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1. Technologies for Motion Editing 
(Feb 25, 1999)�

This chapter discusses the problem of editing motion: changing or affecting the ways that 

things move. Outside of computer animation, we generally do not get to control the movement of 

things without controlling the things themselves. Even in more traditional 2D animation, the 

movement and appearance of objects are tightly coupled. The idea of discussing motion editing 

only really becomes a worthwhile topic when we deal with 3D animation. Motion capture makes 

motion editing a subject in its own right. 

As seen in the previous chapter, new tools are being introduced that specifically address tasks 

in motion editing. Functionality for altering motion is appearing both as extensions and plug-ins 

to existing animation systems, as well as part of the standard feature set of newer systems. Such 

tools will most certainly proliferate as motion capture becomes more common, creating more 

demand for tools for working with the data it creates. 

While all types of functionality in animation systems are evolving rapidly, the tools and 

techniques for motion editing at an even more extreme pace. Therefore, an understanding of the 

fundamental issues in motion editing, the technologies underlying the current tools, and some 

notions of what types of tools may be possible in the future is essential to a user or developer of 

motion capture or editing technologies. It is important to understand which limitations are 

fundamental to the problem, and which are simply artifacts of the current generation of tools. 

In this chapter, we will explore the basic challenges, concepts, and methods for motion 

editing, specifically on motions created by motion capture. We begin by looking at the connection 

between motion capture and motion editing, and how motion capture not only creates a need for 

special tools for motion editing, but also places some difficult demands on these tools. We will 

look at the problem of motion editing in general, to gain insights as to why it is a difficult 

problem, and use the challenges we encounter to motivate techniques. Some technical realities of 

dealing with motion capture data, such as the representation of rotation, are reviewed to prepare 

us for the development of editing techniques. We will introduce a variety of techniques to address 
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the challenges of editing, including key reduction and signal processing. We will conclude by 

describing a Spacetime Constraints approach to motion editing, which is a promising research 

development. 

1.1. Why Edit Motion? 
�

By this point in this book, you are probably well aware of a variety of methods for creating 

motions by capturing the movements of performers. Motion capture techniques (ideally) should 

provide you with wonderful motions - why should there be a need to change them? If everything 

was working correctly, your motion capture data should be an accurate reflection of the reality of 

a desired performance. Yet the discussion of how to change motions once we have them always 

seems to be a big part of the use of motion capture. 

A common misconception is that the importance of motion editing for motion capture comes 

from the fact that motion capture is imperfect, and that tools are needed to “clean up” the motion 

after the fact. While we do not deny that there is a need for this kind of editing, the editing that 

we consider goes well beyond this. Even when the motion capture data perfectly represents a 

desired performance, there is often a need to make alterations to the motion, which is where 

motion editing comes in. 

We have several categories of needs for motion editing for captured motion: 

��Clean-up: making changes to motion captured data so that it does accurately reflect the 

performance and allows for an accurate reconstruction. 

��Re-use: motion capture data exactly records an event. If we want to re-use the data for 

something slightly different, say a different character or a different action, we need to edit the 

data. 

��Creating Infeasible Motions: because motion capture record real events, some editing is 

required to make “impossible” actions happen. Also, we often prefer motion to have an 

animated, rather than realistic, style, which must be added to motion capture via editing. 
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��Imperfections of reality: real motion isn’t perfect. For example, performers don’t exactly hit 

their marks and repetitive motions are not exactly cyclic. We often must edit motion capture 

data so it does exactly meet certain criteria. 

��Change of intent: unfortunately, we can’t always predict what motion we will need, and even 

if we do, someone might change their mind as to what is desired after the fact. 

��Secondary motion: motion capture data typically only provides the "gross" motion of the 

skeleton of a character. Other secondary motions, such as the movement of a character's 

clothes or soft tissue must be added using different tools. While motion editing most often 

refers to the problem of altering the existing primary data, increasingly tools will need to 

consider the issues in creating and manipulating the secondary motion as well. 

The need to change motions is not unique to motion capture. In fact, the need to control the 

motions of objects is an essential part of any animation. Part of the uniqueness of animation is 

that it gives the creator control over the motion to better convey their message. If we only wanted 

to record some event for playback, we probably wouldn’t consider it animation, and could 

probably have used some other kind of recording technique like videotape or film. 

1.1.1. The Challenges of Motion Capture Data Editing 

To better understand the tasks and challenges of editing motion capture data, we consider a 

specific example. Suppose we have a motion of an angry female character walking across the 

room, and that this is a good, realistic motion that is “technically” correct. However, the story line 

of our animation changes such that the character is now furious, so we want to transform the 

motion such that it is angrier. 

If our angry walk was created by an animator using keyframe tools, the animator could tweak 

the motion using the same tools used to create it. The animator might add a little more tilt of the 

head, or make the footplants sharper, or whatever it takes to add some more angriness. The key is 

that the animator both understands where the angriness is in the motion, as well as understanding 

the specific details of this specific motion. For example, they may remember how they made the 
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motion angry in the first place, or what details they added to the motion to make it fit with the 

character’s personality. This familiarity is important: hopefully the animator can remember what 

made this a good motion so that the motion is tweaked, the good properties are retained. 

At the technical level, the mathematical tools provided to the animator, e.g. adjusting poses, 

do not directly map to the task at hand. However, the animator most likely knows how the tools 

were applied to create the motion. If they were far thinking, they may have even designed the 

motion so that it would be easy to adjust, for example by putting the keyframes at convenient 

times.  

If our angry walk were created by motion capture, the process of “angrification” would be 

different. The only way to use the same tools as used for creation for the adjustment problem 

would be to re-shoot the motion. Unfortunately, this may not be possible: we may no longer have 

access to the motion capture studio or the actress. At best, it is difficult, because it would require 

us to have the performer repeat the motion exactly, except for being angrier, recreating any other 

details we may have liked in the original. 

If we had been far thinking, we might have captured the angrier motion during the initial 

session. However, this takes luck as well as planning: it is probably impossible to predict all 

possible changes that may have been needed. However, good planning is essential to making the 

editing process (and capture process) easier. This planning is also essential for other forms of 

animation too. 

If re-shooting the motion is impractical, we are left with trying to use different tools for 

editing (compare this with keyframing where the same tools were available). There are two issues 

to be considered: first, the form of the motion capture data may not be convenient for editing; and 

second, because we did not create the animation by hand, we don’t have the understanding of 

how the motion “works,” either artistically (what was done to make this motion angry?) or 

technically (which keyframes should be adjusted?).  

We should note that these two challenges (form of the data and familiarity with the motion) 

are not unique to editing motion capture. In fact, any source of motion might suffer from these 
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problems: even if the motion was created by keyframing, there is no guarantee that the creator 

made the data in a form convenient for editing, or remembered (or even documented) enough of 

the “why” of the motion. One important lesson is that planning during the creation process is 

extremely important to making editing easier later on: whether the creation process is keyframing 

or motion capture. 

1.1.2. Types of Transformations 

If motion editing is about changing aspects of a motion, a useful place to begin is to consider 

what types of things we might want to change. The short answer is anything. In general, a 

motion-editing task could be to change any aspect of the motion that we don’t like.  

Some kinds of changes are easier to describe than others. Many kinds describe abstract 

concepts or are unspecific. For example, we might want to alter the mood of a motion, or to make 

it more like a particular character would perform the motion. Generally, when we are using 

algorithmic techniques we need to be specific about the kinds of changes we make in motions 

(although, later we will explore a strategy which changes motions based on examples of the 

properties we are trying to achieve).  

The kinds of things that might be important to preserve in a motion are also sometime difficult 

to describe. Exactly what makes a particular motion a particular action (walking, running, picking 

up a box), a certain mood (happy, angry, sad), or simply appealing to a director may be difficult 

to describe in sufficient detail to compute with.  

Some types of transformations are more important for motion capture than for other types of 

animation. In fact, some of the transformations we may perform are designed to allow us to use 

motion capture data in ways that we use motion created in other methods. For instance, because 

motion capture data records a real performance of a real person, it has several characteristics that 

hand-generated motions do not have. In order to use motion capture data like we use other forms 

of motion, we need tools to address these issues. For example: 
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��The motion capture performer may not have the same size or proportions as the character we 

are trying to animate. Therefore we need to adjust the motion so it fits on the new character. 

We call this problem retargetting a motion to a new character. 

��When a performer tries to repeat a motion or return to a specific pose, they may not be able to 

achieve exactly the same state.  Therefore, we cannot guarantee that two poses are exactly the 

same which makes transitioning between them more difficult. To address this, we need tools 

for making transitions between motions. 

��Motion capture is saddled with the restrictions of reality, which are often inconvenient for the 

creation of animation. For example, a real actor can’t jump as high as an imaginary superhero. 

The science of motion editing provides us with a set of mathematical tools for describing 

properties of motions and manipulating them.  As techniques improve, we get a richer set of 

things that we can do to motions. The art of motion editing creates the transformations beyond 

what we can describe mathematically. The challenge is to map from the high level goals to the 

specific details that the mathematical tools allow. Motion editing, like motion creation using 

keyframing, often requires the creativity of an artist to realize desired transformations.  

Basic motion editing techniques come from the direct application of the mathematical tools. 

The operations provided by these basic techniques rarely map nicely to the high level operations 

we would like to perform: tools like frequency filtering that we will discuss in Section 1.6.3 or 

displacement-mapping that will will discuss in Section 1.6.5, do not directly implement changes 

such as “make sadder” or “stop the skating.” As the tools evolve, however, we see the basic 

techniques serving as building blocks to achieve increasingly high-level operations. Therefore, 

the basic techniques are crucial to understand, both because they must be applied artfully to 

produce high-level effects today, and because they will serve as the basis for future technologies.  

1.1.3. Properties in Motions 

In much of our discussion we are intentionally vague about what the “properties” of motion 

are. The notion of a property of motion is critical for editing: they are the things that we are trying 
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to change or preserve. Our vagueness comes from the fact that we may want to describe any type 

of change to a motion.  

There are many statements that one might make about a motion. Outside of a few specific 

disciplines, like dance, our vocabulary for describing motion is typically not as well developed as 

for other types of domains like appearance. Therefore, discussions of motions are almost always 

filled with metaphor, or describe attributes that really describe something about the situation or 

the performer. For example, we often describe a motion by the mood or intent it conveys: an 

angry or sad walk. While it is a statement of the importance of motion that the movement of a 

character is so effective at conveying mood and other such properties, it also give us a problem 

that these things really are related to the actual low-level movements themselves. 

When we look at a motion, there are many different “levels” of properties that we may 

consider.  In our discussion, we use a vague notion of what level is. Roughly, we think of level as 

how abstract a property is.  Some properties are very low level: at time 1, the leg is straight; at 

time 2 the toe touches the floor; or at all times, the elbow never bends backwards. Any of these 

properties can be easily observed in a motion without too much understanding or context, and can 

have concise mathematical descriptions. At the opposite end of the spectrum, there are high level 

concepts such as angry, regal, or like-Fred-Astaire. It is more difficult to characterize these in 

terms of what the mean to the movement. Motion concepts like “walk” or “jump” seem to fall 

somewhere in the middle of the spectrum. 

One hypothesis that we will discuss later is that what seems high or low level, depends on the 

set of mathematical tools we use to look at the motion.  

While it is hard to identify what makes a motion “an angry walk” (or any other such “high-

level” property), many of these properties can be extremely easy to destroy. Changing one joint 

angle or position can turn a realistic motion into a useless teleportation. 



