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Abstract
Of the many mathematical tools used in computer graphics, most are well covered
in standard texts; quaternions are not. This article is intended to provide tutorial
material on quaternions, including what they are, why they are useful, how to use
them, where to use them, and when to be careful.

Introduction
Computer graphics uses quaternions as coordinates for rotations and orientations.

At SIGGRAPH 1985, quaternion curve methods were introduced to computer
graphics to facilitate rotation animation. Although this is a rather specialized
environmental niche, quaternions work so well they are able to compete
successfully both with more general coordinates such as matrices, and with other
special coordinates such as Euler angles.

Quaternion use has since expanded to include new curve methods and new
applications, including physically based modeling, constraint systems, and user
interfaces. This is because when a quaternion implementation is compared to other
alternatives, it is usually simpler, cheaper, and better behaved.

That’s the good news. The bad news is that researchers and implementors must
learn some new mathematics, and quaternions are not taught in core mathematics
and science courses. However, neither are homogeneous coordinates; and a broad
view reveals that quaternions are simply a more sophisticated use of the four-
component homogeneous coordinates to which we are already accustomed.

Rotations
What can be so unusual about three-dimensional rotations that they warrant their
own coordinate system? Put simply, because rotations do not commute, they cannot
be treated as vectors. Suppose Tx(d) is translation along the x axis by d, and Rx(θ) is
rotation around the x  axis by θ ; similarly for Ty , Tz , Ry , and Rz . Then
T y(45cm) °T x(90cm) commutes, meaning it equals Tx(90cm) °T y(45cm); but
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Ry(45°)°Rx(90°) ≠ Rx(90°)°Ry(45°). (As usual, B°A means the composition of action A
followed by action B.) Note also that if we take the composition Ry(180°)°Rx(180°) we
get the same result as Rz(180°)!

It takes some study to unravel all the implications of these elementary observations,
but they are far-reaching and often surprising. The set of all 3-dimensional rotations
is not organized as a simple 3-dimensional vector space, but as a closed curved 3-
dimensional manifold, which is also a (continuous) group. This group is known as
SO(3). (For special and orthogonal.) Manifolds are generalizations of surfaces; this
one has the topology of real 3-dimensional projective space, RP3, and also a natural
distance measure related to rotation angle. Although a vector space such as the
translations trivially splits into a product of lines, SO(3) does not split. Instead, it has
a more sophisticated description as a fiber bundle over the sphere of directions, S2,
with fiber space the planar rotations, SO(2).

Unit quaternions have the remarkable property of capturing all of the geometry,
topology, and group structure of 3-dimensional rotations in the simplest possible
way. (Technically, they form what is called a universal covering.)

Quaternion definitions
Quaternions can be defined in several different, equivalent ways. It is helpful to
know them all, since each form is useful. Historically, quaternions were conceived
by Hamilton as like extended complex numbers, w+ix+jy+kz, with i2 = j2 = k2 = –1, ij
= k = –ji, with real w , x, y, z. (In honor of Hamilton, mathematicians denote the
quaternions by H.) Notice the non-commutative multiplication, their novel feature;
otherwise, quaternion arithmetic is pretty much like real arithmetic. Hamilton was
also quite aware of the more abstract possibility of treating quaternions as simply
quadruples of real numbers [x , y , z , w ], with operations of addition and
multiplication suitably defined. But it happens that the components naturally group
into the imaginary part, (x, y, z), for which Hamilton coined the term vector, and the
purely real part, w , which he called a scalar . Later authors (notably Gibbs)
appropriated Hamilton’s terminology and extracted from the clean operations of
quaternion arithmetic the somewhat messier—but more general—operations of
vector arithmetic. Courses today teach Gibbs’ dot and cross products, so it is
convenient to reverse history and describe the quaternion product using them.
Thus we usually will want to write a quaternion as [v, w], with v = (x, y, z). We will
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identify real numbers s with quaternions [0, s], and vectors v ∈ R3 with quaternions
[v, 0]. Here are some basic facts.

Forms

q def=  [v, w]  ; v ∈ R3, w ∈ R

= [(x, y, z), w]  ; x, y, z, w ∈ R
= [x, y, z, w]  ; x, y, z, w ∈ R
= ix+jy+kz+w ; x, y, z, w ∈ R,  i2  =  j2  =  k2  =  ijk  =  –1

Addition

q + q´ = [v, w] + [v´, w´]
def= [v + v´, w + w´]

Multiplication

qq´ = [v, w][v´, w´]
def= [v×v´+wv´+w´v, ww´–v·v´]

Multiplication facts

(pq)q´  =  p(qq´)

1q =  q1  =  [0, 1][v, w]
=  [1v, 1w]  =  [v, w]

sq =  qs  =  [0, s][v, w]
=  [sv, sw]

vv´ =  [v, 0][v´, 0]
=  [v×v´, –v·v´]

