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In this paper, we present a technique for motion: the
problem of adapting an animated motion from one character to an-
other. Our focus is on adapting the motion of one articulated fig-
ure to another figure with identical structure but different segment
lengths, although we use this as a step when considering less simi-
lar characters. Our method creates adaptations that preserve desir-
able qualities of the original motion. We identify specific features
of the motion as constraints that must be maintained. A spacetime
constraints solver computes an adapted motion that re-establishes
these constraints while preserving the frequency characteristics of
the original signal. We demonstrate our approach on motion cap-
ture data.

In this paper, we present techniques for motion: the
problem of adapting an animated motion from one character to an-
other. Our goal is to re-use motions created for one character on
other characters, independently of how that motion was created.
We aim to preserve as many of the desirable properties of the orig-
inal motion as possible. That is, if we begin with the motion of a
tall adult person, we expect to end up with a motion of a small child
walking like an adult, or a crocodile swing dancing as if it were an
adult human. Admittedly, this faithfulness to the original motion
is not always artistically desirable. However, we prefer to relegate
the difficult creative decisions (How do crocodiles dance?) to the
user’s selection of an initial motion.

Our focus is on applying motion created for one articulated fig-
ure to another figure with identical structure (connectivity of limbs,
types of joints, number of degrees of freedom) but different seg-
ment lengths. Even when two articulated figures share structure,
the motion of one may not trivially apply to the other and therefore
require adaptation. Good adaptations preserve important aspects of
the motion by altering less important ones: in a walking motion,
it is important that the feet touch the floor, not that the pelvis is 32
inches above the floor as in the original. The important properties of

a given motion may not always be simple; realism, grace, like–in–
Singing–in–the–Rain–ness, or other high-level properties may be
desirable to preserve during adaptation. In practice, we are limited
by our ability to define high-level qualities of the motion mathemat-
ically, by our ability to compute adaptations efficiently when the
metrics become complex, and by the amount of effort we wish to
expend in identifying (or having the user identify) these properties.
These issues motivate a more pragmatic approach to retargetting.

This paper presents a method for finding the adaptations needed
to retarget motions from one articulated figure to another. We ac-
complish this by requiring the basic features of the motion – for
example that the feet touch the floor when walking – to be identi-
fied as constraints. If the constraints are violated when the motion
is applied to a different figure, we find an adaptation to the mo-
tion that re-establishes the constraints in a manner that fits with
the motion. Our premise is that by maintaining the basic features
and avoiding uncharacteristic (in a basic signal-processing sense)
changes, we find adaptations that generally preserve the desirable
characteristics of a motion, without explicitly modeling them.

The core of our retargetting method is a numerical solver that
computes an adaptation to the original motion. The adaptation re-
establishes the constraints while attempting to avoid adding any un-
desirable artifacts. Our solver is a spacetime constraints method
that considers the entire motion simultaneously, computing whole
motions, not just individual frames. To preserve the qualities of
the original motion, we minimize the magnitude of the changes and
restrict their frequency content.

After a review of previous work, we introduce our method in
Section 3, and summarize the technique in Section 4. Section 5 de-
scribes how the method can be applied to creating motions when the
character is changing (morphing). In section 6, we discuss issues
in solving the non-linear constraint problems. We provide a gallery
of examples in Section 7 and consider the problem of retargetting a
motion to a character with different structure in Section 8.

We motivate our approach with an example: retargetting motion
capture data of an actress walking up to, picking up, and carrying
away a box. During pre-processing, we augment the motion data
by specifying constraints that are essential to the action: the hands
must grab the box in the middle frame, the hands must remain the
correct distance apart while carrying the box, and the feet must be
planted and not skid when they are on the ground.

Without adaptation, our motion capture data does not apply to
figures of different sizes or proportions than our actress: the result-
ing motions have the feet skating and the hands failing to reach the
object. Our method enables us to re-use this data on figures of vary-
ing proportions, as shown in Figure 1. The method computes an
adapted motion for each new character using the approach detailed
in Section 3. Because the technique looks at the entire motion, it
can make adjustments based on all the requirements. For example,
it adjusts the footplant positions so that the characters reach the box
using natural footstep sizes.

Our approach makes many sacrifices to achieve practicality. We
tell our solver little about the original motion or general motion
properties, and our choice of the mathematical problem is heavily
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Differently sized characters pick up an object. Their positions are determined by the position of the object. The left shows the original actress. Thecenter shows a figure

60% as large. The right shows a figure with extremely short legs and arms and an extremely long body. The yellow cones represent footplant positions.

influenced by what can be solved efficiently. We sometimes pay
for these sacrifices in the quality of the resulting motions. For ex-
ample, because our system did not consider gravity or posture we
get an unrealistically unbalanced result in the right frame of Figure
1. The payoff is that our approach provides a practical solution to
the retargetting problem and a framework in which to employ more
sophisticated constraints, like balance, in the future.

Few techniques specifically address the retargetting problem. Gen-
erally, users are forced to adapt motions using the same tools that
are used for motion creation: each frame or key must be manually
tweaked. Some commercial systems, such as Kinetix’s Character
Studio [11], are beginning to support retargetting. For example,
Character Studio can adjust keyframes to maintain footplants and
balance when a motion is re-applied to a new character.