5:38 PM  3/26/00 8

1.1.4. The Unique Challenges of Motion Capture Data Editing 

As we see in the example of Section 1.1.1, motion editing issues are not unique to motion 

capture. In fact, almost all of the methods described in this chapter can be applied to motion 

created with other methods, such as keyframing and simulation, as well. However, motion 

capture data creates some specific and unique issues that make it an extremely challenging task. 

The example of the above example shows two key issues in editing motion capture data: 

��The data is most certainly inconvenient for editing. Motion capture systems typically provide a 

pose for every sample or frame of the motion, not just at important instants in time. This means 

that a lot of data must be changed to make an edit. Also, motion capture data often uses 

skeletons parameterized in a mathematically convenient manner with strict hierarchies and 

measurements relative to a reference pose, whereas  hand-made data often creates a skeleton 

that is more natural for manipulation. 

��There is nothing but the data to describe the properties of the motion. There is little indication 

in the data to show what the important properties of the motion are, and what should be 

changed to effect the motion. Not only is there no animator familiar with the “why” of the 

motion, but the intent of the motion is unlikely to have ever been connected to the data. 

(Unless the performer knows things like “I bend my head 10 degrees to the left to make this 

action seem angrier.”) 

These two issues may be summarized as "motion capture creates large amounts of 

unstructured data." The first techniques developed for editing motion capture data concentrate on 

the first issue. The idea being that if tools can be provided that make the data more convenient, 

then skilled artists could then use their creativity to address the higher level goals. As the tools 

improve, the second issue becomes more likely to be addressed. 

Motion capture emphasizes a particular kind of editing operation where we start with a 

“basically good” motion, and try to make alterations that preserve much of what we started with. 

In general, the changes we make are probably small in the grand scheme of things: if we were 

going to completely change the motion, we probably wouldn’t have picked that as an initial 
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starting point. This is important for two reasons: one, because the kinds of operations we will 

want to perform on the motions will be quite different than when we were sculpting a motion 

from scratch; and two, it emphasizes that as we change motions, we often are interested in 

preserving other aspects of the motion as well. We will use the term motion transformation to 

refer to motion editing operations that attempt to change one good motion into another, somewhat 

different one. 

 Because motion capture almost never provides any secondary motion, the addition of 

secondary motion must be done after the capture process. For this chapter, however, we will 

focus on the problem of altering the existing primary motions. 

Simulation methods for creating animation share many of the same properties as motion 

capture data. However, since most animation created using physical simulation has been targeted 

at honestly portraying the results of these methods, there has been less interest in applying editing 

methods to simulation results. 

1.2. Representation of Poses and Motions 

Given the challenge of altering a motion, we can now look at the details of actually realizing 

these kinds of changes. Central to changing motion is understanding how the actual data is 

represented. The specific details of the numbers that are stored to record the motion are 

significant because ultimately, these are the control knobs for the motion that must be changed. 

Our tools may present higher levels of abstraction to the user, but the software must ultimately 

map these effects into the underlying representation. 

There are two aspects of a motion representation. The first is the representation of the 

character at any given instant in time. The second is how these specific instants are varied across 

times.  
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1.2.1. Representing Poses 

Motion capture data gives a pose of the character at each instant in time. This pose consists of 

values for all of the characters parameters at a given instant. Choices in how we represent pose 

play a critical role in how editing is performed as these are the actual numbers that an editing 

operation must alter. 

In editing motion capture data, we typically demand that the parts of our character do not 

change size, that is, that our character is made up of a linked set of rigid pieces. To a first 

approximation, this is the way to describe the most significant features of the motions of most 

limbed creatures such as humans. Mathematically, the definition of a rigid body is that the 

distance between any pair of points on the body does not change as the body moves. A rigid 

body’s motion through space is limited to motions that preserve distances: it can only translate 

and rotate. Therefore, we can describe the configuration of the rigid body by a rotation and a 

translation. 

For character animation, we often require the rigid pieces of our figure to remain connected. 

The end of one rigid “bone” always must stay attached to the next. Typically, we use a rigid 

skeleton to represent a character.  That is, a character is made up of a set of rigid segments (often 

called bones) that are required to remain connected. A skeleton can be parameterized by the 

position and absolute orientation of one of the pieces, and the relative orientations between 

connected pieces (commonly called joint angles). The piece for which we specify position and 

absolute orientation for is commonly called the root.  

The root segment of a skeleton is the only piece of a character that we specify the position and 

orientation in absolute (world) coordinates. Technically, any piece of the skeleton could 

potentially serve as the root. When animating by hand, it is sometimes useful to make the root of 

a character be some piece that needs to have its position specified, for example a foot, otherwise 

the position of this piece must be set by controlling the joint angles of the character. With motion 

capture data, we typically choose the root to be the “center” of the character (typically the pelvis).  
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The good news about a skeletal representation is that changing the parameter values will not 

destroy the form of the character. The arms and legs will remain connected no matter how we 

change the data. The bad news is that the hierarchical representation can be non-intuitive, creates 

dependencies between different parameters, and forces us to represent and manipulate 3D 

rotations. We will re-examine this tradeoff in a later section, and for now consider editing this 

skeletal data as it is the most common way that motion editing is done. 

We should add that a skeletal representation can only record the configurations of the rigid 

pieces of a character. It does not allow us to represent the motion of a characters clothes or soft 

tissue moving. Skeletons are usually sufficient for the coarse level motions of characters, and 

almost always are all the data we get from a full-body motion capture system1. The additional 

details of secondary motion are typically layered on top of the skeletal motion to produce a final 

result. 

1.2.1.1. Representing Rotations 

To represent the configuration of a rigid body, we must provide information about the position 

of a point on the body, and the orientation of the body. Orientation is expressed as a rotation 

relative to some other coordinate system, either a fixed "world" coordinate system (in which case 

the rotation gives us an absolute rotation), or some other moving object. The latter is commonly 

used in skeletons to express the rotation between two connected joints. 

The representation of a 3D rotation is a difficult problem. A full discussion is beyond the 

scope of this chapter. The basic issue is that it is impossible to represent a 3D rotation using an 

unconstrained set of real numbers without having a singularity. In other words, there are many 

possible ways to represent a 3D rotation using a set of numbers, such as Euler Angles, unit 

Quaternions, and rotation matrices, however, all of these are plagued by difficulties. If there are 

fewer than 3 numbers, than all rotations cannot be represented, if there are only 3 numbers then 

there will be singularities: a mathematical condition that means that for certain values of the 

��������������������������������������������
1 Facial motion is generally non-rigid, therefore facial motion capture systems do not use skeletal 
representations. 
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parameters, there may be movements that cannot be achieved.  If there are more than 3 numbers, 

we must put limitations (for example, that the magnitude of the 4 numbers of a Quaternion is 1) 

on the numbers to make sure that they represent a rotation. 

Fortunately, in working with human motion, there are few joints that require the full range of 

rotations. Many joints, such as the elbows and knees, can be represented with one or two degrees 

of freedom. However, for the 3 degree of freedom joints such as the shoulders and hips, a 

representation for a 3D rotation must be selected. 

Because there cannot be a perfect representation for a 3D rotation, any method we choose is 

subject to tradeoffs. For a good discussion of these tradeoffs see Sebastian Grassia’s excellent 

tutorial on Exponential Maps (Grassia 99) that discusses tradeoffs among several representations 

for many different tasks. Motion editing provides a different set of needs for a rotation 

representation, so we briefly describe the use of some of the more common representations. 

A basic representation for a rotation is a rotation matrix. Usually, we convert any 

representation that we use to a matrix in order to feed it to a graphics library, so we might 

consider simply storing and manipulating it. The obvious problem is that it requires 9 numbers to 

encode the 3 degrees of freedom of the rotation. What is worse, is that only a special set of the 

possible values (those matrices that are orthonormal) actually represent a rotation. Given a set of 

9 values, it is unlikely to be a rotation. If we begin with a rotation matrix and change any one 

value, we are certain to get a matrix that is not a rotation. 

Some of the operations that we must perform on rotations can be performed easily with 

rotation matrices. For example, rotations can be composed by multiplying matrices, and inverted 

by inverting the matrices. Other important operations on rotations, such as interpolation, are very 

difficult.  

 
Euler Angles 

Mathematician Leonhard Euler made the observation that any rotation in 3D space could be 

constructed as a sequence of 3 individual rotations around the coordinate axes. This leads to a 
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compact representation for a rotation commonly called Euler Angles. For example, any rotation 

can be expressed as a rotation around the X axis, followed by a rotation around the Y axis, 

followed by a rotation around the Z axis, as shown in FIGURE. Since rotation around a single 

axis can be easily measured by a single parameter, we can represent and rotation in 3 dimensions 

by three parameters. 

  

Fig. 1-1. XYZ Euler Angles 

In fact, any set of three orthogonal axes can work. In our example, we used the convention 

XYZ, but we could have just as easily picked ZXY or even ZXZ2. What is important is that we 

know what convention that we are using, as different orders of rotations lead to different 

interpretations of the same parameters. Another detail is whether the axes are named in the 

coordinate frame of the observer, or of the rotating body. Either decision works, but we must be 

consistent. In computer graphics colloquialisms, the term “Euler Angles” is often used for any 

��������������������������������������������
2 While it may seem that the Y axis is forgotten with the ZXZ set of angles, it is not. A rotation about 
the Y axis can be achieved by first rotating the object around the Z axis, such that the original Y axis is 
now along the X axis, rotating around the X axis, and then rotation back around the Z axis to undo the 
first transformation. 
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representation of a rotation as 3 rotations around the coordinate axes, although technically, Euler 

Angles refer to a specific convention (ZXZ in the local coordinate system of the object) 

[Goldstein]  

Euler angles have the advantage that any 3 numbers represent a rotation. So for editing 

purposes, we can change the numbers however we like and can be sure to have a rotation. Euler 

Angles seem like they give us 3 independent controls for controlling a rotation. Unfortunately, the 

controls are not independent. Changing one of the angles alters the meaning of the subsequent 

angles. This is significant because it means that many important operations cannot be performed 

on them.  

Another problem with Euler Angles is that there is no simple mathematical method for 

composing two rotations. x,y,z * a,b,c is not x+a, y+b, z+c. In fact, there is no simple, closed 

form method. A related problem is that it is difficult to interpolate Euler Angles in any 

meaningful kind of way. Halfway between two Euler Angles in terms of the parameters is not 

necessarily “in-between” the two rotations. This makes the creation of nice rotations difficult. A 

feature of Euler angles is that performing simple mathematical operations, such as linear 

interpolation, still leads to a rotation. The problem is that these simple operations may not 

necessarily provide the desired rotation. 

The best known complaint about Euler Angles is that they exhibit what is called “gimbal 

lock.” Gimbal lock is a phenomenon that occurs because of the singularities in the mapping 

between Euler Angles and rotations. Simply put, for some values of the angles, the other two 

angles represent the same rotation. The more general form of this problem is that for any rotation, 

there are many ways to represent it. And that there is not necessarily a connection between how 

close the numbers are and how similar the rotations are. 
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Fig. 1-2.  Euler Angle Singularity: With XYZ Euler Angles, a 90-degree rotation about the Y axis 
causes the original X axis and the final Z axis to align, and therefore represent the same rotation. In 
the example, rotating the plane 90 degrees about the Y axis causes what was the original X axis (the 
forward direction of the plane) to point along the Z axis. Therefore, both the X and Z rotations have 

exactly the same effect: the "roll" the plane around its center axis. When Y is 90 degrees (so the 
plane is turned left or right), there is no way for the XYZ Euler angles to describe a rotation that 

changes the attitude of the plane (pointing the nose up or down) which requires a rotation around 
what was originally the Z axis. 