Bilinearity

p(sq+s´q´)  =  spq + s´pq´
(sq+s´q´)p  =  sqp + s´q´p

Conjugate

q* = [v, w]*

def= [–v, w]

Conjugation facts

(q*)*  =  q

(pq)*  =  q*p*

(p+q)*  =  p*+q*

N o r m

N(q) def= qq*  =  q*q

= w2 + v·v
= w2 + x2 + y2 + z2

Norm facts

N(qq´)  =  N(q)N(q´)

N(q*)  =  N(q)

Inverse

q–1  =  q* / N(q)

Unit quaternion facts

Let N(q)  =  N(q´)  =  N(v̂)  =  1. Then:

q  =  [v̂ sin Ω, cos Ω] (for some v̂)

N(qq´)  =  1

q–1  =  q*

v̂2  =  –1

ev̂Ω =  1 + v̂Ω + (v̂Ω)2/2! + …

=  [v̂ sin Ω, cos Ω]
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Notice that N(q) is a scalar, so the description of q–1 is well-defined. Otherwise, the
non-commutativity of multiplication requires explicit expressions, such as pq–1,
instead of p / q.

The preceding list contains both definitions and consequences. It is a useful exercise
to treat the consequences as lemmas, and prove them from the definitions. Each
proof should be a straightforward computation.

Quaternions as rotations
The relationship of quaternions to three-dimensional rotations is contained in

Theorem 1. Let p be a point in three-dimensional (projective) space, represented as a
quaternion using its homogeneous coordinates, p = (x:y:z:w) ≅ [(x, y, z), w] = [v, w];
and let q be any non-zero quaternion. Then:

1)  The product qpq–1 takes p = [v, w] to p´ = [v´, w], with N(v) = N(v´).

2)  Any non-zero real multiple of q gives the same action.

3)  If N(q)  = 1, then q = [v̂ sin Ω, cos Ω] acts to rotate around unit axis v̂ by 2Ω.

Proof. Let us first dispose of part 2. This is trivial, since the inverse of sq is q–1s–1, and
scalar multiplication commutes. Thus (sq)p(sq)–1 = sqpq–1s–1 = qpq–1ss–1 = qpq–1. So
we can henceforth assume q is a unit quaternion, as stipulated in part 3, without loss
of generality. For q a unit quaternion, q–1 = q*, so we can write the action as qpq*.

Now part 1 is simpler. Trivially, the action on a scalar gives that scalar, since scalar
multiplication commutes. Similarly, the action on a vector, [v, 0], gives some vector,
as we now show. The scalar part of any quaternion S(q) can be extracted using the
formula 2S(q) = q + q*. So consider 2S(qpq*) = (qpq*) + (qpq*)* = qpq* + qp*q*. Since
quaternion multiplication is bilinear, we can factor this as q(p+p*)q* = q(2S(p))q* =
2S(p). Hence the action of q on p  = [v , w ] gives [v´, w ]. Because multiplication
preserves norms, N(p) = N(p´); and since w is unchanged, N(v) = N(v´).

Finally we turn to part 3, the heart of the theorem, and consider the situation in
Figure 1, where N(v0) = N(v1) = 1 and q = v1v0* = [v0×v1, v0·v1]. We can identify Ω
as the angle between v0 and v1, so that v0·v1 = cos Ω. Then let v̂ = (v0×v1)/||v0×v1||,
a unit vector in the direction of the cross product—thus perpendicular to v0 and v1.
Now we can write q = [v̂ sin Ω, cos Ω]. (We shall assume v1 ≠ ±v0, else q = ±1, and
the action is the identity.) We show that v2v1* = (qv0q*)v1* has the same compo-
nents (dot and cross products) as v1v0*; so qv0q* lies in the same plane as v0 and v1,
and also forms an angle of Ω with v1.
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v0×v1

v0 v1

v2
= qv0q*

Figure 1. Geometry of action

Substituting the definition of q in (qv0q*)v1* gives (qv0(v1v0*)*)v1*, which simplifies
to q(v0v0)(v1*v1*). Since v0 and v1* are unit vectors, they square to –1, leaving q.

(qv0q*)v1*  =  (qv0(v1v0*)*)v1*

  =  qv0(v0v1*)v1*

  =  q(v0v0)(v1*v1*)
  =  q(–1)(–1)
  =  v1v0*

This confirms the equality, so the picture is accurate. Furthermore, q acts on v1 = qv0

to produce a vector which is also in the same plane, at an angle of Ω with qv0q*. (We
simply observe that (qv1q*)(qv0q*)* =  (q(qv0)q*)(qv0q*)* =  q(qv0q*)(qv0q*)* = q.)

