
3D Computer Animation Workshop

Siggraph'98 Course #34 Notes

Course Presenter

Michael O'Rourke
Pratt Institute

Administrative Assistant

Helen Koo, Pratt Institute

Animation Assistants

Abbey Klotz Pratt Institute
Helen Koo, Pratt Institute

Yukito Kurita, Pratt Institute
Khalida Lockheed, Pratt Institute

Gevel Marrero, Pratt Institute
William Sayer, Pratt Institute
Lina Yamaguchi, Pratt Institute

Eunmi Yang, Pratt Institute

Special Note to all Course participants:

Please bring your copy of these Course Notes with you to
the Workshop; you will need to follow the Exercise portions
of these Notes as you work at the machines. The Course
Notes will also be available on line at each workstation.

Acknowledgements

I wish to thank the Siggraph organization and in particular,
Harry Smith, Courses Chair, and Garry Paxinos, Creative
Applications Lab Chair, for their help in organizing this Workshop. I
also want to express my gratitude to all the people at Softimage for
generously contributing their support to the Workshop. Finally, I
want to thank all of my colleagues at Pratt Institute for their support,
especially Rick Barry, Chair of the CGIM department, Helen Koo for
her help in the preparation of these Course Notes and other
Workshop materials, and all of my students and former students who
helped as Animation Assistants to this Workshop.

Contents

Author Biography 1

Introduction 2

Part 1 3
Lecture 1

Coordinate Systems 5
Geometric Primitives 5
Transformations 6
Keyframing 7
Wireframe Preview 8
Parameter Curve Editing 9

Exercise 1 11

Part 2 21
Lecture 2

The Camera 23
Lighting 24
Surface Characteristics/Shaders 24
Basic Texture Mapping 24
Rendering & Shading Algorithms 26
Final Frame Considerations 27
Flipbooks 27

Exercise 2 29

Part 3 39
Lecture 3

Polygonal Modeling 41
Patch Modeling 41
Common Modeling Techniques 42
Surface Editing 42
Keyshape Animation 43
Object Path Animation 43
Camera Path Animation 44
Bump and Transparency Mapping 44

Exercise 3 47

Part 4 59
Lecture 4

Hierarchies 61
Inverse Kinematics 62
Rotational Limits 64
Rigid Surfaces 63
Flexible Surfaces 64
Constraints 65

Exercise 4 67

Bibliography 79

Author Biography

Michael O'Rourke is an artist and animator and Associate
Professor in the Department of Computer Graphics and Interactive
Media at Pratt Institute, in Brooklyn, NY. His professional training in
the arts includes an M.F.A. degree from the University of
Pennsylvania. Following his studies, he was a Senior Research Staff
Artist at the New York Institute of Technology Computer Graphics
Laboratory, where he worked on personal animations and artwork
as well as commercial animations, contributing to a Clio-award
winning animation and a first-prize-winner at the Los Angeles
Animation Celebration.

At Pratt, he is the senior faculty member and lead instructor
in the animation program of Pratt's Department of Computer
Graphics and Interactive Media. He is also the author of Principles of
Three-Dimensional Computer Animation (W.W. Norton, 1998, Revised
Edition). This book has also been printed in a Japanese language
edition by Toppan Co., Tokyo, Japan. In addition to teaching, he
actively pursues his own artwork, concentrating most recently on
several series of prints and drawings. He has exhibited his work
internationally, and was one of the featured artists in the Siggraph
‘97 Ongoings exhibition. He has also done several series of
computer-aided sculpture and graphic works for the artist Frank
Stella.

In addition to his experience as an artist, he has broad
experience as an educator. His studies in this area were at Harvard
University, where he earned an Ed.M. degree. In addition to his
teaching at Pratt, he has taught Kindergarten, English as a foreign
language in West Africa, and conversational French.

Contact Information:

Michael O'Rourke
Pratt Institute
Dept. of Computer Graphics & Interactive Media
200 Willoughby Ave.
Brooklyn, NY 11205

morourke@pratt.edu
http://pratt.edu/~morourke

ANIMATION WORKSHOP 1

Introduction

This course is a beginning level, hands-on workshop whose
objective is to introduce participants to the principles and practice
of high-end 3D computer animation. This is accomplished through a
combination of lecture presentations and hands-on exercises using
one of today's major high-end 3D software packages. Beginning with
simple modeling, rendering and keyframing, participants progress
through more complex techniques, including texture mapping, path
animation, hierarchical animation, inverse kinematics and envelope
surfaces. Participants learn both the underlying principles that are
shared by all 3D computer animation software packages, as well as
how these principles are implemented on one of today's important
software packages.

Given the brief time available for the course, there is no
expectation that participants will become proficient in the
techniques presented. Instead, the hope is that they will come to
understand the core principles presented and begin to see the
possibilities of their implementation through the tutorial exercises.
These exercises will remain on the workstations of the Creative
Applications Laboratory throughout the week of the conference.
Those with an interest in improving their understanding and skill
beyond what is possible in the single day of this course can practice
as much as they want during the week.

The course is divided into four parts, with each part
consisting of a lecture presentation on the principles of 3D
animation, a demonstration of how these principles are implemented
on the software package used by the Workshop, and an extended
exercise in which participants work with this software to develop a
short animation utilizing those principles.

The written Notes for this course, printed here, follow the
structure of the course itself – that is, four parts, with each part
consisting of a brief lecture and an extended exercise. The
exercises are in the form of command-by-command tutorials for
Softimage v3.7, which is the software package used in the Workshop.

The text for the lecture portion of these Notes was adapted
from the author's book, Principles of Three-Dimensional Computer
Animation (W.W. Norton, 1998, Revised Edition. 288 pages, 332
illustrations. ISBN 0-393-73024-7. $55.00 USA). The illustrations for
these Notes were taken directly from the same book. Please note
that the illustrations retain the original numbering as they appear in
that book, and are therefore not sequential as they appear here in
these Notes. Readers interested in a more detailed explanation of
the principles presented here, as well as many other principles of
three-dimensional computer animation, may find it useful to refer to
the book, Principles of Three-Dimensional Computer Animation,
mentioned above, from which all this material is derived.

All the material in these Notes is copyrighted and is
subject to all the protections and restrictions applicable
under law.

2 ANIMATION WORKSHOP

PART 1

Lecture 1

Coordinate Systems

Geometric Primitives

Transformations

Keyframing

Wireframe Preview

Parameter Curve Editing

L E C T U R E 1 3

4 P A R T 1

L E C T U R E 1 5

Figure 1-29. A three-dimensional
Cartesian coordinate system.

X

Z

Y

Coordinate Systems

The most common way of locating points in three-
dimensional space is a system of three axes placed
perpendicularly to each other. The axes are referred to as the
x axis, the y axis, and the z axis, as illustrated in Figure 1-29.
Each axis has steps marked off along it at uniform distances
allowing a point to be located in space by referring to the
distances along each axis that one must move to get to that
point. A movement in one direction is considered a positive
movement, and a movement in the opposite direction is
considered a negative movement. The numbers representing
the distances are called the coordinates of the point. For
example, a point might be located at (3, 2, -5). A special point in
a coordinate system is the (0, 0, 0) point, which is thought of as
the origin of the system. The entire system is called a
coordinate system.

The type of coordinate system we have just described is
a Cartesian coordinate system, named after the French
mathematician, René Descartes, who invented it. In three-
dimensional computer graphics, all points and objects are
located by specifying their coordinates in such a coordinate
system.

Geometric Primitives
The simplest and most common kind of objects in

computer graphics are objects such as the cube, cone, sphere,
and cylinder. (Figure 1-36) Because they are very basic, they
are called primitives, and because they have a strong geometric
character, they are also called the geometric primitives. In
addition to the primitives just mentioned, another common
primitive is the torus, which is a donut-shaped object. In
creating a specific geometric primitive, the user is usually asked
to specify its location, its size, and sometimes other
information. These are called the parameters of the object.

sphere cube cylinder

cone truncated
cone

torus

plane circle

Figure 1-36. Some of the common
geometric primitives.

6 P A R T 1

Transformations
In positioning and manipulating an object in computer

graphic space, there are three basic operations, known as the
object’s transformations. The first of these is the move
transformation, also sometimes called a translation. (Figure 1-
39) This consists in moving, or translating, an object some
distance along each of the three axes either positively or
negatively.

The second basic transformation is rotation. Like
moves, rotations are thought of as taking place with respect to
each of the three axes of the coordinate system, as if the axis
were a skewer running through the center of the object.
(Figure 1-40) Depending on which axis serves as the “skewer”,
we speak of an x rotation, a y rotation, or a z rotation. Rotating
the object in one direction is a positive rotation and rotating in

Figure 1-39. A simple translation
of a cube.

X

Y

Z

Figure 1-40. Rotations of an
object are described as taking
place around the axes of the
coordinate system.

(a) (b) (c) (d)

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Figure 1-42. Different scaling operations
applied to a cube. Scales may be either
nonproportional or proportional.

the opposite direction is a negative rotation. An object can be
tilted into any position in three-dimensional space by some
combination of x rotation, y rotation and z rotation.

The third basic transformation is the scale
transformation, which makes objects bigger or smaller by some
factor. (Figure 1-42) As with the other transformations, scales

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

Z

Y

X

L E C T U R E 1 7

are with respect to each of the three axes. Making an object
bigger or smaller in one direction is an x scale, in another
direction a y scale, and in the third direction a z scale. Scaling
an object equally in all three axes makes an object uniformly
bigger or smaller, without changing its proportions. This is
called a uniform scale, or a proportional scale. For
example, a uniform scale of two will make an object twice as
big. If the scaling is not equal in all three axes, the proportions
of the object change and we have a non-uniform or non-
proportional scale.

Each of the three transformations can be effected in
one of two ways. If we specify the final result of the
transformation, we have an absolute transformation. For
example, if I say that I want to rotate an object (0,45,0) (that is,
0 degrees around the x axis, 45 degrees around the y axis, and
0 degrees around the z axis) and I mean that I want the object
to end up in that rotation, then I am making an absolute
rotation.

Another possibility, however, is to make a relative
transformation. A relative transformation specifies the
amount that I want to change the object. For example, if I
make a relative rotation of (0,45,0), I will rotate the object
these additional amounts around each of the three axes. If the
object was already at a (0,45,0) rotation and I do a relative
rotation of another (0,45,0), it will end up at a rotation of
(0,90,0).

The final result of all three transformations in all three
axes can be represented as nine numbers, which are often
printed as a 3 x 3 grid, or matrix, call the transformation
matrix. This is illustrated in Figure 1-51. At any given moment,
the contents of the transformation matrix describes the
combined translation, rotation, and scale of an object.

Keyframing
Both video and film consist of a sequence of still images,

or frames. When this sequence of frames is played at the
correct rate, we see moving imagery. Animation is the process
of creating these frames individually.

The most basic way of animating an object in three
dimensional computer graphics is to define the three
transformations - move, rotation and scale - of the object at
one moment in time and to save that information. This is called
a keyframe, since it is an important, or key, frame. You then
define new transformations for the object at another moment
in time and save that information. The whole process just
described is called keyframing.