Despite these problems, Euler Angles are the most commonly used method for representing 

angles in performing motion editing. Some of this is historical: Euler Angles were well known 

and widely used by the graphics community long before practical alternatives were “discovered.” 

Most of the alternatives also require a greater degree of mathematical sophistication to 

implement.  

With care, Euler Angles generally can be made to work in practice for motion capture data 

editing, despite their problems. Foremost, Euler Angles work fine when only one of the angles is 

being used, which is the case with most of the joints on a human figure. Euler Angles generally 

work when the first or last angle doesn’t change much. Also, with motion capture data, the 

differences between successive frames’ rotations are small, and in small angle approximation, 

many of the problems of Euler Angles have small effect. 
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The gimbal locking problem with Euler Angles can be avoided by choosing the rotation order 

such that the singularity occurs in a configuration that is unlikely to occur. However, if an object 

has a wide range of motion, the singularities cannot be avoided. One scheme is to switch between 

different parameterizations (for example switching from XYZ to ZXZ) when a singularity is 

approached as the singularities occur in different places for different representations. 

Unfortunately, such dynamic reparameterizations can be difficult to implement in practice 

. 
Axis/Angle 

An axis angle representation of a 3D orientation makes a different use of Euler’s observations 

about angles. Rather than recording three rotations about fixed axes, the Axis/Angle represenation 

measures a single rotation about a single axis. With this representation, four numbers (a scalar 

and a 3D vector) are required to encode an orientation. Any rotation can be encoded as a 

continuum of axis angle values, as the length of the axis vector does not matter. 

Axis/Angle representations have the advantage that the intuition for understanding or 

describing an orientation is simple. However, because of their redundancy, and their inability to 

be interpolated or composed, they are difficult to use for motion editing applications. The 

following two representations are closely related, but do not suffer from as many drawbacks. 

 
Quaternions 

The most common alternative to the Euler Angles parameterization is the unit Quaternion, 

which were introduced to the graphics community by Shoemake (Shoemake 85). A Quaternion is 

a set of four numbers that is interpreted in a particular way. Quaternions have a rich history, and a 

number of applications beyond representing rotations. More generally, they may be though of as a 

multi-dimensional extension of complex numbers. 

Like with rotation matrices, only Quaternions with a specific property, namely unit magnitude, 

map to rotations. However, Quaternions are far less redundant than matrices, and the constraint 
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can easily be enforced to convert any set of 4 numbers to a unit Quaternion. Changing any one 

particular value of a unit quaternion does create a non-unit quaternion. 

The advantage to Quaternions is that a “calculus” of basic operations, such as multiplication 

and inversion, has been defined for them, and these operations correspond to useful operations on 

rotations. For example, to compose two rotations, we multiply the two corresponding 

Quaternions. The quaternion operations preserve the unit magnitude of the Quaternions, so if we 

start with a unit quaternion rotation and apply quaternion interpolation and multiplication, we will 

end up with a unit quaternion. 

Interpolating Quaternions involves the use of special methods that preserve the Quaternion 

properties. One advantage to using Quaternions is that the most basic spherical linear 

interpolation (commonly called SLERP) provides results that are both mathematically well-

founded and visually appealing. Recently, methods for creating spline curves in the Quaternion 

space have been developed, such as the one of Kim and Shin (Kim 95) or the rational formulation 

of Johnstone and Williams (Johnstone 95). 

The main disadvantage to using Quaternions for motion editing is that they are not intuitive 

parameters. The 4 numbers have little intuitive meaning, and cannot be directly manipulated by 

the user. In general, Quaternions are a nice method for representing rotations inside of a system, 

but not a good interface to present to a user. Also, not all operations have been defined on 

Quaternions (for example, they cannot be added). And, while projection is a useful method for 

correcting for error accumulation, simply manipulating the 4 numbers of a Quaternions and then 

trying to convert back to a unit quaternion is not necessarily a mathematically meaningful 

operation. In short, quaternions are not the panacea pronounced by their first “discoverers,” they 

simply have a different set of advantages and disadvantages than the more common Euler Angles. 

 
Exponential Maps 

Exponential Maps are another representation for rotations that have a number of desirable 

properties for performing many of the computations needed in working with articulated figure 
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motion. The use of Exponential Maps in computer animation has only begun recently, and has not 

yet spread widely. For an excellent tutorial on the use of exponential maps for animation, see the 

paper by Grassia (Grassia 99). 

Like Euler Angles, the Exponential Map reprsentation uses three numbers to describe a 

rotation. This means that it must have a singularity. However, unlike Euler Angles, it is simple to 

use dynamic reparameterization to keep away from the singular regions of the space. 

Unfortunately, many of the other difficulties with Euler Angles, such as lacking a meaningful 

interpretation for interpolation and lacking a simple method for composition, also seem to be 

apply. These issues may be resolved as Exponential Maps are explored more closely in the 

context of animation problems. 
 

1.2.1.2. Are Skeletons a Given? 

A hierarchical (e.g. skeletal) representation for motion is almost an assumption for motion 

editing. While some of the techniques we will discuss apply regardless of representation, they are 

almost always applied to the joint angle representation of the figure. In this section, we reconsider 

this choice. Our goal is not to advocate the alternative, but rather, to help provide some insights 

into the skeletal representation. 

The alternative to a hierarchical representation of a figure would be a non-hierarchical one. 

That is, rather than describing a pose by the position of one part of the figure and the relative 

orientations of all the other parts, we describe each part independently of the others. For example, 

we might simple represent the position of each joint in space, or the position and orientation of 

each limb segment, or even the positions of many points scattered over the body (like the 

positions of optical markers). What is significant about all of these representations is that each 

piece is independent from the others. 

The biggest drawback of the non-hierarchical representation methods is that a change in the 

parameters may destroy the connectivity or size of the skeleton. Changing any individual 
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parameter will probably make the configuration “invalid” unless extreme care is taken: bones 

may become disconnected or stretched. 

One way to look at this problem is that the non-hierarchical representation has more 

parameters: we are allowed to change not only what we want to be able to change, but also, things 

that we may not want to change.  

For a simple example, consider an object that can only rotate around the center in 2d, so the 

position of one of its ends and its length are fixed. The equivalent to a hierarchical representation 

would be to store the angle of the object. Alternatively, we might store the position of the end of 

the object. 

 

x

y r q

 

Fig. 1-3.  Two representations of a point in 2d. 

�

With the more compact representation, any value that we give to the parameter will be legal. 

With the 2-parameter representation, only a certain set of values will maintain the length of the 

object. Another way to look at this is that both parameterizations have the same number of 

parameters, except that with some parameterizations it’s more obvious which combination of 

parameters are valid. For the point example, we might represent the point in rectangular (x, y) or 

polar (distance, orientation) coordinates. In the later, it is obvious how to keep the object at the 

same length - just don’t change the distance. Keeping the length with the rectangular coordinates 

requires us to restrict the values of x and y such that the equation x^2+y^2=d^2 is true. 
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With different parameterizations, different limitations are easy to create. For example, if we 

wanted to restrict the end of the object to always be on the floor (but not restrict the size of the 

object), it would be easy in the rectangular coordinates, but difficult in the polar coordinates. 

The same view can be applied to representations of pose. The hierarchical representation 

makes it easy to constrain that the lengths of the bones stay constant and that the bones stay 

connected. However, an independent representation makes it easier to specify the position of an 

individual piece. With the hierarchical representation, it is possible to specify the position of the 

endpoint, although it requires solving a more complex equation including a number of variables. 

This process is commonly called inverse kinematics. 

In general, animation systems have preferred to keep the bones connected and of constant 

length, even though this makes it more difficult to specify the positions of the end effectors. 

Because of this, we often see animation where the foot skates across the floor or floats above the 

floor, but rarely see animation where the limbs become stretched or disconnected. Inverse 

kinematics, the mathematical tool to control the positions of end-effectors in a hierarchical 

representation, is a much better developed tool than what would be required to re-assemble a 

broken character. 

Hierarchical representations do have problems: they require us to deal with interlocked 

representations and to compute over angles. To specify the positions of end effectors, we must 

solve a complex inverse kinematics problem. In contrast, a non-hierarchical representation has 

independent parameters and the parameters are positions (which are much easier to deal with than 

angles). However, in order to maintain connectivity, we must solve a large number of constraints 

simultaneously. Few existing tools do this. 

1.2.2. Representing Motions 
�

A motion is a function that converts from a time to a pose. We can think of it as a black box 

that can be asked questions of the form “what is the pose at time t.” 
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Typically, we will only ask for the pose at times corresponding to the frame times, unless we 

are supersampling to create motion blur. 

Even though we only ask for values of t that are discrete, we often have motions as continuous 

functions, that is, that we can ask for any real-values for time t. For example, with keyframing, 

we create a piecewise polynomial curves (typically cubic) that interpolate the key points.  

With motion capture, we know the values of the parameters only at discrete intervals. 

Technically, we do not know what happens in between these samples, and make some 

assumptions that we haven’t missed anything important. (see appendix for a discussion of the 

theory and ramifications of this). We call such a representation of a motion a sampled 

representation. 

Despite the fact that samples are close together, we sometimes do need to examine the value in 

between two samples by interpolating them. This can be problematic with Euler Angles: we can 

have data that seems perfectly fine (because each sample is), but is not interpolatable. These 

issues can show up whenever we try to manipulate the data.  Non-interpolatability often occurs 

when there are multiple, equivalent values that represent the same thing, for example, 180 and -

180 degree angles.  

One way to look at motions is as parameter curves, that is, graphing the values of parameters, 

as in figure. These simple curves have become a mainstay of animation systems. Despite the fact 

that the curve itself may represent an angular value, and therefore have no direct meaning, users 

have grown accustomed to interacting with them. 
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Fig. 1-4.  Motion Curves: 4 curves taken from a walking motion. Each curve on the graph represents 
a different joint on the character. 

Motion capture represents a motion as a dense set of data: there is a number (sample) for every 

instant in time. A by-product of this is that there are a lot of numbers. This provides an 

opportunity for the motion capture data to represent more fine details than sparser keyframes can 

(e.g. the denser samples allow higher frequencies to be represented). The down side is that motion 

capture data has lots of data that must be manipulated in editing. When dealing with a dense 

representation of motion data, changing a single value only alters the pose of the character at that 

one instant in time. 

1.2.3. Editing’s Dependence on Representation 
�

The way that a curve is represented has an important impact on how it is edited. Consider a 

curve that is defined by interpolating a number of points. Depending on how many points there 

are, the effects of changing any given point changes. 
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Fig. 1-5.  Changing one control point of an interpolating curve has a different meaning depending on 
how the curve was represented. (NOTE: word numbering seems to skip Fig #5) 

The above example shows that the kinds of changes in a curve depend on how the curve is 

represented. This suggests that depending on the kind of changes that we want to make, a 

different type of representation might be most desirable. Unfortunately, we do not get total 

freedom in representation. Also, we cannot necessarily shift representation for each edit we may 

want to do as each may require a different representation to be accomplished effectively. 

Motion capture data almost always provides a specific form of representation: a dense set of 

samples of the values of the parameters. This representation is inconvenient for many kinds of 

manipulations.  