Hodgins and Pollard [9] address a variant of the motion re-use
problem, adjusting parameters of a physical simulation to adapt a
controller for use with a new character or a character that is chang-
ing. In general, procedural- and simulation- based approaches to
animation offer representations independent of the character and
therefore may be used generate new motions for new characters.
Many of the procedural and simulation controllers are able to ad-
just to different characters easily. Such methods do not address
the retargetting problem: they can generate new motions for new
characters but not reuse existing motions. Re-generation of motion
risks losing qualities in the original. Our goal is to create methods
that adapt existing motions obtained from a variety of sources, in-
cluding motion capture and keyframing as well as simulation and
procedural generation.

Recently, there is an interest in tools that allow motion to be al-
tered in ways that are independent of how it was created. At their
core, these tools treat animated motions as time-varying signals and
apply signal processing techniques to these signals. Litwinowicz’s
Inkwell system [12] first demonstrated the utility of applying sig-
nal processing methods to animation data. Perlin [17] showed how
existing motions could be blended together, and how the addition
of noise to a motion could be used to transform it. Bruderlin and
Williams [2] showed that many signal processing techniques could
be applied to motion. Simultaneously, other authors showed some
of these methods in greater detail. Unuma et al. [21] showed how
band-pass filtering methods could adjust emotional content, and
Witkin and Popovíc [23] introduced motion-warping, a variant of
Bruderlin and Williams’ motion displacement mapping.

The spacetime constraint approach, introduced by Witkin and Kass
[22], poses the motion synthesis problem as a constrained optimiza-
tion: what is the best motion that meets a specified set of con-
straints? Cohen [3] extended this with a more complete system
that allowed the user to focus the solution process. Recently, Rose
et al. [19] applied the approach to the problem of generating tran-
sitions between motion segments, and Gleicher and Litwinowicz
[7] showed how the methods can be used for adjusting motions so
that the characters have new goals. Gleicher [6] extends this work
by simplifying the spacetime problem to achieve interactive perfor-
mance for interactive editing.

What differentiates spacetime from other constraint methods is
that it poses a single large problem over a duration of motion, rather
than on an individual frame. The original spacetime work, as well
as most that followed, used spacetime to derive physically valid mo-
tions: constraints enforced Newton’s laws, and the objective func-
tion minimized energy consumption. Previously, we [6] have sug-
gested removing the physical constraints to achieve better perfor-
mance and to apply the techniques to non-physical motions.

Although Ngo and Marks[15] re-used the term spacetime con-
straints to describe their work, their method belongs to a different
family of approaches that generates control systems that create mo-
tions, rather than generating the motions themselves. We prefer to
reserve the term for methods that compute
specific motions.

In this section, we motivate and describe our approach to retarget-
ting the motion between articulated figures with identical structure
but different segment lengths. We assume that the configuration of
an articulated figure is specified by a position for the root of the
hierarchy and the angles of its joints. We will denote these config-
urations as a vector that concatenates all of these parameters, often
denoted by or by to refer to its value at time A motion is
a vector-valued function that provides a configuration given a time.
While we often represent the initial motion as a dense array of sam-
ples or as a set of key values that are interpolated, our methods
are independent of how this motion is obtained. We refer to the
retargetted motion as and often use the concept of a motion
displacement which represents the difference between two motions,
e.g.

Because the target character has the same parameters as the orig-
inal, reusing the original motion data will cause the new character
to move its limbs as the original, but not necessarily lead to a de-
sirable result as shown in the example of Figure 2. Because the
length of the limbs are different, the parts of the new character do
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Albeit, one that is not emphasized in [2] but is a motivation for [23].

3.1 Inverse Kinematics

3.2 Motion Frequency Response

3.3 Motivating Spacetime

3.4 Spacetime in Practice

Left: Frames from a rotoscoped walking motion are shown. Right:

Applying this motion to a character that is 60% of the size of the original yields a

motion that skates along horizontally above the floor.

Adaptations are applied to the motion of Figure 2 to re-establish the con-

straints. The figure shows five frames before and after a heel strike, with the frame im-

mediately before and after the heel strike darkened. A constraint on the heel’s position

applies on the frames after the strike. Left: inverse kinematics is applied to individ-

ual frames, causing a noticeable discontinuity. Right: our approach re-establishes the

constraints while maintaining the frequency characteristics of the original motion.

not end up in the same place as in the original. Therefore, they
may fail to interact correctly with other objects in the world or may
move differently. In the example these problems appear as the feet
not touching the floor and “skating” horizontally when planted, as
seen in Figure 2. The naive retargetting fails to preserve important
properties of the initial motion.

The principal problem with the naively retargetted motion is that
it violates some of the constraints that we expect in a satisfactory
walking motion. For example, a walking motion requires charac-
ter’s feet to touch the floor and to not skid during footplants. Retar-
getting must re-establish these constraints.