Once an animator has defined several keyframes, the

translate (-2,1,0)

rotate (90,6,111)

scale (1,-1,1)

-2

90

1

1 0

6 111

-1 1

tx

rx

sx

ty

ry

sy

tz

rz

sz

Figure 1-51. The nine transformation
values can be organized into a
transformation matrix.

(a)

(b)

8 P A R T 1

computer can then calculate the transformation values of the
object for the in-between frames. This is called in-
betweening. For example, suppose you position a cube at
frame 1 so that it is in the upper right of the screen, slightly
tilted and at its normal scale, as in Figure 3-2. You save this as
keyframe 1. Then, at frame 60, you reposition the cube so that
it has moved down and to the left, has rotated so that it is no
longer tilted, and has scaled non-proportionally. This becomes
your keyframe 60. With these two keyframes, represented as
the top and bottom images in our illustration, the computer
can now calculate the in-between frames from 2 through frame
59 by calculating the in-between values of each transformation
at each frame. For example, if the translation values at frame 1
were (6,4,0) and are (0,0,0) at frame 60, then the values at in-
between frame 30 might be (3,2,0) – that is, halfway between
the values of frame 1 and those of frame 60. Similar
calculations would be done by the computer to determine the
in-between values for rotation and scale. The new in-between
values at each frame are called interpolated values.

Wireframe Preview

Once the animator has created an animation by defining
keyframes, he or she can view it on the computer by requesting
an animation playback or preview. Here, the computer screen
will display the animation by showing, in quick succession, each
of the in-between frames. Often, this preview uses a simplified
wireframe display of the object, showing only the edges of the
object’s surfaces, but not the full-color, shaded surfaces
themselves. This is equivalent to what traditional animators call
a pencil test.

The rate at which the animation plays back on the
screen can be controlled by the animator. In the U.S., video
uses 30 frames per second of animation and film uses 24
frames per second. A ten second video animation, for example,
will consist of 300 frames (30 x 10 = 300). By specifying either
30 frames per second or 24 frames per second, the animator
can control how quickly the animation will play on the screen.
If the animator doesn’t specify the playback rate, the computer
will usually play back the animation as quickly or slowly as it
can, depending on the complexity of the animation scene. This
is usually not desirable, since it doesn’t allow you to see the
movement of your animation at its true speed. A ten second
animation may play back too slowly, taking 15 or 16 seconds, or
too quickly, taking perhaps only 6 seconds.

f1

f60

f15

f30

f45

Figure 3-2. A sequence of computer-
generated frames. Frames 1 and 60,
outlined in bold, are keyframes explicitly
defined by the animator.The other, in-
between frames were automatically
calculated by the computer.

L E C T U R E 1 9

Parameter Curve Editing
A very powerful technique for creating and modifying

computer animation makes use of a graphic representation of
each transformation value. The y scale of an object, for
example, might change from 1.0 at frame 1 to 3.0 at frame 100
and then back to 1.0 at frame 200. A graph of this change
might look like what we see in Figure 3-13. Each of an object’s
nine transformation values, or parameters, can be graphed in
a similar way.

Changing, or editing, the graph of a particular
transformation's values automatically changes the animation
itself. For example, if you edit the curve of the cone in Figure
3-14 by moving the 3.0 at frame 100 straight down to a value
of 2.0, as in Figure 3-13, you will have changed the animation so
that the cone now gets a little bit less tall in the same amount
of time. Similarly, if you move that same point towards the left
from frame 100 to frame 50, you will have speeded up the
growth of the cone in the beginning of the animation, since it
now takes only 50 frames (less than 2 seconds) to grow to full
height, instead of the 100 frames (more than 3 seconds) it
originally took. At the same time, you will have slowed down

f200f100f1

SY

TIME
f1 f100 f200

1.0

3.0

f1 f200f100

SY

TIME

f1 f100 f200

1.0

3.0

2.0

Figure 3-13.The graph of the animation
of an object directly corresponds to the
actual animation of the object.

Figure 3-14. By pulling a keyframe control
point down along the vertical axis, you
change the value of the parameter—in this
case, the height of the cone.

10 P A R T 1

the decrease in the cone's height in the latter part of the
animation, since that now takes 150 frames instead of the
original 100 frames.

It is also possible to change the shape of a parameter
curve without changing the actual keyframe values. For
example, without changing the keyframe values, we can instruct
the computer to calculate different types of interpolation for
the in-between frames. Figure 3-6 illustrates several ways of
doing this. One type of interpolation is linear interpolation
and is represented by a straight line. The other types of
interpolations illustrated here – Cardinal, B-spline and Bézier –
are spline interpolations, all of which produce smooth,
gradually changing curves. Changing the shape of a curve by
changing the interpolation type changes the rate at which the
object changes. A curve that is rising or falling very steeply
indicates a fast rate of change. A curve that is nearly flat
indicates that the object is changing only very slowly.

Let us assume, for example, that the graphs in Figure 3-6
represent changes in the Y scale of the same cone we saw
earlier. If we look at the interpolation produced by the Bezier
curve, we see that, in the beginning of the animation, the cone is
scaling up very rapidly, because the curve is rising very steeply.
Around the second keyframe, at the top of the curve, however,
the cone's scale is changing very, very slowly, because the curve
almost flattens out at that point. Later, at the end of the
animation, the scaling changes are once again quite rapid, as
indicated by the steeply dropping curve.

Linear Cardinal B-Spline Bézier

Figure 3-6. For the same set of
keyframe values, different types of
interpolation yield different
animations.

E X E R C I S E 1 11

Exercise 1

In this exercise, you will model a few simple primitives, transform
them with translation, rotation and scale, save keyframes to make
an animation, playback the animation as a wireframe display, and
fine-tune the animation by editing its function curves.

12 P A R T 1

E X E R C I S E 1 13

1. Make sure you are in the right database

• Click on >Get >DB Manager (upper-left menu bar). At
the very top of the window that opens, you should see:
Chapter in Database <Course34_Practice>: If you do, this is
correct, so just Exit this window. If you do not, you need
to double-click on the .. icon. When you see
Course34_Practice, single-click on it to select it. Then click
on Default DB (right menus) to make it the database you
will use for these exercises.

2. Build some models

Create a few primitives

• First, use the >Get >Primitive >Grid command (upper-
left menu bar) to model a ground plane. You can use the
default settings for the grid.

• Next use the same >Get >Primitive command (upper-left
menu bar) to model three or four primitives. For example,
use >Get >Primitive >Sphere, >Get >Primitive >Cone, etc.

Transform your models

• After you’ve made three or four primitives, select one at a
time (but not the grid) by using >Select >Toggle Mode
(lower-right menu bar) and clicking on the primitive you
want to select. (You can also just hold down the Space Bar
and click on the primitive, as a shortcut way to select it.)

• Once you’ve selected a primitive, give it some initial
configuration by using the >Trans, >Rot and >Scale
commands (middle-right menu bar). To work in only one
axis, click on just that transformation button – for
example, >Trans X. To work in all three three axes, click
in the border to the right of the transformation buttons.

• Position your primitives so that they are spread out and
floating above the grid.

Undoing a mistake

• If you make a mistake, you can use >History >Undo
(lower-left menu bar) to undo the last command.

14 P A R T 1

• If you need to delete an object, select it, then use >Delete
>Selection (upper-left menu bar).

Save your file

• Save your file with >Save >Scene (upper-left menu bar).
Use Exercise1 as the Prefix and Prims as the Scene Name.

3. Animate the objects with keyframing

Define the length of your animation

• Go to the Motion module of SoftImage by clicking on the
Motion button (in the menu bar across the top-right of
your screen).

• First, we want to change the ending frame number to
300, so that we will have a 300 frame animation – that
is, a ten second animation. At the far lower right, next to

the E, change the ending frame number from 100 to 300.

Keyframe the first primitive

• First, make sure the frame counter (the little triangle in the
slider bar at the bottom of the screen) is set all the way to
the left at frame 1.

• Now, select one of the primitives. Adjust its location, if
you like, by using the >Trans buttons.This will be its
starting location.

• When the object is translated as you like, save its current
translation as a keyframe at frame 1 by using >Save Key
>Object >Explicit Translation >All. (Don’t use >Keypath
Translation or >Transformations, please. They create
path animation, which we’ll deal with in Exercise 3.)

• Now, use the right mouse button to slide the frame
counter triangle over to frame 150.

• With the same primitive still selected, use the >Trans
button again to translate it to a new position. When it’s
where you want it, use >Save Key >Object >Explicit
Translation >All again to save this translation information
at keyframe 150.

E X E R C I S E 1 15

• Now use the right mouse button again to slide over to
frame 300. Use >Trans again to move your object to a
new location. Then use >Save Key >Object >Explicit
Translation >All again to save this translation keyframe.

• Click on the frame counter triangle now and slide it back
and forth. You should see your object translating around
on the screen as you animated it.

• Save your file again with >Save >Scene. Use the same
Prefix and Scene Name you used before. Softimage will
save a new file, adding a new version number to it. This
new file will not overwrite your old file. (You should save
your scene frequently as you work.)

Keyframe the second primitive

• Now select another primitive. Use the mouse to slide back
to frame 1.

• On this primitive, we’ll animate some rotations. At frame
1, use >Rot to rotate your object into its initial orientation.
Now use >Save Key >Object >Rotation >All to save this
rotation information as keyframe 1.

• Next, use the right mouse button to slide the frame counter
over to another frame. Use >Rot again to rotate your
object with the mouse into a new orientation. If you
prefer, you can click on the tiny triangle in the upper left
of each Rotation button and type in numerical information
for your rotation transformation. When your object is
rotated as you like, again use >Save Key >Object
>Rotation >All to save the rotation information for this
object at this keyframe.

• Use the right mouse button to slide to another frame
number, and repeat this process: rotate your object, then
save its rotation with >Save Key. (If you click the >Save
Key button with the middle mouse button instead of the
left mouse button, Softimage will remember what your last
>Save Key operation was and do that for you, without

you having to go through all the sub-buttons.)

Keyframe a third primitive

• Repeat this entire procedure for another primitive, this

16 P A R T 1

time using the scale transformation. Select the object. Go
to frame 1. Scale the object with >Scale. Save this
keyframe with >Save Key >Object >Scaling >All.

• Move to a new frame number. Re-scale the object. Save
the new keyframe. Create as many keyframes as you
want to for this object.

• Save a new version of your scene, with the same filename
– that is, Exercise1-Prims – with >Save >Scene.

4. Play back the animation

• To play back the animation segment you just made, click
on >Play Control (lower-right menu bar) and set Frame
Step = 0. This will force the playback to synchronize to
the default 30 frames-per-second rate which is standard for
video. Click OK to exit this window.

• Now use the Play button (the blackened triangle pointing
to the right) in the extreme lower right of your screen to
play the piece of animation you just made.

• To see the animation full-screen, click on the little rectangles
icon in the upper right of the Perspective window. To return
to all four windows, click again on that same icon.

5. Changing a keyframe

• You can overwrite a keyframe if you don’t like your
animation. First, select the object. Then move to the frame
number you want to overwrite. You can do this either by
dragging the frame counter in the slider bar, or by clicking
on the current frame number (lower right of the screen)
and typing in a new frame number.

• If you don’t remember the frame number of your
keyframes, turn on the k button next to the playback Play
triangle. Now click on the Play triangle: the animation
will advance to the next keyframe for the selected object.