 

1.3. Cleaning Motion Data 
�

One type of editing operation that we often must consider is clean-up, the process of making 

the data that we received from our motion capture process more accurately reflect the 

performance we were trying to capture. Because clean-up is very closely tied to the problems that 
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occur in actually obtaining data, and therefore, very much dependent on how the data was 

obtained. Therefore, we limit our discussion here to a brief, high-level discussion of the problem. 

The clean-up process is a specific type of change (or edit) to motion. We want to change the 

motion from not reflecting what happened to representing what did. What makes the clean-up 

problem unique is that since we don’t have an exact record of what happened (if so, we could use 

that instead of our dirty data), its difficult to know when our data differs from what happens, and 

even more difficult to know what to replace it with. In fact, the very name “clean-up” implies this 

problem: in order to do cleaning, we must be able to separate out the dirt. 

In general, clean-up procedures attempt to identify elements of a motion that are more likely 

to be created by a failure mode of the capture process than by the performer, and to make an 

educated guess as to what really happened. Sometimes the former problem is easy: for example, 

in optical motion capture data, if a marker is obscured we often get an indication that there is no 

data; or, if we see a motion contain an impossible occurrence, such as a foot passing through the 

floor, we can identify a problem to correct. Other problems are more difficult to identify. For 

instance, if we see a character shake slightly, is this sensor noise or did they have a nervous 

twitch?  In general, we must resort to heuristics (general rules) to both identify the dirt in data as 

well as to create a replacement for it. 

One of the most common heuristics used to identify noise in motion data is that in general, 

things do not change very quickly. If we see something changing too quickly, it most likely was 

caused by a misreading of the sensor (noise), than by the actual performer. In signal processing 

terminology (see the appendix), motion tends not to have much high frequency content, and the 

noise we encounter often does. This suggests an easy solution: filter the high frequencies out of 

the motion to remove noise. Some basic methodologies for implementing this are described in the 

Appendix [[]]. 

The problem is that the same high frequencies that create the annoying noise are the ones that 

give crispness to the motion when it does make abrupt changes: the snap in a karate kick, or the 

impact of two objects. As seen in FIGURE, while filtering can help reduce the noise, it also 
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reduces the crispness in a motion, leading to a sometimes objectionable look, all too common in 

computer animation. Low-pass filtering should be applied carefully as to not create an unwanted 

look.  

   

Fig. 1-6.  Low-pass filtering a motion may remove high-frequency noise, however, it also removes the 
"crispness." Top: the original motion, Middle: motion with noise added, Bottom: result of low-pass 

filtering the middle.  (note: Word has mixed up the numbering and has put 5 after 6) 

Cleanup editing is much like other editing tasks: we aim to make a change that preserves as 

much of what is good about the original as possible.  

1.4. Types of Motion Editing Techniques 

Now that we have motion curves, the problem of motion editing is simply changing these 

curves to meet our new needs, while preserving what we don’t want to change.  

The fundamental challenge is that the properties of the motion are not obvious from the curves 

themselves. Just looking at the data doesn’t necessarily give us any indication of “where” the 

various high-level properties are in the data. In looking at the curves, it is impossible to say that 

there is a specific piece that creates the angriness, the realism, the walk, the particular actress.  
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While we may like to change these high-level properties, ultimately what need to control are the 

low level details of the characters pose at each instant. 

Even “middle level” properties of the motions come from the inter-related behaviors of a large 

number of parameters. Something as simple as the foot touching the floor is determined by all of 

the parameters that effect the foot (the position of the root and all of the joint angles in the leg). 

Fortunately, many of these parameters do have concise mathematical descriptions that allow us to 

identify them. For example, we can compute the position of the foot based on the number of 

parameters and determine whether or not it is passing through the floor. 

While the high-level properties in a motion may be hard to identify in data, and hard to create, 

they are very easy to destroy. Changing just one number in the motion data of our realistic 

walking motion can easily destroy the realism, change the motion from walking to teleporting, or 

just add an annoying twitch. 

There are several basic strategies that motion editing tools use to help bridge the gap between 

the high level descriptions we would like to use, and the low level details we must control: 

��We can describe desired features by example. For instance, we may not be able to say why a 

motion is “angry” but we can provide a motion that is. 

��We can attempt to control and maintain certain mathematical properties in the motion with 

hopes that preserving these properties can preserve the higher-level motion properties. 

��We can identify and control details in the motion, for example footplants, and make sure that 

these are maintained (or allow changes to them to be specified). 

��We can generally try to make editing the basic details more convenient so that it is easier to 

make the changes to the parameters. Specifically, changing individual frames is usually 

impractical with the densely sampled motion data. Almost any change would require altering a 

large number of individual data elements. 



5:38 PM  3/26/00 27

In practice, motion editing techniques for motion capture data must address the pragmatic 

issues of handling the large amount of unstructured data. There are two general approaches to 

this: 

1. We can convert the data to a more convenient representation. For example, we might 

try to create keyframe data from the motion capture data, allowing the use of more 

traditional tools for editing the motion. These methods are commonly called key-

reduction methods because their core must be a process to reduce the large number of 

motion capture data points to a more manageable number of keyframe poses. 

2. We can create methods that describe changes in ways that are independent of the 

underlying representation of the curves. Such methods often fall under the name of 

signal processing approaches because they tend to view motions more abstractly as 

signals. The theory of signal processing (see appendix) allows us to discuss signals 

(which motion curves are) independently of what they represent or how they are 

represented. Signal processing provides methods that can be described independently 

of the fact that we have the sampled curve representation, and can be implemented 

directly on the sampled representations. 

In the following two sections, we describe each of these general approaches. The chapter then 

concludes with a discussion of  a spacetime constraints approach to motion editing which 

attempts to gain the benefits of both key reduction and signal processing. 

1.5. Key Reduction 
�

Since motion capture data is so much more difficult to edit than keyframe motion data, an 

obvious approach is to convert the motion to the more editable form. Such an approach is called 

key reduction since it tries to reduce the number of specified frames. The basic idea is to find 

curves that have simple representations, but fit the original data. Mathematically, this problem is 

called curve fitting or regression.  



5:38 PM  3/26/00 28

When fitting a curve to data, the curve may not be able to exactly fit the data. In general, there 

is a tradeoff between the complexity of the curve and how expressive it is. If we want to have a 

simpler curve, it is less likely to be able to fit our data closely. Usually, we choose a form of a 

curve for simplicity, and then try to find the values of its parameters that get as close to the data 

as possible.  

There are a number of different ways to measure the closeness of a curve to the data. The most 

common measure is sum of squares. Other measures attempt to discard elements of the data that 

seem irrelevant or erroneous, with the intent of making a better fit to a portion of the data. These 

methods are called robust statistics. An example is shown in Figure 1-7. 

 

exact fit smoothed fit linear regression robust linear
regression  

Fig. 1-7.  Different ways to fit a curve to a set of data, trading off closeness to the data vs. 
Compactness of representation. 

In doing fitting, there is a tradeoff between the closeness of the fit and the expressiveness of 

curve. For example, suppose we want to fit a piecewise cubic spline (like we use for keyframing) 

to some motion data. If we allow ourselves to have a control point at every time step, we can 

exactly represent the motion data, however, we will have a curve that is as difficult to manipulate 

as the raw data itself. At a different extreme, we could have a curve with only a few control 

points that would encode the basic shape of the curve, but miss out on the smaller details. 

Controlling the complexity/closeness tradeoff becomes an artistic decision when using curve 

fitting for motion data. It might be acceptable to lose some of the smaller details in the motion in 

order to make it easier to edit. However, these small details are often what give motion capture 

data its character. 
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While automatic key reduction addresses part of the difficulty of motion data by putting it into 

a more editable form, it does not address the issue of lack of familiarity with the motion. While 

the automatic process may be able to place a minimal number of keys at optimal spacing, what is 

best mathematically may not be useful from the standpoint of a person trying to understand the 

data. 

Kinetix’s Character Studio is a commercial product that performs key reduction on motion 

capture data to make it easier to edit. The program has a sophisticated key reduction algorithm 

that attempts to identify specific features in the motion, such as footplants, and uses these as keys 

in order to create a more easily editable representation.  
�

1.6. Motion Signal Processing 
�

By using the theory and methods of signal processing (see the appendix for a brief 

introduction), we gain three things for motion editing: 

��We get a set of analytical tools for thinking about motions. 

��We get a vocabulary for discussing motions and alterations to them. 

��We get a set of operations to apply on motions. 

The parameter curves that we use to describe motions are certainly signals in the standard 

sense of the term. If we can treat each parameter as a separate signal, the traditional methods of 

signal processing apply. However, each of the parameters is not truly independent. A character's 

movement is created by coordinated changes in a combination of its parameters, so considering 

the parameters individually has limitations. Also, there may be tight couplings between 

parameters that cannot be altered. For example, if 4 parameters represent a unit quaternion 

rotation, changing one parameter will destroy the unit magnitude property. For this reason, 

motion editing is typically done on Euler Angle representations.  
�
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With signal processing, we view our curve as a black box 

 
����������

where p is the value of the parameter of interest, and f is a function that maps from times to 

parameter values. We do not consider what the function f is that generates the value. Without the 

ability to change f, we are stuck with two possibilities for altering the outcome: 

��We can alter the t that gets “fed into” the black box. 

��We can change the values that come out of the black box. 

The first category we call time transformation. These are often very basic operations that are 

common to animation. We begin with them to show how they lead to representation independent 

editing of motion curves.  

Technically, the signal processing methods that we will apply to motion signals will really 

apply to sampled representations of them. This is not too much of a restriction because any signal 

can be converted to this form by sampling. 

The term Motion Signal Processing generally originates in the paper of that name, published 

in SIGGRAPH ’95 by Bruderlin and Williams (Bruderlin 95). In this paper, the authors 

demonstrate how a variety of standard signal processing tools could be used for interesting effects 

on motions. The techniques surveyed in this paper were not all new to it.  

1.6.1. Motion Frequency Content 

 Before discssing specific methods for performing signal processing operations on motions, 

we digress to review how a fundamental concept in signal processing applies to the analysis of 

motions. This concept, frequency domain analysis, is at the core of many signal processing 

methods and provides an important vocabulary for discussing motions in a mathematical way. 

Frequency domain analysis is reviewed in the Appendix. 
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 When we look at a motion curve, it is hard to see where the properties of the motion lie. 

What about a particular motion curve makes it a good motion? A walking motion? A sad motion? 

Part of the problem is that we simply might not be looking at the motion the right way. Or, 

that our “view” of the motion lets us see certain properties easily, but not others. By taking a 

different “view” of the motion curves, we might see a different set of properties.  

Signal processing provides a number of different views for signals (like the motion curves). 

The standard view, like the curves we have been looking at, is called the time-domain. Another 

common one is the frequency domain (see the Appendix). We should emphasize that the 

frequency domain merely gives us a different view of the same data. 

The time domain representation tells us what is happening at a given instant. With a motion, it 

is useful for telling us what is happening at a particular time. The frequency domain 

representation provides us with a view of the kinds of changes the signal makes. For example, the 

time domain representation of a motion signal might tell us that at the 45th frame of the animation, 

the angle is 30 degrees, while the frequency domain representation of a motion may show us that 

the angle makes some abrupt changes at some time, but generally makes gradual changes.  