Inverse kinematics (IK) is a common technique for positioning
end effectors of articulated figures in individual frames of an anima-
tion. An IK solver could be used to adjust the configuration of the
character to meet the constraints in each frame. Figure 3 shows the
result of such a retargetting approach, re-establishing the planted
foot positions. Because the IK solver considers each frame inde-
pendently, it makes different alterations to each frame. This lack
of consistency adds many undesirable artifacts to the motion. For
example, because frame does not know that a foot will be planted
in frame it cannot move towards this constraint, so that in
frame the foot will snap to its new location. Even within a
footplant, there is a lack of consistency: on each frame the solver
will use a different combination of straightening the leg and lower-
ing the pelvis. These artifacts appear as high frequency “jerkiness,”
shown for the example in Figure 3.

The problem with the IK solution is that we have added high fre-
quencies to a primarily smooth motion. Extending the leg from bent
to straight in of a second might be acceptable if this were a
karate master’s kick, but, this discontinuity is inappropriate in our
walking motion. Generally, the high frequencies of a motion (or the
lack thereof) are important, and therefore must not be disturbed. An
adaptation that removed the snap from a karate kick might be just
as inappropriate as adding the snap to our slow walking motion.

The importance of preserving the high-frequency content of a
motion (or the lack thereof) is an explanation for the success of
motion-displacement mapping [2, 23] (also called motion-warping)
techniques. The key spacing of the displacement curves restricts
their frequency content such that the high frequencies of the motion
are not disturbed.

Changes should not necessarily be made at the lowest possible
frequency. Consider retargetting a motion where a smaller character
must grab an object in the middle frame, but there are no other
constraints on the arm. To meet the constraint, the character must
extend his arm in this one frame. This alteration can be made at any
frequency: the single frame can be adjusted (e.g. the arm shoots out
for the of a second), or the adjustment can be applied to the
whole motion (e.g. the arm is extended while the character walks
up to the object to pick it up). While the extreme high-frequencies
of the former are undesirable, so are the extreme low frequencies of
the latter (the added signal has only a DC component).

A simple approach to avoiding the addition of high frequencies
is to low-pass filter the displacement signal generated by the inverse
kinematics process. Unfortunately this change does not necessarily
maintain the constraints that IK was used to achieve as shown in
Figure 4.

The failure of the per-frame approach to meet the needs of au-
tomatic retargetting suggests that we require a constraint-based
method that can take into consideration a span of the motion, e.g.
spacetime constraints. The more global view of such a method al-
lows it to consider relationships among multiple frames. Spacetime
constraint’s use of constrained optimization allows us to address
both parts of the retargetting problem: establishing the constraints
on the motion, while minimizing the changes our original motion.

The spacetime constraints approach poses the retargetting prob-
lem mathematically. We seek a motion that, subject to
satisfying a set of constraints on the motion and

(we divide the constraints as equality and inequal-
ity constraints for notational convenience), minimizes an objective
function For retargetting, the objective compares the mo-
tion with the original motion, . By encoding the retargetting
problem in this form, we can use numerical methods to solve the
constrained optimization problem for our desired result.

Because the spacetime approach looks at the entire motion, it
can make choices based on other parts of the motion. For example,
it can move footplants based on where the character needs to end
up. Such look-ahead and -behind is not possible in approaches that
consider each frame independently.

Ideally, the constrained optimization problem would fully encode
our desires mathematically: there would be a single solution that
was the desired motion. Realizing this ideal requires a rich set
of constraints and objectives. For example, we could find con-
straints that enforce the laws of physics, biomechanical limitations

3
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Ten frames of a ladder-climbing motion are shown. In the last 5 frames (shown darker), the hand is constrained to be attached to the handhold. (A) shows the original

motion capture data. (B) shows the motion adapted to a smaller character by applying Inverse kinematics (IK) to each frame, causing a noticeable snap.(C) shows low-pass filtering

of the results of the IK process. This removes the snaps at the expense of violating the constraints. (D) shows our approach applied to the example.

due to strength, and proper ballet form. We could define objective
functions that measure visual properties such as “grace,” “Charlie–
Chaplin–ness,” and “like–Joe–did–it–yesterday–ness.” We would
aim to maintain the constraints that were satisfied in the original
motion while minimizing the amount of change in the important
properties.

There are central difficulties in realizing the spacetime ideal for
retargetting: first, some properties are difficult to encode mathemat-
ically as constraints or objectives either because the forms of the
equations are complex or because they elude a mathematical en-
coding; second, we may not know all the properties required, such
as the mass distribution of an imaginary character or the physical
laws of an imaginary world; third, we must decide which properties
are important in a given setting; fourth, many of the properties and
constraints may be specific to a small set of examples, and therefore
not worth the effort to define.

Even if we encoded the desired animation completely in a con-
strained optimization, we still need to find the solution to these
problems. Generally, richer sets of constraints and objective func-
tions are likely to lead to more difficult problems to solve. The
challenges of solution lead us to take a pragmatic view in defining
spacetime problems. An extreme case of this pragmatism is our
work on spacetime editing [6] where many sacrifices were made in
order to achieve interactive performance.