• With the correct object and frame number selected, re-
transform your object, then use >Save Key >Object with
the appropriate transformation to overwrite the old
keyframe information.

E X E R C I S E 1 17

• You can keyframe more than one transformation for a given
object. For example, instead of having each of your
primitives either translate or rotate or scale, you could have
one of them do all three transformations simultaneously. To
do this, simply advance to the desired frame number,
transform the object, and then use >SaveKey >Object with
the appropriate transformation.

6. Deleting Animation

• If the animation of one of your objects gets very confused,
you can throw away the animation for that object, but still
keep the object. First, select the object. Then click on
>FcrvReset >Object >All (lower-left menu bar). You can
confirm that the animation is gone by dragging the frame
counter triangle. The object should not move at all.

• If your animation gets so confused that you want to start
completely over, first use >Save >Scene to make a backup
of your current animation (just in case). Then use >Delete
>All (upper left). This will delete everything on the screen.

• Once you’ve deleted everything, you can use >Get >Scene
(upper-left menu bar) to retrieve one of the earlier versions
of your animation. (This is why it’s important to save your
scene frequently as you work.)

• After you make any changes, save a new version of your
scene, using the same filename.

7. Function curve editing

Open the Function Curve window

• You can fine-tune your animation by editing the function
curves. Select the object that you translated, and then use
>FcrvSelect >Object >All to look at the curves for that
object. This will open the “Function Curve” window.

• You will see one curve for each of the animated
transformations on that object – in this case,Translation X,
Translation Y, and Translation Z. The name of each curve
is listed in the box to the right. For example, cube1.etrnx
means “explicit translation in X for the object ‘cube1’”.

18 P A R T 1

Moving around in the Function Curve window

• You can zoom in or out of the Function Curve window by
holding down the z key and then simultaneously holding
down either the middle or right mouse buttons. The
middle mouse button zooms in; the right mouse button
zooms out.

• In order to slide around in the Function Curve window,
hold down the z key and simultaneously hold the left mouse
button down, then drag the mouse cursor.

Editing a keyframe

• Select one of the curves to work on by clicking either on
the curve itself or on its name (for example, cube1.etrnx) in
the upper right corner of the screen.

• Keyframes are displayed as a cluster of three small blue
dots. The dot in the middle is the keyframe itself. The two
dots on either side of it are the tangent “handles” for
that keyframe.

• With one of the curves selected, click on EDITKEY at the
top of the Function Curve window. Click with the left
mouse button on a blue keyframe dot. (Remember, the
keyframe is the blue dot in the center.) Still holding down
the left mouse button, drag the keyframe dot around.
Dragging left-right changes the time of the keyframe;
dragging up-down changes its value.

• In order to insert a new keyframe onto the selected curve,
click on the curve with the middle mouse button.

• To delete a keyframe, click on it with the right mouse
button.

• You can also use the SETKEY function from the top of the
window to type in numerical information for a particular
keyframe. Click on setkey, then click on the keyframe.
This will open up a window where you can type in
numerical information.

Changing the Interpolation of a Curve

• To change the type of interpolation at a keyframe, select
INTERP from the top of the Function Curve window.

E X E R C I S E 1 19

Look at the information bar at the bottom of the window
to see what each mouse button does in this mode. Click
on a keyframe with the different mouse buttons to get a
different type of interpolation at that keyframe.

• You can also change the shape of the curve by selecting
EDITKEY, and then clicking with the left mouse button on
one of a keyframe’s tangent handles. Hold the mouse
button down and drag one of the handle-dots. As the
tangent handle moves, the shape of the curve changes.

• Any changes you make to the function curves immediately
affect the animation. You can see your new animation either
by dragging the frame counter slider or by clicking the
playback triangle to play the animation.

Editing the Curves for a different object

• If you want to edit the curves for a different object, select
that object as you normally do with >Select. Now click on
>FcrvSelect >Object >All again. Your Function Curve
window will now display the curves for this new object.

Finishing up

• To close the Function Curve window, click with the middle
mouse button on the word Fcurve in the upper-left of the
Function Curve window.

• Make sure you save the most recent version of your scene
with >Save >Scene. We will be re-using the scene you
created here later in the next exercise, so it’s important for
you to save the animation you produced in this exercise.

20 P A R T 1

L E C T U R E 2 21

PART 2

Lecture 2

The Camera

Lighting

Surface Characteristics/Shaders

Basic Texture Mapping

Rendering & Shading Algorithms

Final Frame Considerations

Flipbooks

22 P A R T 2

L E C T U R E 2 23

Figure 2-16. Increasing the field-of-
view angle of the pyramid of vision
produces a zoom-in.

35°

60°

20°

(a)

(b)

(c)

Figure 2-10. A pan and a tumble
involve rotations of the camera
around different pivot points.

(a)

(b)

The Camera

In addition to defining the motion of an animation
sequence, it is also necessary to define a variety of factors that
will determine the final, full-colored look, or rendering, of
each frame. The first of these factors is the viewer’s point of
view, or what is called in computer graphics, the virtual
camera. As in photography or film, the camera in computer
graphics consists of several components. The first of these is
the camera location, or where the viewer is standing. Like
any point or object in three dimensional computer graphics,
this is specified as a triplet of x, y, z coordinates. The second
component of a virtual camera is where the viewer is looking.
This is often called the camera target. Like the camera
location, it is most often represented as an x, y, z triplet,
although sometimes it is represented as a rotation of the
camera. The third major component of a computer graphic
camera is called the field of view and corresponds to the lens
of an actual physical camera. In computer graphics, the field of
view is measured as an angle emanating from the camera
location. A wider angle in the field of view corresponds to a
wide-angle lens and produces more extreme perspective
distortion in the image. A narrower field of view produces little
or no perspective distortion. (Figure 2-16)

Animating the camera is similar to animating an object.
You set the camera location, target and field of view, and save a
keyframe for that camera at a given moment in time. You next
re-define the camera’s components, and save a new keyframe.
The computer then automatically calculates the interpolated
values of the camera’s components, producing camera
animation for your sequence. As with any object, you can then
playback your animation, re-define some keyframes or edit the
parameter curves which represent the camera’s animation.

There are several standard camera moves in computer
graphics. To move the camera in and out along the depth axis is
a dolly. To move it left or right or up or down is a track.
Rotating the camera involves either a pan, if the point around
which you rotate is the camera itself (that is, the camera
location), or a tumble if the point about which you rotate is
the camera target. (Figure 2-10) A change in the camera’s field
of view is a zoom, as we saw a moment ago in Figure 2-16.
Notice that a zoom is not the same as a dolly, even though
both will make objects appear larger. When you zoom, the
camera does not move in or out – only the field of view
changes. When you dolly, you actually move in or out towards
or away from the target.

24 P A R T 2

Lighting

In setting up a scene it’s also necessary to define lights.
A common kind of light in computer graphics is ambient light,
or ambiance. Ambient light has no specific location but is,
rather, the overall amount of light present everywhere in the
atmosphere. Another basic type of light is a point light, which
is similar to a bare lightbulb hanging from a wire. A point light
does have a specific x,y,z location and emits light equally in all
directions. A spot light, like a point light, has an x, y, z location,
but emits light only in a specific direction, which is usually
controlled by rotating the spot light to aim it at a target. A spot
light also has a cone angle which controls the width of the cone
of light emitted by the spot. (Figure 2-24) All of these lights
also typically have an intensity control to govern how bright
the light is and a set of color controls for the color of the light.
Light color is usually defined in terms of the standard red, green
and blue (RGB) color components which are so common in
computer graphics. Any of the parameters of a light – its
location, its color, its intensity, etc. – can be animated, whether
by keyframing it, or by editing its parameter curve, or with any
of the other techniques used for animating objects in computer
graphics.

Surface Characteristics/Shaders

In setting up an animation scene, we also have to think
about the specific appearance of each surface in the scene. For
example, what color should a given object be? Should it be
smooth or bumpy? Is it shiny? Is it transparent or opaque?
And so on. The set of all these characteristics of a surface is
usually known collectively as the shader of an object since it is
used to produce a full-color, shaded rendering of the object. It
is also sometimes known as the material of the object. The
process of defining a shader involves setting parameters to
define the color of the surface, the bumpiness or roughness of
the surface, the transparency or opacity of the surface and the
shininess of the surface. Shininess usually consists of several
components: how bright the highlights are, how large the
highlights are and what color the highlights are. (Figure 2-36)

Basic Texture Mapping

Most objects in the real world do not consist of a
single, uniform color. Rather, the surfaces of most objects are

Figure 2-24. Anything outside
the cone of the spot light is not
illuminated.

(a)

(b)

Figure 2-36. Highlight size can
be used to fine-tune the surface
definition of a shiny object.

(a)

(b)

L E C T U R E 2 25

multicolored in various ways. When defining a shader of an
object, this multicolored character of the surface can be
achieved through a very powerful computer graphic technique
called texture mapping. In the simplest form of this
technique, a two dimensional picture, or texture image, is
applied to a surface. The specific way in which the texture
image applies to the surface is referred to as the mapping of the
texture, hence the term texture mapping. One simple way in
which an image can be mapped to a surface is to project it onto
the surface, as if the image were emitted from a slide projector.
This is known as planar projection mapping. (Figure 2-55)
Another mapping approach is to stretch the image over the
surface of the object, as if the image were a sheet of very
flexible latex. (Figure 2-58) With this technique, the surface is
thought of as having a U direction and a V direction, and the
technique is called UV mapping.

Producing a texture image that gives you the result you
want on your surface can sometimes be difficult. A technique
which helps solve this problem is called 3D painting. In this
technique, you are able to use the mouse to "paint" directly on
the surface of your three-dimensional computer model. As you
do so, the software automatically creates the two-dimensional
texture image which corresponds to what you see on your
three-dimensional surface.

Figure 2-55. Planar projection
mapping.

(a)

(b)

(c)

(d)
Figure 2-58. Parameterized texture
mapping.

(a)

(b)

(c)

(d)

26 P A R T 2

Rendering & Shading Algorithms

Even though two scenes might be identical in all the
components we’ve discussed so far – motion, camera, lighting,
shading, etc. – the final rendered frames of the two sequences
might look quite different from each other. This is because the
individual computer programs used to create the rendering
might take different approaches to calculating the rendered
image. A specific and methodical approach to calculating a
rendered image is called a rendering algorithm.

One common rendering algorithm is raycasting. In
this algorithm, the program calculates the trajectory of a single
imaginary beam of light as it passes from the eye through each
pixel of the screen and into the computer graphic scene.
Wherever this beam hits a surface, the color of the surface at
that location is calculated and that color becomes the color of
the pixel. (Figure 2-45)

A more refined rendering algorithm is raytracing. In
this algorithm, each beam of light which is sent through a pixel
is traced as it bounces among the scene's reflective surfaces and
passes through any transparent surfaces. (Figure 2-53)

Figure 2-45. The ray casting algorithm
casts a single ray through each pixel. If
the ray strikes a surface, the color of
the surface is calculated and assigned
to the pixel.