Like the time-domain view, a frequency-based view of a motion is a mathematical tool, and 

does not necessarily correspond to any particular qualities in a motion. Some researchers, such as 

Unuma et. Al.  (Unuma ‘95),  have postulated that different frequencies are more pronounced in 

some kinds of motions, or that some frequency information directly corresponds to emotional 

content of motions. More generally, the low frequency components of a motion convey the basic 

movement of a motion while the high frequencies give the details. It has also been speculated, for 

example by Witkin and Popovic(I can’t figure out how to make work put the grave accent over 

the c in Popovic) (Wikin ’95) that part of what gives motion captured motion is unique character 

is the existence of these high-frequency details. 

One place where the frequency view of motions is most useful is in understanding the 

implications of sampling. The frequency domain gives us a clear picture of what information will 

be lost by expressing a signal as a discrete set of samples, and will provide us with a set of tools 
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to avoid certain types of problems that can occur in sampling. Some specific examples will be 

described in the next section. 

1.6.2. Simple Time Transformations 
�

The general idea of a time transformation is that we still use the same motion curve, we just 

alter the time that we check. That is, we define some way of computing a new time given a time, 

and use this computed time to check what value the motion curve has when asked 

 
������	�����	
������

The most basic time transformation is to use addition of a constant 

 
�������������

In signal processing terminology, this is called a time or phase shift, or a delay. While this is 

obvious and trivial to implement, it is immensely useful for working with motions as it allows us 

to change when motions occur. It does, however bring up issues about what happens at “the ends” 

of motions: e.g. if we have a 3 second motion, and we delay it’s start by 2 seconds, what does the 

character do for the first 2 seconds or after the 5 second mark? Often, we will have the character 

perform some other motion before and after. This brings up the issue of making transitions 

between motions. We will discuss transitions later in this chapter. 

1.6.2.1. Time Scaling 

Another simple example of a time transformation is speeding up or slowing down a motion. 

This can be implemented quite easily as: 

 
�������������
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where k is some scaling factor. This operation allows us to speed up or slow down a motion. 

The simplicity of the time scaling example makes it a good illustration of the issues in dealing 

with motion capture data. First, we should notice that the way we have described the time scaling 

is independent of how the motion is represented. We simply change which time we “look up” 

when we ask the “black box” for the value. Despite the simplicity of this change, it does change 

properties of the motion. For example, if we scale time by 4 (effectively quadrupling the rate of 

speed), we create a transformation that destroys many properties of the motion, such as physical 

realism.  

While the time scaling may be defined independently of how the motion curve is defined and 

used, its correct implementation does require us to deal with the underlying representation of the 

motion curve. If the motion is initially represented as samples (as motion capture data is), then the 

process of time scaling is effectively a resampling of the data. In another view is that amount of 

time the motion takes (e.g. the motion takes 1 unit of time), we are really just changing the 

number of samples of the motion.  

In performing resampling, there are two cases we must handle. First, we must be able to 

determine what happens in between the individual samples, especially if we are slowing down the 

motion. Second, we must handle properly throwing away information that will be lost when we 

speed up a motion, since we will have fewer samples with which to encode things. The former 

case can be easily handled by interpolation. Most often, linear or cubic interpolation is used for 

resampling. 

 

  �  

Fig. 1-8.  Resampling with linear interpolation. 
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The latter case may require considerable care to do correctly. For a simple view of the 

problem, consider a simple motion that oscillates every other frame. 
�

 

Fig. 1-9.  A simple motion 

The obvious way to resample is to simply ask the black box of our motion for the new times. 

If we normally would have looked at samples in order (0,1,2,...), we would instead look at sample 

(0,n,2*n,3*n,...) where n is the change of speed factor.  

If we speed the example motion up by a factor of 2 by simply looking at every other sample, 

we get the expected behavior of the motion being three twice as fast. 

�

 

Fig. 1-10.  Speeding a motion up by a factor of two by taking every other sample. 

�

However, if we speed up by a factor of 3, something unexpected happens 
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Fig. 1-11. Speeding a motion up by a factor of three may not speed the motion up at all! 

�

Rather than speeding up, the motion has its original speed! If we speed the motion up by a 

factor of four, the motion stops alternating altogether.  

 

 

Speeding up by a factor of three and a half (which would require us to interpolate to get values 

in-between samples) would actually slow the motion down. 

 

 

Fig. 1-12. Speeding up by a factor of three and a half slows the motion down 

In general, when we speed up a motion we often get some undesirable results depending on 

how much we speed up the sampling. This phenomenon is called aliasing. Basically, what is 
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happening is that the motion changes too quickly to be adequately captured by the sampling. It 

therefore appears as a slower motion than what is really happening (in some cases, it slows all the 

way down to 0). 

One way to look at this problem is that speeding up a motion requires us to throw away some 

of the information. At the same sampling rate, a motion that is speeded up by a factor of n has 1/n 

as many samples. Clearly this smaller number of samples carries less information about the 

motion than the original. Aliasing occurs when the information that gets thrown away is 

significant. To avoid aliasing, we must first alter the original signal to remove any portions of the 

signal that cannot be represented in the smaller number of samples. This analysis is 

straightforward using the concepts of frequency, described in the appendix. 

The aliasing problem can occur with whatever representation we use for the motion signal. 

Ultimately, we will sample the motion in order to produce the images for the animation. If we had 

continuous representations for our motion curves, we could rely on performing the proper 

sampling visually by using motion blur. 

Technically, the correct way to perform a resampling would be to construct as good a 

continuous representation of the signal and then to do proper sampling (see the appendix) on that 

to create the new sampled representation. In practice, we implement this by pre-filtering the 

initial signal to remove any frequencies too high to be represented at the new sampling rate, and 

then perform the "naive" sampling. This filtering can be achieved by performing a discrete 

convolution of the signal with an approximation to a low-pass filter kernel, such as 1/4 [1 2 1]. 

Any time we change the timing of a motion, we must be careful about how resampling is 

performed. Fortunately, the issues in resampling a motion are the same as resampling any signal, 

so methods used from warping images or processing audio will also work. The most common 

way to handle resampling is by first pre-filtering the initial motion to remove any changes that 

will be too fast to be captured by the new sampling rate, and then to sample this limited signal. 

The pre-filtering process applies a low-pass filtering operation to the motion. This process will be 

described in more detail later. 
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1.6.2.2. Time Warping 
�

Time warping is a more general form of time transformation. It effectively scales different 

parts of time in different ways to achieve desired results. We can specify times that correspond 

from the initial motion to the final, and then compute a transformation that maps the times, 

interpolating in between. 

 

Fig. 1-13.  A Time warp makes specified times match, compressing or expanding time between the 
specified points. 

In general, time warping defines a function that maps from times to times. This function is 

defined by a number of points that it interpolates. Any type of interpolation can be used, and the 

literature of common techniques for graphics and animation can be applied.  

Time warping is useful when we would like to make one motion’s events occur at specific 

times, such as at identical times as some other motion. For example, consider animating two 

characters marching. If the first character’s footsteps occur at times 20, 40, 60, and 80, and the 

second characters footsteps occur at times 25, 39, 63, and 84, these correspondences define a time 

warp.  
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Fig. 1-14.  An example of a Time Warp. The top two rows show two different marching motions.  The 
lower one (middle row)  is altered to have its footstrikes be simultaneous with upper motion, 

resulting in the bottom motion. 

Creating an interpolating function to create the time warp is simple. However, care must be 

taken in resampling: because various parts of the motion will be sped up and slowed down by 

various amounts, resampling may not be simple. Techniques in the signal processing literature 

address the issues of non-uniform resampling. 

Methods from the signal processing community are capable of automatically determining a 

time warp that causes two signals to correspond. These methods have been applied to animation 

problems, for example by Bruderlin and Williams in (Bruderlin 95). 
�

1.6.3. Filtering 

In signal processing terminology, a filter is a process that transforms one signal into another 

signal. This incredibly broad definition includes any transformation we might make to a signal. 

There are some standard transformations that are useful across a variety of signal types. These 

may be applied to motions as well. 
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1.6.3.1. Linear or Frequency Filtering 

One very common and general type of filter performs a scaling of a signal’s frequency 

components. For example, a filter might allow only certain frequency ranges to pass through and 

block others. Such filters are called high-pass, low-pass, or band-pass filters. A low-pass filter 

allows only frequencies less than its cutoff to pass through, while a high-pass filter allows 

frequencies above its cutoff. The term band-pass is used to denote a filter that allows a range to 

pass, and includes high- and low-pass filters as special cases. A filter that completely cuts off 

frequencies outside its range without disturbing frequencies inside it is called an ideal filter. Real 

filters generally have approximate rolloffs.  

A filter can be thought of as dividing its input into two parts: the part that passes through, and 

the part that is cut. A filter bank is a set of filters that divide up a signal into a number of different 

signals by having each filter cut a different part of the original signal. A common technique is to 

use a filter bank to divide a signal up into a number of components, manipulate each component 

independently, and then to reassemble the signal. The most common use of this is to attenuate 

(scale) each individual component. An audio graphic equalizer is a device that does this for audio 

signals.  

Bruderlin and Williams (Bruderlin ’95) demonstrated the use of a graphic equalizer for motion 

signals. Such a tool is useful for understanding the meanings of the frequency content in motions, 

because it allows a user to experiment with adding and subtracting different frequency 

information. 

Unfortunately, such direct frequency domain control is rarely useful on motions. Some low-

pass filtering may be useful to reduce noise, but generally, frequency manipulation creates 

unusual effects in motion, while destroying various properties such as positions of end effectors. 

The main utility of frequency domain analysis is to provide insight to signal properties of motions 

so that other tools can be developed. 
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1.6.3.2. Non-linear and Other Filters 

There are many other types of filtering operations that are useful on motions, but are not linear 

operations or have descriptions in terms of the frequency domain. While the mathematical 

analysis of such operations may be more difficult, many are still very useful  to perform changes 

to motion data. 

One common non-linear filter used for motion is the median filter. A median filter produces a 

new signal whose value at a given time is the median of the values in the original signal at times 

around the given time. For example, a 3 sample wide median filter would compute: 

  M(f(t)) = median(f(t-1),f(t),f(t+1)) 

Median filters have the effect of discarding outliers, single data elements that differ from the 

surrounding data. This can be useful in removing spurious samples from motion capture. 

A generalization of a median filter is to use robust statistics that compute averages but discard 

outlying elements. For example, we might take the same three elements as the example median 

filter above, discard the one that was farthest from the average, and average the other two. More 

generally, we might take some number of nearby samples, discard some portion of them as 

outliers, and average those. Such filters can be more effective at noise reduction than simply 

performing frequency-based filtering. 

Other filters may perform non-linear operations on individual values. This is sometimes called 

wave-shaping because it tends to change the "shape" of the curve. In their work, Bruderlin and 

Williams (Bruderlin 95) showed how a variety of simple mapping operations could lead to 

interesting effects on motions.  
�

1.6.4. Additive Motion Editing 
�

In this section, we consider a time domain operation on motions very different from the filters 

of the previous section.  
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When we view motions as signals, it is obvious that we can trivially apply basic mathematical 

operations to them. For example, we can multiply a signal by a constant. Just about any 

mathematical operation can be applied to a motion signal, but the question is to find ones that 

make for useful changes on the resulting motion. Addition of two signals, combined with scaling 

of the signals, can perform a surprising array of useful operations. 

Adding two signals together simply adds their values at each time instant 

 
a(t) = f(t) + g(t). 

For motions, we can think of this as “pose-wise combination.” At any time, the pose would be the 

combination of the poses at the same time. We emphasize that this operation is independent of the 

representation of the motions being added. 