Our approach to spacetime for retargetting is motivated by the
pragmatic issues of defining, specifying, and solving constraints
and objectives. We use constraints to define specific features of the
motion that must be maintained and use the objective function to
limit certain generally unacceptable types of changes. Besides the
constraints and objectives, we have two more pragmatic tools that
we can use to help define a spacetime problem with the desired so-
lution: the representation used for the motion and the starting point
for the constrained optimization. We will discuss these four in more
detail in the following sections.

Constraints are the primary tool used to identify features of the orig-
inal motion that must be present in the retargetted result. In general,
our constraints will either come from restrictions on the character
(e.g. the elbows do not bend backwards), the environment (noth-
ing should be below the floor), or the motion (the character must
pick up the box in frame 50). Specification of these constraints
typically involves only a small amount of work in comparison with

the tasks of creating the characters and motions, especially with
semi-automatic detection (for example finding footplants), graphi-
cal specification, and generic constraints (e.g. we use the same joint
limits for most humanoid characters). Constraints are generally de-
fined once for each motion, and this one set of constraints is used
for any retargettings (or editing, using the techniques of [6]) done
with the motion. Even with these tools, augmenting our characters
and motions with constraints does require some additional work.
However, we feel this incremental effort is worthwhile because of
the potential for reuse afforded by augmentation.

Mathematically, constraints are differentiable functions of the
parameters of the character. Although it is not required by the
methods, our implementation always places constraints on config-
urations at particular instants of time. Variational constraints, that
is constraints that are to hold over a range of the motion curves,
are approximated by sampling. Therefore, constraints are generally
written as where is and is a constant.
Some constraints consider two instants in time, and therefore have
the form

In our system, the user never needs to see an equation: the sys-
tem includes a variety of pre-defined constraints that can be applied
to a motion through a graphical user interface or via a scripting lan-
guage. We have emphasized finding (and using) constraints that we
believe are applicable over a wide range of motions. Some of these
include:

1. a parameter’s value is in a range (useful for joint limits);

2. a point on the character (such as an end-effector) is in a spe-
cific location (useful for footplants or grabbing an object);

3. a point on the character is in a certain region (for example,
above the floor);

4. a point on the character is in the same place at two different
times (useful to prevent skidding), although this position is
unspecified so that it can be adjusted;

5. a point on the character is following the path of another point;

6. two points are a specified distance apart (useful for when a
character is carrying an object of a fixed size);

7. the vector between two points has a specified orientation.

4
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3.6 Objective Functions

3.7 Representation

3.8 Starting Points

This was problematic only for the example of Figure 1 where the foot-
steps have different frequency content than the grabbing motion. The arti-
facts of this problem are subtle.

The architecture of our system is designed to minimize the effort
required to add new types of constraints, although this does require
programming and must be done at compile-time.

In developing a new type of constraint, it is important to make
restrictions in ways that are invariant of other aspects of the motion.
For example, if one defines a footplant by the positions of the heel
and toe strikes, the constraint cannot be satisfied if the foot size
is changed. Similarly, we often do not care where a footplant is,
providing that is is on the floor and that the foot does not skate
while planted. For the examples in this paper, we will distinguish
between footplant constraints that maintain the position on the floor
and those that only restrict height and skating. When the solver
is permitted to move footplants, the resulting motion may cover a
different distance, e.g. if the footsteps of a walk are made smaller,
the character will travel a shorter distance since the system does not
generate new footsteps.

Since there are typically many possible motions that satisfy the con-
straints, we use an objective function to select the best choice. For
retargetting, a simple objective is “minimize the amount of notice-
able change.” This does not necessarily lead to a simple, generic
manifestation: consider a ballet motion where a very slight bend
of the knee might be a very noticeable deviation from the other-
wise perfect form of the original with its straight leg. However,
our strategy is to use constraints to prevent specific changes that
are unwanted, and use the objective function to avoid undesirable
frequency content and unnecessary large alterations, as discussed
in Section 3.2. We avoid designing objective functions tuned to
specific high-level goals.

The most basic comparative objective function would be to com-
pare the values of the parameters, matching pose in parameter
space. For example,

(1)

minimizes the magnitude of signal differences in the motions over
time. This objective is similar to performing per-frame inverse
kinematics as it provides no coupling between constraints at differ-
ent times. The minimum magnitude solution effectively maximizes
high frequency content. Intuitively, it prefers not to “waste” change
preparing to meet goals at other times. Other frequency criteria
can be implemented with an objective function that minimizes the
output of a filter that selects undesirable frequencies.

In practice, we find that pragmatic concerns outweigh most other
choices in the design of an objective function. For the experiments
described in this paper, we use the objective function to minimize
the magnitude of the changes, approximating Equation 1. Meth-
ods described in the next section restrict high frequency content of
the changes. This tactic affords the use of more efficient solving
techniques (as we will describe in Section 6).