In addition to its rendering algorithms, each program
also uses a set of shading algorithms. A shading algorithm is
a particular technique for calculating the color of a surface once
the rendering algorithm has determined how much light is
hitting the surface. The most common shading algorithms –
Lambert, Gouraud, Phong, and Blinn shading –are named after
their inventors. Each has certain characteristics and certain
advantages and disadvantages. In setting up a rendering, you

Figure 2-53. The ray-tracing algorithm
traces a light ray back as it bounces off
objects in the scene.

L E C T U R E 2 27

must select both the rendering algorithm and the shading
algorithms you wish to use.

Final Frame Considerations

There remain a number of other factors to be
considered before rendering your final frames. One of these is
the proportions of the image - that is, its width relative to its
height. This is called the aspect ratio of the picture.
Rendering for film may involve selecting one of several standard
film aspect ratios. The standard aspect ratio for video in the
U.S. is 4/3.

Another final frame consideration is the actual number
of pixels in both the horizontal and vertical dimensions. This is
the resolution of the image. A typical image resolution for
video in the US is 640 x 480 pixels. (Notice that this adheres
to the 4/3 aspect ratio.)

Another final frame consideration is how carefully you
want the rendering program to do calculations to smooth out
the rough edges, or jaggies, of surfaces. This process is known
as anti-aliasing. (Figure 2-97)

Flipbooks

Once all the frames of a sequence have been rendered
as full-color images, they can be played back as a moving
animation on the screen. This is usually known as a flipbook.
As with the wireframe preview which we described in Lecture
1, it is important to specify the frame rate for the flipbook
playback so that it will play at the intended speed. Figure 2-97. Aliasing, or the

“jaggies,” can be overcome by
activating anti-aliasing
calculations in the final
rendering.

(a)

(b)

28 P A R T 2

E X E R C I S E 2 29

Exercise 2

In this exercise, you will define a camera and some lighting for the
scene you produced in Exercise1. You will then define materials
and textures for your models. Finally, you will render frames for
your animation and view your frames as a flipbook.

30 P A R T 2

E X E R C I S E 2 31

1. Setting up your camera

Define the camera

• Click on Matter in the top menu bar to go to the Matter
module of Softimage. Retrieve the last version of your
Exercise1-Prims file with >Get >Scene.

• Click on >Camera >Picture Format (top-right menu bar)
and next to Video select the NTSC video format for your
animation frames.

• Now use >Camera >Orbit, >Camera >Dolly, and
>Camera >Tracking (upper right) to position your camera
in a way that looks good for your animation. Pay attention
to the message bar (bottom of the screen) which tells you
what each mouse button does for each camera move. (Do
not attempt to animate the camera yet; we will do that in
Exercise 3.)

• Play back your animation with this camera to make sure it
looks ok.

View your scene in Shaded mode

• In the bar above the Perspective window, click on the word
SHADE and click again on Shade in the pull-down menu.
This changes the display of that window to a real-time
shaded image.

• In the far upper-right of the Perspective window , click on
the rectangles icon to make the Perspective window full-
screen. Try playing back your animation again. Click on the
rectangles icon again to go back to the normal, four-window
display.

• Use >Save >Scene to save your scene. Use Exercise2 as the
Prefix and Render as the Scene Name.

2. Setting up your lights

Define a point light

• Click on >Light >Define (upper right) to create a light.
Under Type, make sure Point is selected. Click on OK.

32 P A R T 2

This will create a default point light at 0,0,0. The light is
represented by a lightbulb icon.

• Back in the normal Softimage window, use >Trans to move
this point light wherever you like. You will see the effects of
your lighting changes in the shaded rendering of the
Perspective window.

• Now try editing the parameters of the light. With the point
light still selected, click on >Light >Edit (upper right).
Inside the light editing window, make some changes. For
example, you can make the light brighter or darker or
change its color by adjusting the RGB sliders (upper right).
Click OK to accept the changes.

Define a spotlight

• Use >Light >Define again, and this time change the Type
to Spot. Adjust Cone Angle to about 60 degrees (middle
right). Under Shadows Type (lower left), select Soft, so
that the spotlight will create soft shadows. Click OK to
accept all this.

• Use >Trans to move the spotlight where you want it.

Preview the rendering

• Notice that the rendering you see in the Perspective
window shows no shadows, even though you just turned
them on. This is because the SHADE rendering mode we
turned on for this window is very crude – fast, but crude.

• In order to see a better quality rendering, use >Preview
>All (lower left).This will render a high-quality rendering of
your frame.

• Click the middle mouse button to remove this rendering.

• Move your frame counter to another frame of your
animation and use >Preview >All again to see what a
rendering of that frame looks like. If necessary, adjust either
your point or your spot light, whether by moving them with
>Trans or by changing their parameters with >Light >Edit.

• Save a new version of your scene under the same name,
Exercise2-Render, with >Save >Scene.

E X E R C I S E 2 33

3. Defining Surface materials

Define a shiny surface for one object

• Select one of your primtives and click on >Material
(middle left).

• Inside the Material Editor window, make sure the Shading
Model (top left) is Phong .

• Adjust Specular Decay to change the size of the highlight.

• To define the surface’s color, you work with the color
triangle (left middle). Diffuse is already selected. Use the
RGB sliders to change the Diffuse color of the object.

• When you have something you like, select the Ambient
box of the triangle by clicking it with your left mouse
button. We will begin by copying the Diffuse color to the
Ambient box. With the Ambient box selected, click on the
Diffuse box with your right mouse button. This gives
Ambient the same color as Diffuse.

• In order to make Ambient a darker shade of the color you
just gave it, click on RBG (just below Ambient) to change it
to HLS (Hue, Luminance, Saturation). Drag the L slider to
the left.

• If you want to change the color of the highlight, click on the
Specular box at the top of the triangle and change its
color.

• You can preview a rendering of this material on your object
without exiting the Material Editor window. Click on
Preview in the lower left of the Material Editor window.
Use the middle mouse button to remove this image.

• When you have a material you like, click on OK to apply it
to your selected object.

Define a reflective surface for another object

• Select one of your objects which is nicely curved (for
example, a sphere). Click >Material as before. Follow the
same procedure to define the color of the object.

34 P A R T 2

• Now, drag the Reflectivity slider (middle right) to the
right. The pattern you suddenly see on the demo-sphere is
just to show you how much you’ve increased Reflectivity;
it’s not really part of your material.

• Still inside the Material Editor window, click on Preview to
see a rendering of this material on your object. Notice that
you see the correct color, but you see no reflections. This is
because the Preview function inside the Material Editor
renders only the selected object. Since no other objects are
rendered, there is nothing to reflect on the sphere. Click
the middle mouse button to remove the Preview picture.

• Back in the Material Editor window, click OK to apply this
material to your object.

• Back in the normal Softimage window, click >Preview >All.
Since this renders all the objects in the scene, you should
now see some reflections in the object you just made
reflective.

Define surface materials for the other objects

• Follow a similar procedure for each of your other floating
primtives. (Skip the grid for now.) Select the object and use
>Material to define that object’s material. Try giving one of
your objects some transparency by sliding the
Transparency slider bar up. Also, try changing the
Shading Model to Lambert to remove all highlights.

Put a texture on the grid

• Select the grid which is under the floating primitives. With
the grid selected, use >Texture >2D Global (middle left).

• At the top of the window that opens and just to the left of
Picture Filename, click on Select to select a texture
picture. When the window opens up, double-click on the ..
icon to go up one directory level. Do this again to go up
another directory level.

• Double-click on the SI_material_lib folder to go into it.
Inside that, double-click on the PICTURES folder, and
inside that double-click on theTILINGS folder. Double-
click on the check file to select that as your texture picture.

E X E R C I S E 2 35

• Back in the Texture window, you should see a black and
white checkerboard picture in the center of your window.
Just below that, under Mapping Method, click on XY
Coordinates. In the pull down menu that opens up, select
XZ Coordinates, to project the checkerboard picture
down from above onto the grid.

• Click Preview (bottom left) to see what this looks like.
Remove the Preview rendering by clicking the middle mouse
button.

• Back in the 2D Texture window, change Repeats (middle
left) to 4 by 4. Click Preview again to see how this has
changed the mapping of the checkerboard picture. Click
OK to apply this texture mapping to your grid.

Fine-tune your materials

• Back in the Softimage window, use >Preview >All to see a
rendering of your entire scene. Slide the frame counter
triangle to another frame and render again. Do this for
several frames throughout the animation. If necessary,
adjust your materials and/or your lights.

• Save a new version of your scene under the same name
Exercise2-Render, with >Save >Scene.

4. Render your frames

• Make sure you are still in the Matter module of Softimage.
Click on >Render (lower left).

• Inside the Render Setup window, change the Resolution
to 320x240, so the frames of our test will be small and fast.
(You can reset it to the full-size 640x480 later, once you
have gotten successful tests.)

• Under Sequence, set Start = 1, End = 300, and Step = 5.
This means you will be rendering frames 1 through 300, but
only rendering every 5th frame (again, just to make our
tests go faster.)

• Look at the bottom of the Render Setup window, just above
the word default. It should say, Rendering in Database
<Course34_Practice>: If it does not, click the DB List
button just to the left and select Course34_Practice.

36 P A R T 2

• Change the Filename from default to exercise2.

• Click on Render Sequence to start the rendering. The
screen will clear and you will see each frame rendered, one
by one. This will take several minutes (which is why we are
using a low resolution and only doing every fifth frame for
now.)

• If there is something wrong and you need to stop the
rendering, click on all three mouse buttons simultaneously.

5. Play back a flipbook

• Click on Tools in the top menu bar to go to the Tools
module.

• Inside that module, select >Flipbook. (middle left).

• Softimage may not properly remember which database you
rendered your pictures into. If you do not see a list of the
pictures you rendered, double-click on the .. icon to go up
one directory level. Keep doing this until you find your
database. Double-click on it, then double-click on the sub-
directory called RENDER_PICTURES.

• Once you have found your pictures, click on any one of the
frames you just rendered. (The frame number of the file
doesn’t matter.)

• Inside the window that opens up, next to Do frames, set
your Start, End and Step numbers to 1, 300, 5, just as they
were in your Render Setup window. In the Number of
Frames per Second box, type in 6. (Because 6 x 5 = 30,
which is our video playback rate.) Click OK.

• It will take a few seconds for the frames to be read into
memory, and then a window will open with your first frame
in it. Use the normal animation playback buttons to
playback the flipbook animation in this window. For
example, in the far lower right, click on L to make the
animation loop (that is, repeat indefinitely) and then the
right-facing triangle to play it.

• Click the middle mouse button to pause the flipbook
playback. You can also drag the frame counter triangle to
move through the flipbook animation that way.

E X E R C I S E 2 37

• Click all three mouse buttons simultaneously to remove the
flipbook window.

38 P A R T 2

L E C T U R E 3 39

PART 3

Lecture 3

Polygonal Modeling

Patch Modeling

Common Modeling Techniques

Surface Editing

Keyshape Animation

Object Path Animation

Camera Path Animation

Bump and Transparency Mapping

40 P A R T 3

L E C T U R E 3 41

Almost all three dimensional computer animation
programs create surface models. Objects modeled in this way
are not solid and have nothing inside (unless we specifically
model other objects inside them.) Rather, objects modeled in
this way are hollow shells composed of exterior surfaces only.
In developing surface models for an animation scene, there
are two broad approaches.