Simply adding two poses together does not necessarily give us a meaningful new pose. What 

is more likely to give us a meaningful pose is to take a weighted average of the poses, for 

example: 

 
a(t) = ½ f(t) + ½ g(t) 

or, more generally, 

 
a(t) = alpha f(t) + (1-alpha) g(t). 

At each individual instant in time, the value of the signal (or the pose) will be part way 

between one motion and the other. That is, this blends two motions together, and is therefore 

called motion blending. 

From our earlier discussion of rotations, we should remember that simply taking the number 

half-way between the numbers representing two rotations does not actually give us a rotation 

half-way in between, especially for Euler angles. In practice, such linear combination blending is 

still used, despite the fact that it is mathematically ill defined. As we will see, in general, blending 
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tends to work better in practice than in theory. If our rotations are expressed as unit Quaternions, 

the problem of combining two rotations for a blend is more explicit. We cannot add the 

Quaternions, but instead must interpolate between them. 

Blending two poses may or may not be meaningful. For example, if we try to blend a person 

standing up with a person lying down, we might get something halfway in between that is 

floating diagonally in space. 

 

 

Fig. 1-15.  Blending two poses may not provide a meaningful result 

Similarly, blending a pose from a walking motion that has the foot at the top of the step and at 

the bottom of the step leads to the foot being in the middle, which may be acceptable for one 

pose, but not for a motion. 
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Fig. 1-16.  Blending may not work with non-aligned motions. Here, a walk and a march are blended 
into a hovering quiver because they are not time aligned. 

 

Fig 1-16b. Blending of the same motions as in 1-16 gives a desired  result that is "half-walk, half-
march" when the signals are time aligned. 

In practice, blending requires motions to be similar, and to be time aligned. That is, if we try 

to blend two walking motions, we must make sure that the up and downs parts of the foot swings 

are at the same time, so we don’t end up with the foot always being in the middle.  This is often 

accomplished by adjusting the timing of one (or both) of the motions such that the key events in 

the motions correspond. Timewarping is a particularly useful method for this as it can 

synchronize two motions based on known events. Methods in the signal processing literature, 

such as dynamic Timewarping, can attempt to automatically find the correspondences.  
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There is no reason why we need to limit our blends to two motions. If we have several 

motions, we can add them together as well 
�+++= )h()g()f()m( 321 tatatat  

This is often called multi-target blending, and is most useful when we have a number of very 

similar motions. For example, Rose et al. (Rose 98)  used this technique to combine walking and 

running motions of various moods. The most difficult part of performing the multi-target 

blending is to find a set of motions that are similar enough to be blended. 

Blending provides a way to alter motions “by example.” While we may not be able to provide 

a mathematical definition of what makes a walking motion angry or sad, we can identify motions 

with these properties when we see them. By blending in motions with desired properties, we gain 

the ability to specify changes despite not being able to create mathematical descriptions of them. 

 
Blending in Practice 
�

Blending is one of those things that works in practice, but not in theory. In theory, there is 

little reason to believe that simply adding two motions together necessarily gives something 

meaningful. In practice, blending works quite well in situations where motions are similar and 

synchronized. While this may not be every case, there are some specific uses where these 

conditions are met. An example is a transition between two motions.  

Blending is particularly useful for making transitions between motions. In such cases, we 

often have motions where the beginning of one motion and the end of another are similar, but not 

exactly the same. For a brief period, we use a motion that is a combination of the two motions, 

and vary this combination so that we use the first motion at the beginning, and the second motion 

at the end. 



5:38 PM  3/26/00 45

 

Fig. 1-17.  Using blending to create a transition 

This method works well because the motions are similar during the blending period, and the 

time is short, so even if the poses created are not perfect, they aren’t seen long enough to make a 

difference. 

Making transitions when the motions’ ends are not similar enough to blend can be more 

problematic. Rather than blending, we can use interpolation between the end of one motion and 

the beginning of another. Just as with blending, interpoating between two poses is only 

meaningful if the poses are similar. More sophisticated methods of generating transitions between 

more disparate poses are an important research direction. Rose et. Al (Rose ’96) present one 

promising approach. 

1.6.5. Motion Warping 
�

Blending is an extremely useful tool, when we have motions that can be blended together. In 

this section, we consider creating special motions that are created just for blending. One example 

of this might be to capture very similar motions just for the purposes of blending, for instance, if 
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we capture a happy walking motion and a sad walking motion, we can blend the two to make 

combinations. Motion warping is a different kind of technique where we specifically create a 

motion that effects our original motion in a specific way. 

For the motion warping technique, we create a new motion by adding our original motion with 

a specially created motion 

 
�������������������

By being careful in our choice of the special motion, we can create desired effects in the result, 

without disturbing certain properties in the original. This specially created motion is sometimes 

called a motion displacement map, and this method is sometimes called motion displacement 

mapped. Bruderlin and Williams (Bruderlin ’95) used this term, while Witkin and Popovic 

(Witkin ’95) used the term Motion Warping.  

For a simple example of motion warping, consider a motion curve that we have a few known 

changes that we would like to make.  

 

Figure 18: A motion curve with desired changes specified at specific times. New poses are specified 
for several instants. 

If we change the motion at only these times, we would get an undesirable result: 
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Figure 19: Simply changing the motion at the specified instants leads to an undesireable result. 

If we change the motion by adding in another motion, each of the changes tells us something 

about the added motion. It must have values that create these desired goals. 

We can pick any motion that goes through the points as our displacement maps. One useful 

thing to do is to interpolate the changes, so that there are no abrupt changes in the resulting 

motion.  

 

Figure 21: Interpolating the requested changes yields a displacement map that can be applied to the 
original signal. 

 
Figure 22: Adding the displacement map to the original yields the modified signal. 

In a sense, we are keyframing the changes that we would like to make to the motion. 
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If we specify a single desired change, we can control the scope of the effect by our choice of 

the displacement map. 

 
Figure 23: Different scopes of change can be created by controlling the properties of the 

displacement curve. In this example, each variant uses a change at the center and two specifications 
of zero change at differing distances. 

The steps in this process were: 

��We find desired changes on individual frames. We can use any tool we like to change the 

individual frames (for example, we might use inverse kinematics to position the figures) 

��We determine the displacement values at each of the changed frames by subtracting the 

original from the new poses. 

��We construct a motion displacement map (a.k.a. a motion warp) that interpolates these known 

displacements. 

��We compute the final motion by adding the original motion and the computed displacement 

map. 

The simplicity of this process belies its power: it permits us to use any per-frame or keyframe 

tools that we like, and have their effects applied to motion capture data without having to modify 

each individual frame of the motion. In brief, the motion warping process decouples the editing of 

motion from the representation of the motion.  

Let’s consider a specific example of editing a walking motion. Suppose we want to reposition 

one of the footsteps of the motion. Using inverse kinematics (or other tools for operating on an 

individual frame), we can change the pose during the footplant such that foot has the desired 
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position, and the character is in a reasonable pose. We have defined a change on a single frame of 

the motion. Looking at a single curve (for example the knee) 

If we simply applied this change to the motion capture data, we would only be changing a 

single frame of the motion, this would give an undesirable result of the figure simply “jumping” 

to this pose on this one frame, probably in a flash so brief that we would not see it. 

With motion warping we can get control over the nature of the change that we make. Rather 

than being limited to simply changing individual frames, we can choose the scope of the change 

by picking other frames that we do not want to change. 

We can now reconnect motion warping with the frequency concepts we were discussing in an 

earlier section. The motion warp allows us to change the “big picture” of the motion, without 

changing the details. As we discussed earlier the low frequencies give us the big picture, while 

the high frequencies of the motion provide the details. In a sense, motion warping allows us to 

choose the frequency at which we make the alteration to the motion. 

Changing the individual frame of the motion adding a large amount of high-frequencies into 

the motion by introducing the large, unnaturally rapid changes. By choosing a larger range for the 

motion warp (as in illustration), we get a smoother “bump” that adds a lower frequency to the 

motion (because it is less abrupt).  

While motion warping is convenient in that it allows us to alter overall characteristics of the 

motion without changing the details, this actually is one of the problems in using the technique: 

often the details must be adjusted to keep important properties of the motion. While motion 

warping allows us to specify any changes we want to the key frames, it gives us little control over 

what happens on the frames in between. 

For example, consider altering a character’s walking motion such that the character steps up 

onto a bump in the road. Ideally, the motion editing process should allow us to specify a change 

to one of the frames 
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Figure: The height of a foot in a walking motion. We would like to specify that the character steps 
over a bump in the road by changing one frame. 

Unfortunately, this is ineffective in practice. Because the motion warp does not “know” that 

the foot’s height must remain constant when planted, we get a motion that is more like an 

escalator ride than walking over a bump. 

 

Figure: When a displacement map is used for the change specified in FIGUE, an undesired result 
occurs.. 

The obvious solution is to simply specify more key frames. For example, had we specified a 

key frame at the beginning and the end of the footplant, we would get a more reasonable motion 

warp 

 

Figure: The bump in the road is specified at both the beginning and end of the bump. 



5:38 PM  3/26/00 51

 

Figure, the character steps over the bump. 

While this is simple when we are simply keyframing the one parameter, with a real figure, the 

solution is more difficult. Creating this change would require repositioning the figure in both 

frames in a consistent manner. This can be challenging, but is probably less work than having to 

alter all of the frames. 

There are better alternatives to manually specifying multiple keyframes. We will use this same 

example to motivate a very practical approach in the next section, and later in the chapter, 

describe an approach which addresses the issue by using a more complex mathematical 

technique. 

 
Layering Motion Warps 

Motion Warping shows the utility of adding one specially created motion to the original 

motion in order to edit it. There is no reason to stop with just one motion: we can add in several 

displacement maps simultaneously to achieve additional effects. The addition of multiple warps is 

sometimes called layered editing because each new displacement may be considered as a new 

“layer” added to the top of the existing work3. 

The most obvious use of layered editing is to have several independent edits to a motion. For 

example, we might take a walking motion and add in a hand wave, an alteration to the feet, and a 

nod in the head. Because each of these may need different timings, it may be easiest to create 

each alteration independently, and then add them in as needed. 

��������������������������������������������
3 Beware, there are other usages of the term "layering" in computer animation and motion editing. 
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In fact, one way to use this approach is to create a “base” motion to which smaller details can 

be added. For example, we might have the base walking motion, and a variety of things that 

might be added to it, like hand waving and head nodding. 

Another use of layered motion editing is to create a single motion warp that would be too 

difficult to specify as one layer. As an example, consider the step example of the previous 

section. We could make a single motion warp as in the previous section, and then use this as a 

starting point to create another motion warp that gets the footplant details correct. 

Part of the idea of using this kind of layering is that the first edit is a broad stroke, and then 

finer and finer details are added in until the desired effect is achieved.  
 
Motion Warping Summary 
�

Motion warping is an extremely powerful technique for a number of reasons: 

��It is relatively easy to implement. 

��It allows any of the existing techniques to be used on individual frames, often without any 

change to the software. 

��The editing done is independent of the representations of the existing motions.  

��We gain control of the scale and scope of editing operations. 

��We can create edits that preserve the frequency content of the original signal. 

��We can use layering to combine multiple warps. 
�

The technique does have a number of drawbacks: 

��Addition of new curves may not be well defined (for rotations). This may be addressed by 

using a correct composition operation (for example multiplying Quaternions or rotation 

matrices).  
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��We need to perform interpolation of the displacement maps. This can be tricky for some types 

of parameters (such as rotation), and may require us to specify what kinds of interpolation to 

do. In general, we may want to have a “complete” set of keyframe tools for our keyframed 

changes. 