Another issue in a spacetime approach is how to represent the mo-
tions so that the optimization problems can be solved effectively.
Liu et al. [13] first made use of a carefully selected representation
by using wavelets to speed computations. Gleicher and Litwinow-
icz [7] introduced the use of motion-displacement maps as a repre-
sentation for spacetime problems where the objective function re-
lated two motions. This approach defines

and uses the solver to find . The approach has a number of
advantages. First, it decouples the solution from the form of the
initial motion, providing generality. Secondly, it simplifies placing
constraints and objectives on the changes. Third, it allows a rep-
resentation for to be chosen that includes constraints on the
changes so they do not need to be expressed as explicit functions.

To constrain the displacement signal not to include high frequen-
cies, we use a representation for it that cannot represent the high
frequencies: specifically, cubic B-splines [14] with control point
spacing determined by the desired frequency limits. The control
points of the displacement curve need not be uniformly spaced: we
can place controls closer together for portions of the motion where
higher frequencies are acceptable. Similarly, we do not need to use
the same key spacing for all parameters, for example, if a chef is
chopping, we might allow high frequencies in the motion of his
arm (to accommodate the abrupt motions of the knife), and only
permit smoother changes to the rest of his body.

The spacing of B-spline control points allows us to determine the
frequency response of our adaptations, although we do not have the
fine control afforded by carefully crafted filters placed in an objec-
tive function. We must determine how to place the control points
to achieve the desired effect. For our experiments, we have limited
our choices to using the uniformly spaced control points on all pa-
rameters of a motion. For the examples in this paper, we further
restrict ourselves to control points spaced every 2, 4 or 8 frames. We
have developed a simple heuristic method for determining which of
these to apply: we compute a bandpass decomposition of the orig-
inal motion (as described in [2]) and choose the key spacing that
coincides with the lowest, that is highest-frequency, level of the
pyramid whose energy contribution exceeds a threshold. While this
simple heuristic has resulted in the correct recommendation for al-
most all of our examples, the speed of our solver makes it practical
to produce all three adaptations and to select the one that gives the
most appealing result.

With the constraints imposed by the restricted representation,
there may not be a solution to the constraints. In such cases, there
is a fitting problem: find the frequency-limited signal that comes
closest to satisfying the constraints (where the constraints are the
explicit equations from Section 3.5). In such a scheme, the nature
of the mathematical problem is flipped: our constraint is the fre-
quency response, and our optimization objective attempts to mini-
mize the residual of the constraints. We use a least-squares metric
for the residual which enables simpler solution methods, as we will
discuss in Section 6.

Cohen [3] pointed out the importance of having good starting points
for spacetime problems. Seitz and Dyer [20] observed the utility
of a previously captured motion as a starting point for speeding
their numerical solutions. With our retargetting approach, the ini-
tial estimate of the solution is even more critical because our simple
objective function explicitly defines the result in terms of the initial
estimate. To improve the quality of our results, we must apply some
simple transformations to the original motion so it better estimates
the desired result. The process described in this section is summa-
rized in Figure 5.

Simply re-using the initial motion is possible because our figures
share the same parameters. For articulated figures, most of the pa-
rameters are angles and are independent of the scaling of the limbs:
the angular value for a straight leg is the same, no matter how long
the thigh and calf are. However, the positional offset of the root of
the hierarchy is not scale-independent. The translation is a distance
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4 The Motion Retargetting Method

5 Motion for Morphing

6 Solving the Non-Linear Optimization

A: An abstracted aerial view of a character walking up to, picking up, and carrying away an object. B: When the motion is scaled about the origin (the lower left corner

of the frame), the character does not come close to the object. C: Because the position of the object is the only constraint that specifies a position for the character, the entire motion

can be translated.

(from the origin), and therefore should be scaled as the limbs were.
Such scalings are difficult to create with the additive displacement
maps, so we perform the scaling as a separate step. If the character
is scaled uniformly and does not interact with the world (or if the
world is scaled similarly), the scaling is sufficient for retargetting.
In cases where the character is scaled non-uniformly, we make an
estimate of the overall scaling to apply to the positions.

Multiplying the positional parameters scales the motion around
an arbitrary point, the center of the coordinate system. Typically,
there is a better center for the scaling. For example, we might scale
the heights around the floor, which may not be zero. We recenter
the scaling of the positional parameters by adding a translational
component to them.

To find the translation, we note that a constant positional shift of
a motion is not noticeable, except in conjunction with constraints
that relate the character to the world. Therefore, if we could re-
establish the constraints by a simple shift of the motion, this would
be ideal. We find the shift of the motion that comes closest to re-
establishing the constraints by computing the average of the dis-
placements. By displacement, we refer to the vector between the
point on the character and a position that it is attached to. Con-
straints only have displacements for axes that they restrict with a
fixed position, for example, a footplant constraint may only specify
the vertical direction if it only places non-skid restrictions on the
other axes.

Since the center of scaling might not be constant over the whole
motion, we compute a translational signal to add to the positions.
We perform the displacement averaging process on each frame in-
dividually. Adding the per-frame constraint displacements to the
motion may add undesirable high frequencies. Therefore, we inter-
polate the offsets to frames that do not have any displacements and
apply low-pass filtering to remove high frequencies.