Polygonal Modeling

The first approach restricts itself to using only flat
surfaces. Typically, an object modeled this way would consist of
a great many flat surfaces connected together. Each flat surface
is called a polygon, a word which means “many-sided” in
Greek. Each polygon is defined by the points, also called
vertices (singular, vertex), at its corners, and by the edges
which connect these vertices.

For those objects which are in fact composed only of
flat surfaces – objects such as walls, boxes, tables – polygonal
modeling is ideal. For objects with curved surfaces, however,
polygonal modeling must use a great many polygons to
approximate the curvature of a surface. This is called
polygonal approximation. The more polygons you use and
the smaller the polygons are, the more accurately they will
approximate the curved surface. (Figure 1-5)

Patch Modeling

Rather than merely approximating the curvature of
surfaces, it is also possible to create surfaces which are truly,
mathematically curved. Such surfaces are called patches and are
derived from curves called splines. (Figure 1-23) The
mathematics of spline curves is such that they are truly curved
and not merely approximations of curves. Consequently, the
patches derived from splines are also truly curved.

A big advantage of patches over polygons is that, since
patches are truly curved, you can move in as close as you want
to a curved patch and never see any straight edges. On a
polygon model, by contrast, the individual approximating
polygons which make up the surface will become visible if you
move in close enough.

On the other hand, a patch model has a specific
disadvantage. A patch surface is generated from two spline
curves, with each spline being defined by a fixed number of

Figure 1-5. A cylinder modeled
with three different resolutions of
polygonal approximation.

Figure 1-23. The control points of the
generating curves create a network of
control points, which in turn define the
patch.

42 P A R T 3

control points. This means that the resulting patch must
consist of a grid, or mesh, of control points - a certain number
of control points in one direction and a certain number of
control points in the other direction. The structure of this
control point mesh can be very limiting. Irregularly shaped
objects -– such as a human hand with all its five fingers, or a
human face with eyes, nostrils and mouth – are extremely
difficult to model with patches. Polygonal models, by contrast,
are not required to adhere to a regular mesh structure.
Polygons can be attached to each other edge-to-edge in any
order we choose. This gives them a great advantage over
patches in the modeling of certain irregular shapes.

Common Modeling Techniques

There are a number of very powerful modeling
techniques that are commonly found in most three dimensional
computer graphic systems. One is extrusion, in which a
contour is pushed, or extruded, along a path. As the contour
moves down the path, it traces a surface. The path of an
extrusion may be either straight or curved. If the contour is
either rotated or scaled as it moves down the path, it is called a
sweep, or swept surface. (Figure 1-58)

Another common technique is to rotate a contour
around a circular path. This produces a surface of revolution.
Another technique involves drawing a series of contours and
then connecting them together, forming a "lofted" surface. Yet
another technique involves drawing several curves to represent
the edges of a surface, and then connecting them. The surface
that results from this technique is called a boundary surface.

Surface Editing

In addition to the modeling techniques just described,
there are many other modeling techniques available in three

Figure 1-58. Swept surfaces generated by
transforming curves as they are extruded
through space.

(a) (b)

L E C T U R E 3 43

dimensional software packages, with each package offering its
own particular set of techniques and its own particular
strengths. One general approach that all techniques share is
based on the fact that any surface model in computer graphics,
whether a polygon model or a patch model, uses points to
define it surfaces. In a polygon model, these points are the
vertices at the corner of each polygon. In a patch model, the
points which define the surface are called control points. By
moving either the individual vertices of a polygon model or the
control points of a patch model, you can change the shape of
the surface (Figure 1-24). All the different modeling techniques
that a 3D software package offers are, at root, different ways of
moving either vertices or control points.

Keyshape Animation

A common technique for animating shape changes of a
model is to define and save different shapes for it at different
frames. These shapes are called keyshapes. Once they are
defined at each keyframe, the software creates interpolated
shapes at the in-between frames (Figure 3-59).

An important characteristic of the keyshape technique is
that each keyshape must have the exact same number of points
defining its surface. This is because the interpolation that is
calculated is an interpolation of the x, y, z coordinates of each
point on one keyshape surface to the x, y, z coordinates of the
corresponding point on the next keyshape surface. If the
number of points on two keyshape surfaces differs, the software
doesn’t know which point of shape A should interpololate to
which point of shape B.

An easy way to assure that all of your keyshapes have
the same number of points is to begin by making identical
copies of your original model. Once the copies are made, you
can modify each copy, changing it into the desired shape.

Object Path Animation

One way of moving an object through space is to draw
the intended path of an object and then move the object along
that path. This is object path animation. Once the object
has been animated along the path, you can then change the
shape of the path to change the animation of the object. It is
also possible to change the timing of the object's motion by
editing a separate curve called a timing curve. (Figure 3-54)

Figure 3-54. If the interpolation of the
timing curve is changed, the rate of
movement of the object along the path
is changed.

% OF
PATH

TIME
f300

100%

25%

43%

10%

f200f100f1 f400

f1

f100
f200

f300 f400

(a)

(b)

Figure 1-24. Moving the control
points of a patch changes the shape of
the patch.

Figure 3-59.The keyshape technique
applied to a sphere. Each of the
keyshapes is outlined; between these
three shapes are the in-between
shapes generated by the computer.

44 P A R T 3

This curve represents the percentage of the path covered at
any given moment in time, and can be edited in all the same
ways that a normal parameter curve can be edited. By changing
the shape of the timing curve, you change the speed with which
the object moves along the path.

Camera Path Animation

Just as you can animate an object along a path, you can
also animate a camera along a path. The approach is similar.
First you draw the intended path of the camera. Then you
move the camera along the path. As with object paths, there is
also a timing curve which can be edited.

Camera path animation is more complex than object
path animation, however, because a computer graphic camera is
actually composed of several components. In addition to
moving the location of the camera along the path, you must
also move the camera’s target - that is, what the camera is
looking at - along the path. You can even have a separate path
for the camera target. Finally, in animating a camera, you must
also think of the camera roll, or tilt, which is a rotation of the
camera about the axis of its line of sight. (Figure 3-69) A roll of
180 degrees, for example, will put the camera upside down, as if
you were standing on your head.

Bump and Transparency Mapping

In addition to the mapping of colors as described in
Lecture 2, it is also possible to use the texture mapping
technique we saw there for other effects. One is to create the
appearance of bumps, or roughness, on a surface. This is bump
mapping. The mapping principles are the same. A two
dimensional picture serves as the texture image. This image is
then mapped, or applied, to the surface, either with projection
mapping or UV mapping. Here, however, the color texture
mapping and bump texture mapping techniques diverge. In
standard color texture mapping, the colors of the texture image
map to the surface, producing a pattern of color on the surface
of the object. In bump mapping, however it is not the colors of
the texture image, but rather the pattern of brightness of the
texture image which maps to the surface. This pattern of
brightness is interpreted in a certain way to yield a pattern of
bumpiness on the surface. (Figure 2-69) Since color
information is ignored in a bump texture, bump texture images

Figure 2-69. Bump mapping
does not change the underlying
geometry, as the straight edges
of the surface show.

(a)

(b)

Figure 3-69. The tilt of the
camera can also be animated to
produce a banking effect.

L E C T U R E 3 45

are usually black and white. If, for example, the texture image is
white in a specific area, then the corresponding area of the
textured surface will have a large, prominent bump. If the
texture image is gray in that area, the surface’s bump will be less
pronounced. And if the texture image is black in that area, the
surface will have no bump at all in the corresponding area.

A similar technique is used to create irregular patterns
of transparency on a surface. White areas on the texture image
produce transparent areas on the surface, black areas on the
texture produce opaque areas on the surface and gray areas on
the texture produce semi-transparent areas on the surface.
This is called transparency mapping. (Figure 2-66)

Figure 2-66. Transparency
mapping.

(a)

(b)

46 P A R T 3

E X E R C I S E 3 47

Exercise 3

In this exercise, you will model a terrain and define a bump map
for it. You will then place an object over the terrain and create a
shape animation for this object. Finally, you will draw a path over
the terrain for your camera and move your camera along that
path.

48 P A R T 3

E X E R C I S E 3 49

1. Create a terrain

Model the geometry of the terrain

• In the Model module of Softimage, use >Get >Primitive
>Grid to make a B-Spline Patch grid. Use settings of 5x5
for the Cell Size and 10 x10 for the Cell Count.

• Holding down the Shift key, hit Shift-A to change all three of
the orthographic window to display all of the scene. In the
Perspective window, use >Camera >Dolly (or just hold
down the p key) to dolly out and make all of the grid visible
in that window. Use >Camera >Orbit (or just hold down
the o key) to rotate your camera in the Perspective window.

• We will now use a procedure to randomly move some of
the grid’s control points to deform it. With the grid still
selected, use >Effects >Randomize (middle-left menu bar).
In the option window that opens, change the x, y and z Size
values to 1 and the Repetition to 10, and click OK.

• Save a new version of your scene with >Save >Save
Scene. Use Exercise3 as the Prefix and Terrain as the
Scene Name. Give the terrain a material and texture

• Click Matter (top bar) to go to the Matter module of
SoftImage.

• Make sure the terrain is still selected and choose
>Material. Select Lambert as a Shading Model, so your
terrain will not be shiny. Use the RGB sliders to create a
brownish color. Values of RGB = 0.7, 0.5, 0.3 give you a
good start. Click OK to assign this material to your terrain.

• With the terrain still selected, go to >Texture >2D Global.
At the top of the window, just to the left of 2D Texture,
click Select. In the right side of the window that opens up,
click Options and Use Icons to display icons for each file,
rather than text. Double click on the .. folder to go up one
directory level. Double click on SI_material_lib to go into
the Softimage material library. Select bump_heavy, or
something like it, then click Load.

• Back in the 2D Texture File window, under Mapping Method
(just below the picture), select XZ coordinates to project

50 P A R T 3

the bump texture straight down onto the terrain from
above. Click Preview (bottom left) to see a preview
rendering of your terrain. Hit the middle mouse button to
remove the Preview picture.

• Make adjustments to the texture parameters to improve
your texture. For example, slide the Roughness slider
(center bottom) to about 5 to make the bumps lower. To
make the bumps smaller in width, change the Repeat values
(center left) to about 4 and 4. Use Preview again to render
the terrain. When you have something you like, assign this
texture to the grid by clicking OK.

• Save a new version of your scene with >Save >Save
Scene, using the same filename, Exercise3-Terrain. When
you are asked to copy or leave the pict file, select Leave.
This will leave the bump_heavy picture you are using as a
bump map in the SI_material_lib folder.

2. Create a Shape Animation of a sphere

Model a sphere

• Go to Model. Use >Get >Primitive >Sphere to create a
sphere. Make it a Cubic Nurbs sphere.

• Activate all three axes of >Scale by clicking on the border
to the right of the Scale transformations. Then hold down
all three mouse buttons simultaneously and drag to
uniformly scale the sphere smaller.

• User >Trans Y to translate the sphere up so that it is
hovering above the terrain.

Make copies of the sphere

• Make sure the sphere is still selected. Use >Duplicate
>Repetition. Inside the window that opens, set No. of
occurences to 3. Under Transformations, set the X
translation to 5. Click OK. This will create 3 copies of the
original sphere, each offset to the right by 5.

• Hold down Shift-z and use the cursor to draw a rectangle
around all four of your spheres to zoom in on just those
four spheres. Do this in each of the orthographic windows.