��We get no control over what happens in between the keyframes. This may lead to constraints 

being violated. 
�

�

1.7. A Constraint-Based Approach to Motion Editing 
�

Thus far, we have considered what types of mathematical tricks can be applied to motions in a 

useful way for motion editing. In this section, we return to the original statement of the motion 

editing problem and use this to motivate a different set of mathematical tools for addressing 

motion problems. 

Broadly, a motion editing operation attempts to change some aspect of our initial motion, 

while preserving as much of the rest of the motion as possible. We might state our motion editing 

problems as follows: 

 
�������������������������������������������	������������������������������� ���
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Let’s consider a simple example. Imagine that we have a motion of a character waling across 

the room. We would like to have a motion of the character walking across the room and reaching 

for a doorknob. To change the former into the latter, we must adjust the motion in a way that 

meets the new goal (reaching the doorknob), yet preserves what we liked about the original (that 

it is a realistic walking motion, that it has a somewhat depressed mood, …) A 2D example of this 

is shown in FIGURE. 
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Figure: A walking motion is edited by specifying a new position for the character’s hand in the last 
frame of the animation. The original motion is shown as dotted lines.  

Notice that despite the fact that we only specified a goal on the last frame, the entire motion 

needs to be adjusted. If we only changed the last frame, where the character must be all the way 

on the right side of the room in order to reach the doorknob, the character would need to jump 

quickly between the last and next-to-last frame. Instead, we need to adjust the entire motion, 

having the character take larger steps in order to reach the far side of the room, as well as, 

bending over to reach. The motion editing tool must pick some new motion that preserves the 

important properties of the original motion (that it is a realistic walk, that the character is 

somewhat sad, …), but meets the new need. 

To pose this as a math problem, we need ways to describe the kinds of changes that we might 

like to make, as well as ways to measure how well the resulting motions match the original 

motion. 

Good transformations preserve important aspects of the motion by altering less important 

ones: in a walking motion, it is important that the feet touch the floor, not that the pelvis is 32 

inches above the floor as in the original. The requirements for a good transformation are (in order 

of importance): 

��That any specific requests for change are met; 
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��That any specific, defining characteristics of the motion are kept; 

��That the transformed motion is as similar as possible to the original motion. 

Mathematically, this can be phrased as a constrained optimization problem: subject to meeting 

the constraints (the specific definitions of 1 and 2), minimize the difference (or maximize the 

similarity) with the original motion.  

The constrained optimization view of motion transformation requires that the “desirable 

properties” of a motion be encoded into constraints and the similarity metric between motions. 

Ideally, the constrained optimization problem would fully encode our desires mathematically: 

there would be a single solution that was the desired motion.  Realizing this ideal requires a rich 

set of constraints and objectives. For example, we could find constraints that enforce the laws of 

physics, biomechanical limitations due to strength, and proper ballet form. We could define 

objective functions that measure visual properties such as “grace,” “Charlie—Chaplin—ness,” 

and “like—Joe—did—it—yesterday—ness.”  We would aim to maintain the constraints that were 

satisfied in the original motion while minimizing the amount of change in the important 

properties. 

There are central difficulties in realizing this constraint-based ideal for motion transformation: 

first, some properties are difficult to encode mathematically as constraints or objectives either 

because the forms of the equations are complex or because they elude a mathematical encoding; 

second, we may not know all the properties required, such as the mass distribution of an 

imaginary character or the physical laws of an imaginary world; third, we must decide which 

properties are important in a given setting; fourth, many of the properties and constraints may be 

specific to a small set of examples, and therefore not worth the effort to define. All of this, of 

course, presumes that we can pose and solve the mathematical constraint problem. 

The constraint-based approaches to motion editing are, at present, still experimental, and far 

from meeting the ideal of permitting the rich and complex descriptions of motion properties we 

would like. We describe some of our early work with these tools to give a preview of what might 

be possible in the future, and to give insight on the limitations of other techniques. 
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1.7.1. Constraints on Motion 
�

Constraints are a specific statement that can be posed mathematically, typically about a 

particular pose of the character. For example, we might say that the foot touches the floor in 

frame 5, or the elbow is less than 180 degrees in frame 10. Some constraints are convenient to 

specify over a range of frames, for example, that the elbow is never bending backwards, or that 

the foot never goes through the floor. 

Constraint-based techniques are already part of the tools used to edit motions. Inverse 

kinematics is a common use of constraints: the inverse kinematics solver determines a set of 

values for the character’s parameters that satisfy the constraints.  

When solving constraints, there are often many possible ways to satisfy them. For example, if 

we specify a constraint that places the hand of a character, there are many possible poses of the 

character that might place the hand in the specified position. The constraint solver must choose 

the “best” solution, where best is based on some criterion that it has for choosing. While 

sometimes solvers may use ad hoc methods that pick solutions in an unprincipled way (the “best” 

is defined as whatever is easiest for the solver to find), good solvers define a measurement that 

they try to minimize. That is, the solver tries to find solutions that subject to meeting the 

constraint (of placing the end effector), they minimize the objective function. The most common 

objective is to minimize the amount the angles are changed. 

An inverse kinematics solver allows us to specify details of a motion, such as that the 

character’s foot must be in a particular location. However, it performs the computation on an 

individual frame. Because of this, there is no guarantee that what happens between frames will be 

consistent. What the solver decides is best on one frame may be quite different than what the 

solver decides is best for some other frame. 

Consistency can be helped by using a solver that uses a well-defined criterion that achieves 

similar results on similar problems. For example, if the solver attempts to find a solution as close 

as possible to the original, and the original motion is consistent between frames, and the 



5:38 PM  3/26/00 57

requested end-effectors positions’ are consistent across frames, then we should expect to get 

motions that are continuous across frames 

Another choice is to have the solver use consistency as its criterion. For example, rather than 

trying to match the original pose, the solver might try to match the previous frame in the resulting 

motion. While this may lead to motions that are continuous, they will not keep as much of the 

original motion. 

Neither of these schemes work in cases where the constraints switch on and off. For example, 

imagine a constraint for a footplant on the walking motion that keeps the foot on the floor. This 

constraint only exists during the footplant. If the solver only considers one frame at a time, the 

frame before the footplant will know nothing of the footplant. Therefore, the foot might snap to 

the floor when the footplant begins. This problem of being able to look ahead also works in 

reverse: frames after the footplant may need to look behind to make sure they have consistency. 

One way to look at this problem is as a limitation on how much information the solver 

considers in determining what solution to choose. When given limited information (a single 

frame), the solver is unable to consider properties such as smoothness or physical realism, which 

require looking at a longer segment of the motion. By permitting the solver to look at a wider 

window, we can have the solver attempt to maintain (or create) more complex properties. 

Even considering more of the motion is insufficient. Simply knowing that a footstep is coming 

does not necessarily say where it will be. Therefore, to truly perform solutions on more complex 

criteria, the solver must be able to either perform the computations in the correct order, or to 

solve for all of the frames simultaneously. This latter approach is what we call Spacetime 

Constraints. 

1.7.2. Spacetime Constraints 
�

Spacetime Constraints refer to methods that consider a duration of motion simultaneously in a 

computation. Rather than computing an individual frame, as an IK solver does, the solver 
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computes an entire motion, or any sub-window of it. This allows it to consider constraints on the 

entire duration of the motion, and to have objective criterion that consider entire motions. 

The initial use of spacetime constraints specified desired positions for a character and used the 

solver to compute the “best” motion that met these positions. These initial works, presented by 

Witkin and Kass (Witkin 88) and Cohen (Cohen 92),  included constraints that enforced the laws 

of physics and created an objective function that defined the “best” solution as one that 

minimized the amount of energy the character expends with its muscles. This synthesized novel 

motions that had a simple character perform simple motions that were physically correct. 

The power of the Spacetime Constraints approach is also its drawback. While the approach 

provides tremendous opportunity to define constraints and objective functions that describe 

features of the resulting motions, these must be defined for the approach to work. While the 

approach offers the potential for high level properties to be employed as criteria, to date, concepts 

such as graceful or angry have eluded a mathematical description that fits into the framework. 

Also, the approach requires solving a single mathematical problem for the entire motion. This 

leads to very large, very difficult to solve constrained optimization problems. 

We initially proposed applying the spacetime constraints approach to a motion transformation 

problem in (Gleicher and Litwinowicz 98)4.  Conceptually, the main difference with the standard 

spacetime work was that our objective sought resulting motions similar to the initial motions, 

rather than seeking results that minimized energy consumption. This allowed us to avoid the 

difficult problem of specifying motion details: we did not have to figure out how to describe a 

walk with constraints since we could define a walk by example. 

The important properties to preserve in a given motion may not always be simple; realism, 

grace, like—in—Singing—in—the—Rain—ness, or other high-level properties may be desirable 

to preserve during adaptation. In practice, we are limited by our ability to define high-level 

qualities of the motion mathematically, by our ability to compute adaptations efficiently when the 

metrics become complex, and by the amount of effort we wish to expend in identifying (or having 

��������������������������������������������
4 Which initially appeared as an Apple Computer Technical Report in 1996. 
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the user identify) these properties. Even if we encoded the desired animation completely in a 

constrained optimization, we still need to solve to these problems. Generally, richer sets of 

constraints and objective functions lead to more difficult problems to solve. 

1.7.2.1.  Our Pragmatic Approach to Spacetime Constraints 
�

Our approach to realizing the spacetime approach to motion transformation has been 

pragmatic: we make simplifications such that we can create tools that we can apply to realistic 

problems. To date, we have made many sacrifices to achieve practicality: we tell our solver little 

about the original motion or general motion properties, and our choice of the mathematical 

problem is heavily influenced by what can be solved efficiently. Specifically, we have restricted 

ourselves to specific geometric constraints and mathematically simple metrics of differences in 

motions. For example, we augment the motion of Figure [] with constraints that are essential to 

the action: the hands must grab the box in the middle frame, the hands must remain the correct 

distance apart while carrying the box, and the feet must be planted and not skid when they are on 

the ground. 

We sometimes pay for these sacrifices in the quality of the resulting motions. For example, 

because our system did not consider gravity or posture we get an unrealistically unbalanced result 

in the right frame of Figure []. However, the payoff is that our approach provides a practical 

solution to the transformation problem and a framework in which to employ more sophisticated 

constraints, like strength and balance, in the future. Also, because we can get the solutions 

quickly and interactively, the user immediately can see unacceptable results and can rectify the 

problem by making adjustments or specifying additional constraints interactively.  
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Fig. 1-18.  Differently sized characters pick up an object. Their positions are determined by the 
position of the object. The left shows the original actress. The center shows a figure 60\% as large. 

The right shows a figure with extremely short legs and arms and an extremely long body. The yellow 
cones represent footplant positions  

�

1.7.2.2. Comparing Motions 

Our objective for transformations is to minimize the amount of changes that damage the 

desirable properties of the initial motion. However, even this could lead to difficult to define, 

high-level, problem specific metrics. For example, in a walking motion, a slight bend of the knee 

may not make a difference, but this same slight bend of the knee could be a noticeable deviation 

from perfect ballet form in a dance. 

To date, we have sought simple, generally applicable metrics that can be computed with 

efficiently. We rely on constraints to specify details of motions that must be retained, reducing 

the importance of the objective function.. 