The utility of interpolation can be seen in the example of Section
1.1 where a figure walks up to, picks up, and carries away an object.
In this example, the only constraint on the figure’s position on the
floor is provided by the constraint that the hands touch the object
on the middle frame of the motion. When the motion is scaled, the
entire motion is moved far away from the goal point. Interpolating
the displacement of this one constraint shifts the entire motion back
to the object, as shown in Figure 5. The desirability of constant
shifts is unique to position; for angles it can have the undesirable
behavior described in Section 3.2.

To summarize, our approach to retargetting motion to another artic-
ulated figure with different limb lengths consists of the following
steps:

1. Begin with an initial motion with identified constraints.

2. Find an initial estimate of the solution by scaling the
translational parameters of the motion, and then adding a
translation to define the center of scaling. This translation
is computed by finding the constraint displacements of the

scaled motion for the target character, interpolating these val-
ues, and smoothing.

3. Choose a representation for the motion-displacement curve
based on the frequency decomposition of the original motion.

4. Solve the non-linear constraint problem for a displacement
that when added to the result of step 2 provides a motion that
satisfies the constraints.

5. optional) If the result of step 4 does not satisfy the constraints
sufficiently, solve using the result of the step ( )
as the initial motion, and a denser set of control points for the
new displacement.

The same methods that are used to adapt a character to new seg-
ment lengths can be used when the target lengths are not constant,
i.e. when the target character is morphing. A simple example of
a motion generated for morphing is shown in Figure 6. A more
complex example is shown in Figure 10.

The difference between motion for morphing and standard re-
targetting is that the segment lengths of the target character is not
constant over the motion. Therefore, it is better to use a differ-
ent scaling amount on each frame in Step 2. As with the constant
case, we estimate the scale in the event that the limb scalings are
non-uniform. To apply this time-varying scale to the character’s
position, we scale the changes in translation between frames by the
scale of the character in the frame, and add these changes together
to find the characters positions.

The key computation of the retargetting approach is the solution of
the spacetime constraint problem. In this section, we briefly discuss
our solver implementation. We emphasize that our approach casts
retargetting as a standard mathematical problem, constrained opti-
mization, for which there is a rich literature of solution methods.
For a more detailed discussion of solution methods, we suggest a
text on the subject such as Fletcher [4] or Gill et al. [5].

For simplicity of our discussion, we consider only equality con-
straints as we implement inequality constraints using an active set
method [4] that creates inequality constraints by switching sets of
equality constraints on and off. The constrained optimization prob-
lem we solve is generically:

(2)

The unknown in our spacetime problem is the motion-
displacement curve, or more precisely, the values for the B-Spline
control points of the displacement curve. The vector of parame-
ters is the concatenation of these points. We must express all of
the constraints and objectives in terms of these variables, and so-
lution methods require us to compute the values and derivatives of
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The retargetting process is used to adapt the motion of Figure 2 as the character morphs to 60% of its original size. Left: the footplant positions are fixed to be the same

as the original motion. Right: the solver repositions the footplants.

these functions. We approximate the objective of Equation 1 as a
weighted sum of squares of the controls

(3)

where is a diagonal matrix. We usually compute the entries in
to account for differing sensitivities in the variables as described

in [6] and [7]. The importance of the choice of is reduced by the
large number of constraints, both explicit in equations and implicit
in the representation, in the retargetting problems.

Since our constraints are always defined on instants of time, the
sampling of the continuous variational problem is implicit in their
definition. While the expressions for individual constraints may
grow complicated, we note that they are composed of smaller pieces
that are more manageable. For example, a constraint specifying
the height of a characters foot would combine the kinematic func-
tion that takes the character’s parameters and returns the foot height

composed with the function that computed the value of the
parameters at the instant of time in question ,
which in turn must sample the B-splines Through
the use of automatic differentiation [8, 10], we can construct these
pieces independently.

Most previous spacetime work has used constrained optimiza-
tion solvers that are variants of sequential quadratic programming
(SQP). This standard method is described in texts such as [4], as
well as spacetime papers such as [22] and [3]. In [6], we provided
a variant of SQP that is more efficient for cases where the objective
function has the special form of Equation 3. Our system includes
solvers that operate both ways.

An alternative solution approach focuses on minimizing the con-
straint residual (because of the
implicit constraints of the representation, it is unreasonable to ex-
pect that there will be an exact solution to the explicit, equational
constraints). Because the constraints may not fully determine the
solution, for example on a walking motion the legs may be over de-
termined while there are no constraints on the arms, we add addi-
tional constraints that specify that each variable should have a zero
value. These constraints receive a smaller weighting. Such prob-
lems are called damped least-squares problems [5, 16], and can be
solved by performing an unconstrained minimization on the resid-
ual

(4)

where is a small constant, or a diagonal matrix of weights.
Our non-linear least-squares solver iteratively improves on an

estimate of the solution. At each step, we construct a linear approx-
imation of the constraint problem using Taylor expansion around
the current estimate for ,

which gives us a linearized version of the constraint equations,

This linear least-squares problem can be solved in a variety of ways.
We solve for using a damped pseudo-inverse

(5)

Because Equation 5 is a positive definite linear system, we can solve
it efficiently using either a Cholesky decomposition [18] or conju-
gate gradient solver[1]. We use the latter exclusively as it allows us
to exploit the sparsity in the matrix to achieve good performance.