E X E R C I S E 3 51

Change the shape of the copied spheres

• Now we will change the shape of the copied spheres, but
leave the original sphere untouched.

• Select the sphere just to the right of your original sphere. If
the points of the sphere are not visible, use >Show >Point
to make them visible.

• With the sphere selected, click >Edit >Move Point, then
click and drag on one of the points of the sphere in any one
of the orthographic windows. (You could also just hold
down the m key and simultaneously drag a point.) Do this
for several points on the sphere to give it bumps and
hollows.

• If you need to get a closer view of your sphere, make sure it
is still selected and press the Shift and the f keys
simultaneously, to frame the sphere within the three
orthographic windows.

• Select the next sphere to the right and do the same thing:
move the points of the sphere with >Edit >Move Point (or
with the m key). Make the shape of this sphere distinctly
different from that of the previous sphere.

• Do the same thing to the last sphere. Select it, and use
>Edit >Move Point (or the m key) to move some of its
points about to change its shape.

Define Key Shapes for the Sphere

• Click on Motion (top bar) to go into the Motion module of
Softimage. Change the ending frame number to 300, next to
the E in the lower-right of the screen.

• Use >Select >Clear to unselect everything. Zoom out of
the orthographic windows using >Camera > Zoom, or the
z key so that you can see all four of the spheres. Now
select the original, undeformed sphere.

• Set your frame counter to 1. With the original sphere
selected, use >SaveKey >Object >Shape (lower-right
menu bar) to save that shape of the sphere at frame 1.

• Advance your frame counter to frame 100. With the

52 P A R T 3

original sphere still selected, use >Shape >Select Key
Shape (middle-left menu bar), and then click on the first
copied sphere which you deformed. The original sphere will
change into this shape.

• Advance your frame counter to frame 200. With the newly
deformed sphere still selected, use >Shape >Select Key
Shape again, this time clicking on your second deformed
sphere. The leftmost sphere will change into this shape.

• Advance to frame 300. Use >Shape >Select Key Shape
again and this time click on your last deformed sphere. The
leftmost sphere will once again change into this shape.

View the animation

• Drag the frame counter left and right. You should see the
leftmost sphere animate smoothly from one shape to
another. Try zooming in closer to the deforming sphere, and
turn on SHADE mode in one of your windows. Drag the
frame counter again.

Deleting shape animation

• If the shape animation for your sphere gets very confused,
you can delete the shape animation, but leave the sphere.
Make sure the leftmost, animated sphere is selected. Set the
frame counter to frame 1. Now use >FcrvReset >Object >
>Shape.

• Save your scene with the same filename, using >Save
>Scene.

• Once you have a good shape animation, you no longer need
the copied spheres. You can either make them invisible with
>Display >Hide >Toggle_Desel. Hidden (upper-left menu
bar), or you can even delete them entirely with >Delete
>Selection.

E X E R C I S E 3 53

3. Set up a rendering of your animation

Define some lights

• Go to Matter. Use >Light >Define >Infinite (upper-
right) to create a light which simulates light coming from the
sun. Use >Trans to position this light. The distance of the
light icon from the grid is not significant, because the light is
at an infinite distance – only the direction matters. Placing
the light high overhead will simulate a mid-day light. Placing
the light to a low position will simulate sunrise or sunset.

• Test your lighting and your texture by moving your frame
counter to different frames and using >Preview >All.

Define a material for the sphere

• Click on Matter (or the F4 key) to go the matter module.

• With the animated sphere selected, click >Material. Make
the sphere reflective by dragging the Reflectivity slider
(upper right). Leave the color of the sphere a pale gray.
Click OK.

• Use >Preview >All to see a rendering of your scene. You
should see the terrain reflected in the sphere. Advance
your frame counter to another frame and use >Preview
>All again to see what your animation looks like at that
frame.

• Adjust your camera in the Perspective window to give you a
good view of your scene. Use >Camera >Dolly, or
>Camera >Orbit, or >Camera >Tracking as necessary.

• Save a new version of your scene under the same filename
with >Save >Scene.

Render and view your animation

• Still inside the Matter module, use >Render to create test
frames of your animation. Set the frame count to 1 to 300
by 5, and the resolution to 320 x 240, just as we did in
Exercise2, for fast testing. Set the filename to terrain.
Click Render Sequence. If you need to interrupt your
rendering, click the middle mouse button.

54 P A R T 3

• When the frames are finished rendering, go to the Tools
module and use >Flipbook to view the rendered playback.
Set Do frames 1 to 300 by 5 – the same as what you
rendered. Don’t forget to also set the Number of
Frames per second to 6, in order to get a true, 30
frames-per-second playback of your animation.

4. Create a Camera Path Animation

Place some columns on the terrain

• Go the the Model module of Softimage.

• Use >Get >Primitive >Cylinder to create a default
cylinder. Use >Trans to move it away from the exact
center of the grid, but not too close to the edge of the grid.

• With the cylinder still selected, use >Duplicate
>Immediate to create a copy of the cylinder. Initially, you
won’t be able to see it, because it’s in exactly the same place
as the original cylinder. Use >Trans to move this new
cylinder to a different location, again keeping it away from
the edges of your grid.

• Use >Duplicate again to make several more cylinders,
keeping each of them away from the exact center of the grid
and not too close to the edges.

• Go to the Matter module and use >Material to give each
column a different color.

• Save a new version of your work, under the same file name,
with >Save >Scene.

Draw a path for the camera

• Now we will draw the path that our camera will follow over
the terrain. The path will move amongst the cylinders and
end with the camera looking at the deforming sphere. Go
back to the Model module

• Click on the Top window and use >Camera >Zoom and
the middle mouse button to zoom in on the columns. If you
need to slide left or right, drag with the left mouse button.
Do the same thing for the other two orthographic windows.

E X E R C I S E 3 55

• Clean up your window displays by clicking on the right-angle
ruler at the top of one of the orthographic windows. Inside
the Layout window that opens up, turn off Grid Visible, and
then click All Views at the bottom of the window.

• To draw the camera path, make sure you are in the Model
module and use >Draw >Curve >Bezier (middle left) to
draw a curve in the Top window. As you click each point,
hold down the mouse button and drag to create that point’s
tangent, or “handle”. Draw your curve so that it winds in
amongst the columns and ends pointing toward the
keyshaped object in the center.

• With the whole curve selected, use >Trans Y to move this
curve up a bit so that it is hovering just above the level of
the terrain.

• Now use >Edit >Move Point (middle left) to move some
of the points on your path to make the path bend up and
down. You can also use this same function to drag the ends
of the curve’s tangent handles to change its curvature in
that area.

• If you need to delete a point, use >Edit >Delete Point. If
you need to add a point, use >Edit >Add Point, paying
attention to the different mouse button functions as
described in the information bar at the bottom of the
screen.

• Save a new version of your scene with >Save >Save
Scene.

Move the camera along the path

• Click on Motion to go to the Motion module of Softimage.
Make sure the ending frame number is still set to 300.

• Use >Camera >Picture Format (upper right) and change
to an NTSC video format.

• Use >Camera >Show Camera (upper right) to display the
camera icon. This may be off-screen, so use Shift-A to make
the orthographic windows display all objects. You should
now see the camera icon.

• Use >Select >Clear to make sure nothing is selected.

56 P A R T 3

Now use >Camera >Select Camera. With your camera
selected, use >Path >Pick Path (middle-left menu bar) and
click on the path curve you drew. Accept the default frame
numbers of 1 to 300.

• Now drag the frame counter or click on the play triangle to
play your animation. Notice that while the camera position
moves along the path, the camera interest remains fixed in
the center of the world at 0,0,0.

Move the camera’s interest along the path

• To make the camera look down the path as it moves along,
use >Camera >Select Interest to unselect the camera
position and select the camera’s interest point. Use >Path
>Pick Path again, again clicking on the path curve. This time
make the animation go from frame -5 to frame 295. This
will cause the camera interest to start moving before the
movement of the camera position, thereby keeping the
camera interest always a little in front of the camera
position.

• Play the animation or drag the frame counter o see the
camera animaion you just made. Notice that the camera
looks down the path as we intended – until the last few
frames. This is because the camera position begins to catch
up to the camera interest at frame 295. To fix this do the
following.

• Use >Camera >Select Camera to deselect the camera
interest and select the camera position. Use >FcrvSelect
>Camera >Position >Translation (middle-left menu bar).
The curve you see represents the percentage of the
camera’s position along the path at each frame.

• In the Function Curve window, click EDITKEY (top bar) and
use the left mouse button to drag keyframe 300 (the center
blue dot at the far right of the curve) down just a little. This
will make the camera position travel a little less than 100%
of the distance of the path. Drag the frame counter or play
the animation to see the result. Close the Function Curve
window by clicking on Fcurve with the middle mouse
button.

• Save a new version of your scene under the same name

E X E R C I S E 3 57

with >Save >Scene.

Edit the shape of the path

• Once an object or camera is animated on a path, you can
change the shape of the path and the object will
automatically move down the new path. Drag the frame
counter through your animation. If you need to change the
shape of the path, select the path and make sure both its
points and lines are visible with >Show >Points, >Show
>Lines. Then hold down the m key and drag any of the
curve’s points.

• Go to Matter and use >Preview >All to see what your
animation looks like at various frames. Continue to edit the
path curve until you have something you like.

• Save a new version of your scene under the same name
with >Save >Scene.

Render and view a flipbook

• Go to the Matter module and use >Render to create test
frames of your animation. Set the frame count to 1 to 300
by 5, and the resolution to 320 x 240. Set the filename to
path. Click Render Sequence.

• When the frames are finished rendering, go to theTools
module and use >Flipbook to view the rendered playback.
Set Do frames 1 to 300 by 5 and Number of Frames per
second to 6.

58 P A R T 3

L E C T U R E 4 59

PART 4

Lecture 4

Hierarchies

Inverse Kinematics

Rotational Limits

Rigid Surfaces

Flexible Surfaces

Contraints

60 P A R T 4

L E C T U R E 4 61

Hierarchies

A single model can be manipulated easily as a unit: if
you want to move a cube, you pick the entire cube and just
move it; if you need to make a vase larger, you pick the entire
vase and scale it.

Complex objects often have many parts, however, each
one of which might need to be transformed or animated
individually. Animating a car, for example, will probably involve
translating the whole car down the road. At the same time,
you might need to rotate its wheels, and perhaps later open its
door.

This sort of model requires a structure to allow you to
select and then operate on specific elements of the model.
The technique that provides this structure is hierarchical
modeling.

The first stage in building a hierarchical model is to
make sure that any elements which will need to be moved
independently are in fact modeled as separate, independent
surfaces. The door of the car, for example, must be a distinct
object, not just an area of one long, continuous side panel.

The next step is to define which objects affect the
transformations of which other objects. For example, the
transformations of the car should affect the transformations of
the wheels, in the sense that if you translate the car down the
road, you want the wheels of the car to follow.
Transformations of the wheels, however, should not affect the
whole car: if I rotate a wheel, I do not want the whole car to
rotate. Setting up these transformation relationships between
each element of a model is what is meant by defining the
hierarchical structure of the model. The whole structure is
thought of as a hierarchical tree. (Figure 1-66) Each
element of the model is a node in the structure. If one node
affects the transformations of another node, the first node is
considered a parent and the second is a child node.

