Ryall, J. Seims, and S. Shieber. Design Galleries: A Gen-
eral Approach to Setting Parameters for Computer Graphics
and Animation. In SIGGRAPH 97 Conference Proceedings,

pages 389{400. ACM SIGGRAPH, August 1997.

[22] Brian Mirtich, Yan Zhuang, Ken Goldberg, John Craig, Rob
Zanutta, Brian Carlisle, and John Canny. Estimating Pose

Statistics for Robotic Part Feeders. In Proceedings 1996
IEEE International Conference on Robotics and Automa-
tion, volume 2, pages 1140{1146, 1996.

[23] J. Thomas Ngo and Joe Marks. Spacetime Constraints Re-
visited. In SIGGRAPH 93 Conference Proceedings, pages

343{350. ACM SIGGRAPH, August 1993.

[24] Zoran Popovi�c and AndrewWitkin. PhysicallyBasedMotion
Transformation. In SIGGRAPH 99 Conference Proceedings,
pages 11{20. ACM SIGGRAPH, August 1999.

[25] Karl Sims. Evolving Virtual Creatures. In SIGGRAPH
94 Conference Proceedings, pages 15{22. ACM SIGGRAPH,
July 1994.

[26] Alistair Sinclair, 1999. Personal communication.

[27] Richard Szeliski and Demetri Terzopoulos. From Splines
to Fractals. In Computer Graphics (SIGGRAPH 89 Conf.
Proc.), volume 23, pages 51{60, July 1989.

[28] Diane Tang, J. Thomas Ngo, and Joe Marks. N-Body Space-

time Constraints. The Journal of Visualization and Com-
puter Animation, 6:143{154, 1995.

[29] Eric Veach and Leonidas J. Guibas. Metropolis Light Trans-

port. In SIGGRAPH 97 Conference Proceedings, pages 65{
76. ACM SIGGRAPH, August 1997.

[30] Baba C Vemuri, ChhandomayMandal, and Shang-Hong Lai.
A Fast Gibbs Sampler for SynthesizingConstrainedFractals.
IEEE Transactions on Visualization and Computer Graph-
ics, 3(4):337{351, 1997.

[31] Andrew Witkin and Michael Kass. Spacetime Constraints.
In Computer Graphics (SIGGRAPH 88 Conf. Proc.), vol-
ume 22, pages 159{168, August 1988.