In both our constrained-optimization and least-squares solvers
we use a line search [18] to determine how to use best the results
of the linear subproblem. That is, once we compute we deter-
mine a value of such that best satisfies the non-linear
constraints.

In most cases, we find the least-squares solver to be faster than
either of the SQP style solvers while providing equivalent results.
For the rest of the paper, we will refer to the solvers as SQP (for
the solver similar to that described in [3]), LMULT (for our imple-
mentation of the method in [6]), and least squares (for the pseudo-
inverse based solver). The running times of the iterative methods
used in our solvers depend on many factors, including number of
variables, number of constraints, sparsity, and desired stopping tol-
erance. Small changes, especially in tolerance, can cause dramatic
changes in solver times.

We have used the retargetting approach of this paper on a number
of examples. While there is nothing specific to motion capture data
in our approach, our examples are exclusively done on performance
data because of its availability. Other than the rotoscoped 2D walk-
ing motion of Figure 2, the motions in this paper were captured
with an optical motion capture system at a commercial studio. In
all examples, the 120 Hz motion capture data was downsampled to
30Hz. Marker positions were converted to articulated figure para-
meters using our experimental automated software.

Because of the differences in processing technologies, we have
some diversity in the parameters for the figures in different motions.
In all cases, we use Euler angle representations for the joints. We
do not have positional information for the hands. Therefore, we
treat the end of the forearm as the “hand.” Similarly, some motion
data is missing information for the feet, in which case the ankles
are used as the end effectors. For many of the motions, we did
not compute the head and neck parameters as they do not affect
the computations. Joints generally have three degrees of freedom,
except for the elbows, knees, and ankles which have one or two
parameters.

7



Figure 7:

Figure 8:

7.1 Walking

7.2 Climbing a Ladder
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A walk adapted to a figure 60% of the size of the original actor. The smaller character is forced to use the original footplant positions. When the displacement keys are

too distant, overfitting causes the wide swings shown in the alternate (yellow) foot traces. Proper key spacing (blue) results in a motion similar to the original (purple).

Forcing a character with short legs to walk in the footsteps of a

longer-legged character leads to an unnatural motion.

When given, timing information refers to our prototype system
running on an Apple Power Macintosh 8500/180 computer with a
180Mhz PowerPC 604e processor and enough physical memory to
complete the retargetting without paging. Timings are reported for
the task of solving the non-linear optimization as the other parts of
our retargetting approach take negligible amounts of computation.

The initial 2D walking motion of Figure 2 was created by rotoscop-
ing marker points and using a capture process like that described in
Section 8 to compute the parameters of the articulated figure. Our
character has 14 degrees of freedom (2 for position and 12 joint
angles), and the motion is 15Hz. On the 82 frame motion, foot-
plant constraints on the heels and toes give 146 scalar constraints,
to which we add 328 inequality constraints to keep the feet above
the floor in each frame, and 1968 joint limit constraints.

Our 3D walking example is similar. The character has 34 degrees
of freedom, and does not have hands or feet. Because the “feet” in
the motion are actually ankles, they were not planted in the original
motion and skated. We therefore used our solver to establish these
constraints initially. Including joint limits and feet-above-floor con-
straints there are a total of 4193 scalar equations on the 112 frame
motion, although during solving there are generally only 354 active
constraints.

We have adapted the walking motion to a number of differently
proportioned figures. An example is shown in Figure 7. With fixed
footplant positions to match the tall figure, the shorter legged fig-
ures must take unnaturally long strides, seen in Figure 8. As pre-
dicted by the pyramid level heuristic of Section 3.7, a key spacing
of 4 provides a better result to spacings of 8 or 2. With a key spac-
ing of 8 there is considerable over-fitting that can be clearly seen in
the yellow foot path traces of Figure 7. A key spacing of 2 provides
a motion that is reasonable, however, the character seems to slow
down with each step. While this is different from the original mo-
tion, the character is taking very large steps, so it seems natural for
it to regain its balance each time. Our system was able to generate
all 3 motions in under 10 seconds of solution time, so it is practical
to create all 3 motions and choose the one we find visually most
desirable.

The ladder example, shown in Figure 4, gives constraints on both
hands and feet. The figure has 35 degrees of freedom, no hands,
and no neck or head. We use fixed position constraints for the foot-
plants and handplants on the ladder. The least-squares solver takes
approximately 9 seconds for keys spaced every other frame, and
7 seconds every fourth frame. The LMULT solver takes 6 and 4
seconds, although its answers do not satisfy the constraints as accu-
rately. With the key spacing of 4, the LMULT solution has some
constraints being violated by over half an inch, while the least-
squares solution satisfies all constraints to within a quarter of an
inch.