Generally, the high frequencies of a motion (or the lack thereof) are important, and therefore 

must not be disturbed. An adaptation that removed the snap from a karate kick might be just as 

inappropriate as adding a snap to a slow walking motion. We therefore limit the frequency 

content of the transformations to avoid disturbing the high-frequency content of the original 

motion. 

We use our choice in how to represent the motion as a tool for placing frequency limits on 

transformations, as well as to aid the efficiency of solution. Liu et al. (Liu 94) first made use of a 

carefully selected representation by using wavelets to speed computations.  We  introduced the 

use of motion-displacement maps as a representation (Gleicher 97, Gleicher and Litwinowicz 98) 

for spacetime problems where the objective function related two motions. This approach defines 
�

)()()( 0 tdtmtm += �
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and uses the solver to find d(t). The approach has a number of advantages. First, it decouples the 

solution from the form of the initial motion, providing generality. Secondly, it simplifies placing 

constraints and objectives on the changes. Third, it permits us to choose a representation that has 

mathematical properties that are efficient to compute with, even though it may not be good for 

representing the motion.  Fourth, it allows a representation for d(t) to be chosen that includes 

constraints on the changes so they do not need to be expressed as explicit functions. To constrain 

the displacement signal not to include high frequencies, we use a representation for it that cannot 

represent the high frequencies: specifically, cubic B-Splines  with control point spacing 

determined by the desired frequency limits.  The control points of the displacement curve need 

not be uniformly spaced: we can place controls closer together for portions of the motion where 

higher frequencies are acceptable. B-Splines also have mathematical properties conducive to 

efficient solving. 

The objective function for the constrained optimization must compare the initial and resulting 

motion The most basic comparative objective function would be to compare the values of the 

parameters, matching pose in parameter space. For example, 

 

∫ −=
t
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minimizes the magnitude of signal differences in the motions over time. This simple objective 

relies on the constraints and motion representation to provide coupling between time frames, but 

simplifies he constraint solving problem to afford an efficient solution.  

We have begun to explore the design space of objective functions, for example creating 

frequency criteria by minimizing the output of a filter that selects undesirable elements. In 

practice, we find that pragmatic concerns outweigh most other choices in the design of an 

objective function. Increasing the complexity of the objectives leads to considerably more 

difficult optimization problems. 
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1.7.2.3. Constraints 
�

Constraints in our approach serve two purposes: they encode specific aspects of the motion 

that should be maintained during subsequent edits and they serve as handles to drive changes to 

the motion. There is little distinction in our system, in fact, constraints are often moved between 

the categories. Most constraints that we consider in our approach are kinematic, that is that they 

place a restriction on the configuration of the character at a given instant. These constraints have 

the form 
ctc ◊)),(f( xm ��

where ������������	
����
�����
���c is the time at which the constraint exists, c is some scalar, 

and f is the “constraint function.” Typically, a conceptual constraint consists of multiple scalar 

constraints, for example a point position uses one per axis. For notational convenience, we group 

all constraint functions into a single vector function. 

In our prototype system, the user never needs to see an equation: the system includes a variety 

of pre-defined constraints that can be applied to a motion through a graphical user interface or via 

a scripting language. Some constraints can be identified semi-automatically (such as finding 

footplants by examining foot height). Once the constraints for a character or motion are defined, 

they can be used for any adaptation made to the motion or using the character. 

We have emphasized finding (and using) constraints that we believe are applicable over a 

wide range of motions. Some useful examples include: limiting the range of a joint angle (so 

elbows can’t bend backwards); specify the location of a hand (to grab an object) or foot (step in a 

particular place); keep a body part in a certain region (stay above the floor); have a hand or foot 

follow a specific path; prevent a foot from skidding when planted; or keep two points a specified 

distance apart (useful for when a character is carrying an object of a fixed size). 

The architecture of our system is designed to minimize the effort required to add new types of 

constraints. 



5:38 PM  3/26/00 63

1.7.2.4. Successes of Our Approach 
�

To date, we have used our pragmatic spacetime approach on two important animation 

problems: retargetting motions to new characters and interactive editing of motions. 

 

Fig. 1-19.  Visualizing a spacetime constraint-based motion edit of a walking motion. Strobing (with 
color alternation and transparency to help contend with clutter) and streamers (the thin lines 

following the feet and hand) are used to convey the motion.  The striped streamer shows the initial 
(pre-edit) motion. Yellow symbols represent constraints 

�

We have applied the spacetime constraints approach to the problem of interactive editing of 

motions (Gleicher 97). The user can directly manipulate constraints, such as the position of a 

hand in a particular frame or the location of a footplant, and the motion is altered in real time. We 

take an extremely pragmatic view of spacetime, making as many simplifications as possible in 

order to achieve interactive solutions. The idea is that it is less important to achieve the “right” 

solution to the constraints because the user can make further interactive adjustments to achieve 

the desired results. Through careful implementation and choice in problem design, our prototype 

can allow the user to interactively manipulate motions with thousands of constraints. 

A difficult problem in the spacetime editing system is helping the user visualize the results. As 

seen in the example of Section [], a change can effect the entire motion, so the user must be able 

to see the entire motion to understand what they are doing. As seen in Figure [], we have used a 
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number of simple tactics to try to convey the editing operations to the user including strobing, 

trace streamers, and multiple windows showing motion loops. We use multiple visual clues, 

including motion, color, texture, transparency, and shadows, in our attempt to convey the 

behavior. 

We have also applied the spacetime approach to the problem of retargetting motions from one 

character to another (Gleicher ’98). Our focus is on adapting the motion of one articulated figure 

to another figure with identical structure but different segment lengths, although we use this as a 

step when considering less similar characters. For retargetting, we define constraints on the 

original motion, apply the motion to the new character, and then use the spacetime solver to 

compute a new motion that re-establishes the constraints.This process is shown in the following 

FIGURES. 

 

Figure: The original motion of a tall character walking. Constraints (in this case footplants) are 
identified. 

 

Figure: Step 1, the motion is applied to the smaller character. The constraints are no longer satisfied. 
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Figure: Step 2, an initial guess is made to get an answer closer to a solution. In this case, the motion 
is simply translated such that the characters feet touch the floor. This is not a solution because the 

horizontal position of the feet are not correct, causing skating. Note, this step can be omitted. 

 

Figure: Step 3, the constrained optimization problem is solved. The constraints are re-established in 
a way that preserves as much of the original motion as possible. 

Without adaptation, our motion data does not apply to figures of different sizes or proportions 

than the original: the resulting motions have the feet skating and the hands failing to reach the 

object. Our method enables us to re-use this data on figures of varying proportions, as shown in 

Figure []. Figure [] shows a more challenging retargetting example. In this case, we allow the 

spacetime solver to transform both dance partners’ motions to adapt to the change in one 

character’s size.  

 

Fig. 1-20.  Adaptation of a motion-captured swing dance (left) to a smaller character. Our method can 
adapt the female’s motion such that her feet touch the ground and she holds hands with her partner 
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(center). We can also adapt both character’s motions to achieve a better result (right). 

Our retargetting approach also works for cases where the character is changing over time, as 

shown in Figure [].  We also demonstrated how the technique could be used to retarget motions to 

characters with very different structures, such as making a can skip like a person. Our technique 

first adapts the human motion to a human with the same proportions as the target, and then finds a 

motion for the target character so that corresponding parts follow the same paths through space. 

     

 

Fig. 1-21.  The female character morphs into a smaller character during her spin. 

The retargetting method described works when the characters have an identical structure, that 

is, they differ only in the length of their limbs. In this case,the motion can be trivially applied 

from one to the other to provide an initial guess. The problem of automatically retargetting a 

motion to a character with different structure is more challenging as the solutions almost always 

require a great deal of creativity to create.  
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1.8. References 

The use of hierarchical representations for 3D character animation dates back to the earliest 

experiments, including Catmull’s animation of a human hand (Catmull 72). The work of Zeltzer 

(Zeltzer 82) demonstrated some of the earliest use of a full body skeleton. The concepts for 

hierarchical modeling are presented in any standard graphics text or reference, such as Foley, van 

Dam, et al (Foley 90), Hearn and Baker (Hearn 97), or the OpenGL reference book (Woo 99) 

provide good introductions. 

The examination of rigid body motion is the primary motivation for the development of the 

mathematics of rotation. A mechanics text, such as Goldstein (Goldstein 80), presents the 

formalism of rigid rotations and the mathematics of their representation, including Euler’s 

important results. Quaternions were introduced to the graphics community as a representation for 

rotations by Shoemake (Shoemake 85), and are now common enough to be included in graphics 

texts such as Hearn and Baker (Hearn 97). The exponential map was introduced to the animation 

community by Grassia (Grassia 99) who provides an outstanding discussion of the relative merits 

of many representations for rotations for a variety of animation problems. Bregler and Malik 

(Bregler 97) use exponential maps to represent human figures for a video tracking application. 

Few key reduction-based animation tools have been reported in the literature. Gobbetti and 

Balaguer present one (Gobetti 95). In graphics, the more common use of functional 

approximation has been in curve and surface design. 

The term "Motion Signal Processing" is typically attributed to Bruderlin and Williams who 

published a paper with that title at SIGGRAPH 95 (Bruderlin 95). Many of the simpler signal 

processing methods had been in use in practical settings and simply had not been described in the 

academic literature. Litwinowicz’s Inkwell system (Litwinowicz 91) used a variety of filtering 

operations to create effects on motions. Perlin’s dancer (Perlin 95) demonstrated the applicability 

of blending motions together to create interesting human motion, as well as the utility of adding 

noise to a motion to make it more "alive." Blending was probably in use in video game settings 

before Perlin’s work. Similarly, the motion-displacement maps introduced by Bruderlin and 
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Williams (which were simultaneously introduced as Motion Warps by Witkin and Popvic (Witkin 

95)) were available as motion layering in some early character animation systems. An extensive 

use of Motion Blending is described by Rose et al (Rose 98) which blends between many motions 

simultaneously.  

The idea that frequency content has specific meaning in terms of the content of a motion was 

described by Unuma et al (Unuma 95). Other work, such as Witkin and Popovic (Witkin 95), 

proposes that high-frequencies provide the details that give motion its character, but do not place 

specific meaning on the various frequency bands. This view leads to the multi-resolution tools for 

motion editing, such as the Spacetime editing methods of Gleicher (Gleicher 97, Gleicher 98), or 

of Lee and Shin (Lee 99). 

For a slightly more thorough discussion of Signal Processing, especially filtering and sampling 

used in SECTION, consult APPENDIX. The Appendix also suggests introductory texts that can 

provide a more thorough introducion. While time warping and other temporal transformations are 

common in animation systems, Bruderlin and Williams (Bruderlin 95) introduced the use of 

dynamic time warping for human animation problems. 

The constraint-based approach to motion editing discussed has been presented by Gleicher, 

first in the context of interactive editing (Gleicher 97) and then in the context of motion 

retargetting (Gleicher 98). An earlier version of the work was presented by Gleicher and 

Litwinowicz (Gleicher 98b). The first work to present a spacetime solution for a human motion 

problem was Rose et al. (Rose 96) that used a variant of the approach to synthesize transitions 

between captured motions. Popovic and Witkin (Popovic 99) present a variant of the spacetime 

approach that simplifies that character such that it is possible to preserve the physical correctness 

of a motion. Lee and Shin (Lee 99) have presented a method that achieves similar results to the 

spacetime solutions by solving a large number of single-frame problems. 

For details of the system architecture used to create the constraint-based motion editing 

system, we refer the reader to our earlier work on constraint methods for interactive systems 

(Gleicher 94). 
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