Figure 1-66. A hierarchical model and a
schematic representation of that model.

WholeCar

Body Wheel1 Wheel2 Wheel3 Wheel4

(a)

(b)

62 P A R T 4

In the example of our car, each wheel is a child of the
whole car, and the whole car is a parent of each of the wheels.
The transformations of the parent (WholeCar) transfer, or
propagate, down the hierarchy to each of the children (Wheels).
Transformations of the children, however, do not propagate
upwards to the parent.

Inverse Kinematics

In describing hierarchical models, we saw that the
transformations of a parent node propagate downwards to
affect all of its children nodes. For example, if I translate the
parent car down the road, all its children wheels also translate
down the road. This kind of hierarchy exhibits what is known as
forward kinematics. The word “kinematics” refers to the
calculation of motion. The word “forward” refers to the fact
that the transformations travel in a forward direction down the
hierarchical tree, from parent to child.

There are some models, however, which are easier to
animate in a different fashion. A human arm is a good example.
For an arm, the top node in our hierarchical structure would be
the upper arm. The middle node would be the forearm. And
the bottom node (if we simplify the situation by eliminating
fingers) would be the hand. That is, the upper arm is the parent
of the forearm, which in turn is the parent of the hand. This
gives us the structure we want: if we move the upper arm, all
the rest of the arm (that is, the forearm and the hand) go with
it; if we rotate the forearm, the hand moves with it, but the
upper arm is unaffected. (Figure 3-27, a)

Making the arm reach up to scratch a character’s head,
however, is not very easy. In order to pose this forward kinetic
model, we would have to first rotate the upper arm, then rotate
the forearm, then rotate the hand. This process would have to
be repeated, perhaps many times, refining the rotations of the
joints each time, until we finally got the hand to touch the head.

To scratch our head in real life, we do not begin by
thinking about rotating the upper arm. Instead, we think (if we
become conscious of this movement at all) of our hand – we
simply move our hand to our head. The movement of our hand
forces our elbow to bend and our shoulder to rotate. This is an
example of inverse kinematics. In inverse kinematics, or IK,
the rotation calculations for each joint of the arm are calculated
up the hierarchical tree, in the inverse direction, from child to
parent – from the hand to the forearm to the upper arm.
(Figure 3-27, b)

Figure 3-27. In standard hierarchical
animation, transformations are
calculated down the hierarchical tree. In
inverse kinematics, the transformations
are calculated upward from the bottom-
most joint.

WholeArm

LowerArm

Hand

WholeArm

LowerArm

Hand Transformations

Transformations

(a)

(b)

Most animal figures that have skeletons – including the
human animal – are best animated with inverse kinematics. In
fact, the inverse kinematics structure is often referred to as an
inverse kinematics skeleton, with each segment of the
skeleton being sometimes called a bone. The bottom-most
point of the bottom-most bone (which corresponds to the tip
of our hand in our example) is called the effector, since
moving it effects all the other nodes. By carefully defining a
good inverse kinematic skeleton, you can make the job of
animating human characters and other creatures much easier.

Rotational Limits

In setting up a complex hierarchical model that will
entail a complex series of transformations it is often helpful to
limit the transformations a given element may have. The
wheels of a car, for example, should be able to rotate a full 360
degrees around the axis of their axles. The rear wheels should
have no other possible rotations. The front wheels, however,
need an additional rotation in order to be able to "turn" the
car. In addition to the rotation around their axles, they should
also be able to rotate about +/- 45 degrees in the direction of
the car's turning. These are all rotational limits, and each is
defined in terms of a minimum and maximum rotation around
each axis of the object.

Rotational limits become especially useful with inverse
kinematic skeletons used for human and animal motion. This is
because the joints of our bodies have natural, physiological
rotational limits. For example, a human knee can rotate only
about one axis (hopefully!) This is the axis about which it
rotates when we bend our leg. If this axis is the X axis, then
knee rotations about X are limited to about +130 degrees
(bending the leg back) and 0 (leg straight, knee unbent).
Rotations about the other two axes,Y and Z, are limited to
zero – that is, no rotation at all (Figure 3-43).

L E C T U R E 4 63

Figure 3-43. The joints of
animal bodies have naturally
occurring rotational limits.

x

MIN MAX

y

z

0

0

0

130

0

0

Y

X
Z

(a) (b)

64 P A R T 4

Rigid Surfaces

Some models can be animated very effectively with
surfaces which do not bend or deform. The doors of both the
car and van we described earlier are examples. These need to
either rotate or translate, but they do not need to bend or
squish or squash as they open (unless we are making a very
cartoony animation). Another example would be a robot. As a
robot moves about, his body segments need to rotate and
move, but they typically do not need to change shape. These
are all examples of rigid geometry – surfaces which transform
(move, rotation, scale), but which do not change shape. Rigid
geometry can be very effective both for simple models and for
more complex hierarchical models like our robot.

Rigid geometry can also be applied to an inverse
kinematic skeleton. Most software packages require you to first
design the inverse kinematic skeleton. Each rigid geometry part
is then made a hierarchical child of the appropriate joint.
(Figure 3-35) In a robot arm model, for example, an ellipsoid
might be made a child of the forearm bone/node. Since the
ell ipsoid is now a child of the forearm node, any
transformations of the forearm will be passed on to the
ellipsoid. In other words, the ellipsoid model will go wherever
the forearm bone goes – which is exactly what we want.

Flexible Surfaces

Some models, however, are most effective if the surfaces
of the model bend and change shape as the model animates. A
snake is a prime example. The muscles and skin of humans are
another example. The leaves of a plant as they bend in the
breeze are another example. All these are examples of flexible
surfaces.

There are a great many techniques for creating and
animating flexible surfaces in computer graphics. One which is
particularly powerful allows the surfaces of an inverse kinematic

Figure 3-35. Individual models can be
associated with each limb of an inverse
kinematic skeleton.When the skeleton
moves, the models move with it. (a) (b) (c)

L E C T U R E 4 65

exactly how the envelope bends. But the basic idea is simple:
by moving the effector of the skeleton, and thereby changing
the orientation of the skeleton's bones, you automatically
deform the flexible envelope. This mimics what happens when
you move your hand to your forehead to scratch your head,
and the skin and muscles of your arm automatically bend and
stretch and contract.

Constraints

A technique which can be very useful in animating 3D
objects is constraints. A constraint forces, or constrains, the
motion of one object to mimic that of another. There are
several kinds of constraint. Forcing your model to always point
toward a constraining object is a direction constraint.
Forcing your model to always rotate exactly as a constraining
object is a rotation constraint. Forcing your model to
always be located in exactly the same place as a constraining
object is a position constraint.

In working with an inverse kinematic skeleton, for
example, you might create a shoe model and use that as a
position constraint to control the position of a leg’s effector
(Figure 3-47). In this way, if you want to move the character’s
foot or bend its leg, you can simply select the shoe and move it.

Figure 3-38. As the inverse
kinematic skeleton deforms, the
envelope associated with it also
automatically deforms.

(a) (b)

model to bend smoothly as the inverse kinematic skeleton
bends. Surfaces which are animated with this technique are
often called envelopes. (Figure 3-38) To use this technique,
you first define the inverse kinematic skeleton – for example,
an arm. Then you create a model consisting of a single
continuous surface on top of the skeleton. The envelope
technique then automatically calculates how this model should
bend as the bones of the skeleton rotate. In actual practice, of
course, the process is much more complicated than this, with
the animator controlling a great many variables to determine

Figure 3-47. Constraining
the position of an effector to
another object can facilitate
complex character animation.

LegLeft LegRight

ShoeLeft

j1 j1

j2 j2

eff eff

AllBody ShoeRight

(a)

(b)

66 P A R T 4

Using a constraint with inverse kinematics can facilitate
certain types of animation greatly. By keeping the constraints
outside the normal hierarchy of the character, as in Figure 3-
47a, you are able to move the constraints (and therefore the
feet) completely independently of any motion that might be on
the parent node of the whole hierarchy.

On the other hand, if you were to make a new node that
was parent to both the old parent (Allbody) and also to the
constraints (ShoeLeft and ShoeRight), you would now be able
either to control everything at once by operating on this new
node, or to control the feet independently by operating on the
Shoe constraints.

E X E R C I S E 4 67

Exercise 4

In this exercise we will make a simple inverse kinematic skeleton,
apply some geometry to the skeleton to represent a simplified
human figure, define a hierarchy and constraints to permit us to
animate this figure, and then make a simple animation of the
figure jumping up into the air.

68 P A R T 4

E X E R C I S E 4 69

If you prefer to skip the modeling portion of this exercise, you
may simple use >Get >Scene to retrieve the scene Exercise4-
Eggmodel, which is a working model as described in PART A, but
without any animation. If you retrieve this file, you may proceed
immediately to PART B.

PART A: MODEL A CHARACTER

1. Create the inverse kinematic skeletons

Create two leg skeletons

• Click on Actor (top bar) to go to the Actor module of
Softimage. First we will make two legs of a figure. The
figure will be facing us in the Front window.

• Use >Skeleton >Draw 2D Chain (middle-left menu bar)
to draw a two-jointed leg chain in the Right window. Give
this leg a little bend at the knee (that is, toward the left of
the screen) as you draw it. End your chain by clicking the
right mouse button.

• In the Front window, use >Trans X to translate this leg
chain over a bit to the right.

• Use >Duplicate >Immediate to create a copy of this leg.
Use >Trans X again to move this new leg a bit to the left in
the Front window.

• In the Top window, click on the word Top and drag down to
the word Schematic to display a schematic diagram of the
scene information. You should see one hierarchical
structure for each of the leg chains. Use the z key to zoom
out of this window if necessary.

Test the movement of each skeleton

• Use >Select >Clear and then >Select >Toggle Mode to
select one of the effectors. This is the little crosshair at the
bottom of each leg. You can also select this from the
Schematic window. Use >Trans to move this effector
around. The leg skeleton should bend.

• Use >History >Undo (or just the u key and a click in the
window) to undo this translation.

70 P A R T 4

• Save your work with >Save >Save Scene. Make the Prefix
Exercise4 and the Scene Name Eggman (or, Egglady?).

2. Create the geometry of the character

Make a torso

• Use >Get >Primitive >Sphere to create a sphere for the
body of our eggperson. Make it a B-spline Patch.

• With the sphere still selected, click >Info >Selection
(upper-left menu bar). Change the Name to torso. Notice
that the name changes in the Schematic window.

• With the torso sphere still selected, use >Scale to make it
the size of an egg-shaped torso. Then use >Trans to
position it just above the legs.

• With the torso sphere still selected, click CTR at the far
bottom right of the screen, then use >Trans Y to pull the
sphere’s center, represented as a miniature axis, down to the
bottom of the sphere. When you have done this, click OBJ
(far bottom right) to go back to Object mode.

• Save a new version of your scene, keeping the same names,
with >Save >Save Scene.

Make two feet

• Now use >Get >Primitive >Cube, with Length = 1.0, to
create a box for a foot. Use >Info >Selection to change
the name of this object to footL.

• Use >Scale to make the cube longer and foot-shaped. Use
>Trans to position it as the foot of the left leg.