The fixed position of the hand and footplants on the ladder lead
to slightly unnatural motions: the small figure must reach over its
head to grasp the handholds and sometimes stands on its tip-toes to
reach. We have implemented some less restrictive constraints: foot-
plants that the solver can move along the ladder step (so the width
of the steps is not an issue) and hand-holds that can be positioned
along the rail. These constraints are relatively special purpose: they
probably will be useful for ladder climbing motions. The motion
obtained from using these constraints more closely resembles the
original motion, although it is still unnatural as the ladder is very

8



7.3 Swing Dancing

Figure 9:

Figure 11:

8 Differing Characters

9 Discussion
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Two frames are shown of a swing dance motion adapted to a smaller

female character. Left: original motion. Center: only female motion adapted. Right:

both characters adapted.

A walking motion is adapted from a human to a soda can by first

adapting it to a human with the proportions of a can, then using this motion to drive

the motion of the can (shown transparently surrounding the humanoid).

large in comparison to the resized character.

When there are two characters in a scene, we may wish to adapt
both together, even if only one changes size. For example, consider
the swing dance motion in Figure 9. In this motion, the hands of
the two characters must remain connected, in addition to the foot-
plant constraints. If we change the size of the female figure without
changing the motion of the male figure, the smaller figure gets lifted
by the hand-hold when spinning. If we adjust both motions simul-
taneously, the male’s part is adapted, and the female’s spin is less
noticeably forced. In Figure 10, the female shrinks in size while
spinning and the male part responds accordingly.

On the 276 frame motion, we use 1200 equality constraints for
the female character’s footplants (which are free to be repositioned
by the solver) and the connection between the characters hands. We
only allow the upper body of the male character to be altered. If we
adapt just the female motion, there are 33 parameters. Adapting
both motions gives 44 parameters per key. The least-squares solver
took approximately 14 seconds, while the LMULT solver ran for
slightly over a minute, but with a solution that better satisfies the
constraints (all to within an eighth of an inch).

When the characters share structure there is a direct mapping be-
tween the parameters of one to the other. The more general retar-
getting problem is harder. When we apply a human motion to a
figure with a different structure, there are creative choices in how
the motion applies. What will the character use for knees? How do
we choose a motion for the parts of the character that the human
does not have? These creative choices correspond to mathematical
problems: there may be different types of degrees of freedom, and
there may be different numbers of degrees of freedom.

Our initial attempts at “automatic anthropomorphism” allow the
user to make the creative choices, while having the system do the
more tedious aspects. The user identifies correspondences between
externally visible features of the characters, not the degrees of free-
dom that determine their positions. For example, we identify points
on the new character that will serve as its feet when it walks, even
if the foot is not at the end of a two-segment leg like the human.
These correspondences pose a constraint problem, almost identical
to the problem of motion capture processing: we must compute a
motion that puts the character’s features in the right location in each
frame.

We can use the same spacetime constraints techniques that we
have used for retargetting for the anthropomorphic case. Our con-
straints connect each feature on the new character to its correspond-
ing feature on the original in each frame. If there are fewer degrees
of freedom on the character, the motions will not be able to match
exactly, and we find the “best matching motion” in a least squares
sense. We have not yet developed a method for handling extra de-
grees of freedom.

For the spatial correspondences to apply, the characters must be
approximately the same size. We use the retargetting methods of
this paper to adapt the initial human motion to a new figure that has
proportions more similar to the target character. We then use this
motion as the source of constraints to compute the target motion.
Figure 11 shows an example in which we adapt a human motion
to a rigid can (a cylinder with the same proportions as a soda can).
We correspond three points on the can to the human: the ends of
the legs are connected to points on the bottom of the can, and the
center of the hips is attached to the center of the can. Even with the
can’s extremely limited degrees of freedom (it is a rigid body), it
can convey a sense of the original human motion. In our tests, we
have made the can walk, skip, and run.

In this paper we presented an approach to retargetting motions from
one character to another by posing the problem of computing an
adaptation as a constrained optimization. To realize the approach
in a practical manner, we used geometric constraints and a simple
objective function. This pragmatic strategy dodges difficulties in
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using spacetime constraints. We compute retargettings of complex
motions despite: not having developed mathematical encodings of
concepts such as “grace” and “Charlie–Chaplin–ness” in motion;
not having presented too many choices of constraints and objectives
to users; and not having solved optimization problems for which we
do not have efficient solution methods.

While our pragmatism pays off in the practicality of the method,
we sometimes pay a cost in the quality of the resulting motions.
Some of the problems we see are artifacts of the specific simple ob-
jective we have chosen and our reliance on simple frequency lim-
its on the adaptations. For instance, in the example of Figure 1
the balance between reaching, bending, and positioning is chosen
by artifacts of the representation of the character’s configuration
and different spatial frequencies in reaching and walking make se-
lection of a single frequency limit for the adaptation problematic.
Other problems occur because we have no guarantees on the many
properties we do not explicitly model in our constraints and ob-
jective. For instance, our lack of physics constraints can lead to
unrealistic situations like Figure 8 and the right image of Figure 1.
Richer sets of constraints and objective functions, combined with
improved solvers for the resulting numerical problems and tech-
niques to avoid the burden of specification, would cause our ap-
proach to provide better results for a wider range of motions.
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