• With the footL box still selected, click on CTR (bottom-
right of screen). Use >Trans to move the center of the foot
to the ankle position. Click on OBJ to go back to object
mode.

• Use >Duplicate >Immediate to make a copy of this foot.
Use >Info >Selection to name it footR. Use >Trans X to
translate it along the X axis into position under the right
leg.

E X E R C I S E 4 71

• Save a new version of your scene, keeping the same names,
with >Save >Save Scene.

Make two legs

• Now we will make a flexible surface, or envelope, for each
of the legs. Use >Select >Clear and Select >Toggle
Mode to select one of the leg skeletons. The best way to
do this is to select the top node of the leg hierarchy in the
Schematic window.

• When this is selected, click >Skin >Automatic Envelope
(lower-left menu bar). Then click with the middle mouse
button to specify a default circular cross-section for the
envelope. Accept all the default settings for the envelope
surface. Notice in the Schematic window that the new
envelope node has been made a child of the leg’s first joint.

• Repeat this same process for the other leg. First , select the
leg, then click >Skin >Automatic Envelope and then the
middle mouse button to make a default, sausage-like
envelope for the leg. Check your Schematic window to
make sure both leg envelopes are correctly grouped within
each leg skeleton

• Save a new version of your scene, keeping the same names,
with >Save >Save Scene.

3. Define more of the figure’s hierarchy

Make the legs children of torso

• Go to the Model module of Softimage.

• Use >Select >Clear to make sure nothing is selected.
Then use >Select >Toggle Mode to select the torso
sphere.

• With torso selected, click >Parent (lower-right menu bar).
In order to select a child of this parent, use the left mouse
button and click on the top node of one of the leg chains in
the Schematic window.

• The Schematic diagram will change, showing the torso
sphere as the parent of this leg.

72 P A R T 4

• With the torso sphere still selected, use the left mouse
button to click on the top node of the other leg. This leg
skeleton becomes a child of torso.

• End Parent mode by clicking the right button.

• Save a new version of your scene, keeping the same names,
with >Save >Save Scene.

Constrain the effectors to the feet

• The best way to control the feet of the figure will be to use
constraints, rather than putting them inside the figure’s
hierarchy.

• Click Actor (top bar) to go back to the Actor module of
Softimage.

• Use >Select >Clear and then >Select >Toggle Mode to
select the effector of the left leg. It may be easiest to do
this in the Schematic window.

• With this effector selected, use >Constraint >Position
(middle-left menu bar) and click on the footL box.

• In the top bar of the Schematic window, click on Model
Mode and drag down to the word Model. A yellow line will
appear between footL and the effector of the left leg to
show that footL is constraining that effector.

• Repeat this process for the right leg. Select the effector of
that leg, then use >Constraint >Position and click on the
footR box.

• Test the constraints you just made. Select only the footL
box and use >Trans to translate it. The left leg should bend
just as if you were translating the effector itself. Use
>History >Undo to move the footL box back to where it
was.

• Save a new version of your scene, keeping the same names,
with >Save >Save Scene.

Complete the figure’s hierarchy

• Finally, we need an extra node at the top of our hierarchy
that will control everything – the torso, the legs and the

E X E R C I S E 4 73

feet.

• Go back to the Model module.

• Use >Get >Primitive >Null to create a null node (that is,
one with no geometry). With the null still selected, click on
>Info >Selection and change the Name of this node to All.

• With the All null still selected, click >Parent. Using the left
mouse button, click on the torso sphere. This will make the
whole torso stucture a child of All. (Remember the legs
are already children of torso).

• Still in parenting mode, click with the left mouse button on
the footL box and then on the footR box, to make them
children of All.

• Look at the Schematic window. All should be the parent of
both of the feet and also of the torso structure. Torso, in
turn, is the parent of each of the legs. Within each leg, you
should see the envelope for each leg. Finally, the effector of
each leg should be constrained to its foot model.

• Save a new version of your scene with >Save >Save
Scene.

Test the complete hierarchy

• Before beginning to animate, test the structure you made.

• Use >Select >Clear to un-select everything. Use >Select
>Toggle Mode and click with the middle mouse button on
All in the Schematic window – that is, the very topmost
node of the hierarchy.This will select all elements of the
hierarchy. With all elements selected, use >Trans to move
the character around. All components of the character
should move together. Use >History >Undo to undo your
translation of the character.

• Unselect everything again and use >Select >Toggle Mode
and the middle mouse button to select the torso sphere in
the Schematic window. This should select the body and legs,
but not the feet or All. Use >Trans to move the figure up
and down. The body and legs should move as a unit, but the
feet should remain where they are. This is because they are
outside of the torso hierarchy. Use >History >Undo to
undo your translation of the character.

74 P A R T 4

PART B: ANIMATE THE CHARACTER

1. Set up

• Now we will make the figure crouch and then jump up into
the air. At each keyframe, we will save transformations for
each of the components we named in Part A. That is, we
will save a keyframe for All, for torso, for footL and for footR.

• Go to the Motion module. Make sure your ending frame is
100.

2. Define an initial standing pose

• Frame 1 will have the figure standing upright. Move the
frame counter slider to frame 1.

• Select the torso with the middle mouse button. This will
select the torso sphere and both of the legs. With these
selected, use >Trans to position the figure so that it is
upright and at rest. That is, move the torso sphere so that it
is over the legs and the legs are straight. When you have a
pose that looks good, use >Save Key >Object >Explicit
Translation > All.

• Select footL. If necessary, translate it into a good standing
position – that is, directly underneath the torso. Use >Save
Key >Object >Explicit Translation > All. Do the same
thing for footR.

• Finally, select All with the middle mouse button. This will
select the entire hierarchy. Do not move this at all, but use
>Save Key >Object >Explicit Translation > All to save its
position.

• Save your scene with >Save >Save Scene. Use Exercise4
as the Prefix and EggmanAnim as the Scene Name.

2. Define a crouched pose

• Advance your frame counter to frame 30. Use >Select
>Clear to unselect everything, then use >Select >Toggle
Mode and click with the middle mouse button on the torso
sphere, to select the torso sphere and legs. Translate this

E X E R C I S E 4 75

straight down so the figure is in a crouching position. When
it looks good, use >Save Key >Object >Explicit
Translation >All.

• Unselect everything again, and select All with the middle
mouse button to select the entire figure. It is not necessary
to translate All. Even so, we should define a keyframe for it
to make sure it remains unchanged. With All selected, use
>Save Key >Object >Explicit Translation >All.

• Do the same for each of the feet. Even though they should
not move for this keyframe, select each one and save a
keyframe for it with >Save Key >Object >Explicit
Translation >All.to make it stay where it is. Do this for
both feet.

• Drag the frame counter triangle back and forth. You should
see the character move from a standing pose at frame 1 to
a crouched pose at frame 30.

• Save a new version of your scene with >Save >Save
Scene, using the same name, Exercise4- EggmanAnim.

3. Define a rising pose

• The next pose we want is when the character has started
to jump but has not yet left the ground.

• This pose will be very similar to the standing pose at frame
1, except that the legs will be slightly bent. The easiest way
to make this pose is therefore to make a variation of frame 1.

• Move the frame counter to frame 1 to see the character
standing upright. Use the right mouse button to slide
the frame counter to frame 40. This will leave the figure in
its frame 1 pose at this new frame.

• Unselect everything with >Select >Clear and then select
torso with the middle mouse button to select the torso and
the legs which are under it. Use >Trans Y to move this
down just a little so that the legs bend slightly. Use >Save
Key >Object >Explicit Translation >All to save this
position of torso.

• The other components do not need to be translated, but
they do need to have keyframes saved for them. Unselect

76 P A R T 4

everything and select All and use >Save Key >Object
>Explicit Translation >All to save its translation. Unselect
everything again and select footL and use >Save Key
>Object >Explicit Translation >All to save its translation.
Do the same for footR.

• Test your animation so far by dragging the frame counter
back and forth. The figure should be standing straight up at
frame 1, crouched at frame 30, and standing but with legs
bent at frame 40.

• Save a new version of your scene under the same name.

4. Define a mid-air pose

• The next pose will be when the figure has jumped into the
air. Advance your frame counter to frame 50.

• Begin by selecting All with the middle mouse button. This
will select the entire hierarchy. Use >Trans to translate this
up into the air, then use >Save Key >Object >Explicit
Translation >All to save this translation at keyframe 50.

• Unselect everthing and select torso with the middle mouse
button. This does not need a new translation, but save a
keyframe for it with >Save Key >Object >Explicit
Translation >All.

• Unselect everything and select one of the feet. Translate it
so that it looks like the figure has jumped. For example,
translate the foot up into the air and away from the body.
Use >Save Key >Object >Explicit Translation >All to save
this translation for that foot.

• Do the same for the other foot.

• View your animation by dragging the frame counter.

• Save your scene under the same name with >Save >Scene.

5. Add some rotations to the torso

• The figure is now jumping, but its back is very rigid. To make
it more lifelike, we can add some rotations. Unselect
everything and select torso with the middle mouse button.

E X E R C I S E 4 77

• Go to frame 1. The torso will remain as is for this frame, but
we must save a rotation keyframe for it anyhow. With torso
selected, use >SaveKey >Object >Rotation >All.

• Keep torso selected. Advance to frame 30. Use >Rot X to
rotate the torso forward a bit into a more natural crouching
pose. Use >SaveKey >Object >Rotation >All to save that
rotation.

• Advance to frame 40. Again, rotate the torso into a natural
pose and save a rotation keyframe for it with >SaveKey
>Object >Rotation >All.

• Advance to frame 50, rotate the torso, and save its rotation.

• Look at your animation by using the Play triangle in the far
lower right of the screen. Don’t forget to go into >Play
Control and set Frame Step to 0 to force Softimage to
play the animation at 30 frames per second.

• Save a backup version of your scene with >Save >Scene.

6. Render and view a flipbook

• When you have an animation you like, go to the Matter
module and define some materials for your surfaces. If you
don’t like the default light, you can also define some lights
for your scene. Advance your frame counter and use
>Preview to see what your rendering looks like at several
different frames of the animation.

• Use >Render to render small test frames of the animation.
Set the Resolution to 320 x 240 as we did in the earlier
exercises. Set Start = 1, End = 100. However, instead of
setting Step to 5, as we did in the other exercises, set Step
= 2. This will give us a smoother, more accurate view of the
character’s motion.

• After your frames are rendered, go to Tools and use
>Flipbook to view them. Don’t forget to set the Do
frames, to and step numbers to the same numbers you
used when rendering – that is, 1, 100, 2. Since step = 2, set
Number of frames per second = 15 to give you the
correct playback speed (2 * 15 = 30).

78 P A R T 4

How’s that for a day’s work?

E X E R C I S E 4 79

Bibliography

Muybridge, Eadweard, The Human Figure in Motion. New York,
Dover, 1955.

Muybridge, Eadweard, Animals in Motion. New York, Dover,
1957.

O’Rourke, Michael, Principles of Three-Dimensional Computer
Animation. New York,W.W. Norton,1998, Revised Edition.

Softimage Inc., Softimage Documentation and Reference Manuals.
1996-1998.

Thomas, F. & Johnson, O., Disney Animation: The Illusion of Life.
New York, Abbeville, 1984.