Interpreting this result in the terms stated in the theorem, we have just showed that
the action of q on v0 and on v1 is, as required, to rotate around the axis v̂ by an angle
of 2Ω. In fact, the action will be this same rotation on any vector p, as is shown by
splitting p into s0v0+s1v1+sv̂. Bilinearity allows us to examine the action on v0, v1,
and v̂ separately.

We already know the action on v0 and on v1, so consider the action on v̂. Observe
that multiplication fails to commute simply because of the cross product. But in the
product qv̂ = [v̂ sin Ω, cos Ω][v̂, 0] the cross product is zero, so qv̂ = v̂q, and qv̂q* =
v̂qq* = v̂, which is consistent with the interpretation of v̂ as the axis of rotation.

Thus the action of q on every vector is a rotation around v̂ by 2Ω, which concludes
the proof of part 3, and of Theorem 1.  ❚

Corollary. Every three-dimensional rotation is the action of some unit quaternion.

Proof. Using part 3 of Theorem 1 we can get any axis and any angle.  ❚

Quaternion rotation facts
Observe that the combination of rotation by q1 followed by q2 is given by q = q2q1,
since

q2(q1pq1*)q2* = (q2q1)p(q2q1)* = qpq*.
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Because quaternion multiplication is bilinear, it can be expressed in matrix form,
and in two different ways. Multiplication on the left by q = [(x, y, z), w] = [v, w] gives
qp as Lqp, where p is now treated as a 4-dimensional column vector. The matrix Lq is

Lq  =  

 


 


w –z y x
z w –x y

–y x w z
–x –y –z w

  =   


 
wI+(v×-) v

–vT w

The 2×2 matrix is a block partition of the Lq matrix, and (v×-) is the 3×3 matrix
expressing the cross product of v with an arbitrary vector, namely

(v×-) =  
 



 

0 –z y

z 0 –x
–y x 0

Multiplication on the right by q gives pq as Rqp, where Rq is

Rq  =  

 


 


w z –y x
–z w x y
y –x w z

–x –y –z w

  =   


 
wI–(v×-) v

–vT w

Multiplication on the right by q* gives pq* as Rq*p, where Rq* is

Rq*  =  

 


 


w –z y –x
z w –x –y

–y x w –z
x y z w

  =   


 
wI+(v×-) –v

vT w

Multiplication on the left by q and on the right by q* gives qpq* as Qp, where Q  =
LqRq* is

Q  =  

 


 


w2+x2–y2–z2 2(xy–wz) 2(xz+wy) 0
2(xy+wz) w2–x2+y2–z2 2(yz–wx) 0
2(xz–wy) 2(yz+wx) w2–x2–y2+z2 0

0 0 0 w2+x2+y2+z2

     =   


 
(wI+(v×-))2+vvT 0

0T N(q)

This simplifies to

Q  =  

 


 


N(q)–2(y2+z2) 2(xy–wz) 2(xz+wy) 0
2(xy+wz) N(q)–2(x2+z2) 2(yz–wx) 0
2(xz–wy) 2(yz+wx) N(q)–2(x2+y2) 0

0 0 0 N(q)

     ≅  

 


 


1–s(y2+z2) s(xy–wz) s(xz+wy) 0
s(xy+wz) 1–s(x2+z2) s(yz–wx) 0
s(xz–wy) s(yz+wx) 1–s(x2+y2) 0

0 0 0 1

; s  =  2 / N(q)
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The equivalence assumes Q acts on homogeneous coordinates, so each entry of the
matrix can be divided by N(q) without changing the effect. When N(q) = 1, Q
simplifies to

Q  =  

 


 


1–2(y2+z2) 2(xy–wz) 2(xz+wy) 0
2(xy+wz) 1–2(x2+z2) 2(yz–wx) 0
2(xz–wy) 2(yz+wx) 1–2(x2+y2) 0

0 0 0 1

These observations produce the following core quaternion routines.

typedef struct {float x,y,z,w;} Quat;
typedef float HMatrix[4][4];
#define X 0
#define Y 1
#define Z 2
#define W 3

/* Return quaternion product qL * qR. */
Quat Qt_Mul(Quat qL, Quat qR)
{

Quat qq;
qq.w = qL.w*qR.w - qL.x*qR.x - qL.y*qR.y - qL.z*qR.z;
qq.x = qL.w*qR.x + qL.x*qR.w + qL.y*qR.z - qL.z*qR.y;
qq.y = qL.w*qR.y + qL.y*qR.w + qL.z*qR.x - qL.x*qR.z;
qq.z = qL.w*qR.z + qL.z*qR.w + qL.x*qR.y - qL.y*qR.x;
return (qq);

}

/* Return norm of quaternion, the sum of the squares of the components. */
#define Qt_Norm(q) ((q).x*(q).x + (q).y*(q).y + (q).z*(q).z + (q).w*(q).w)

/* Construct rotation matrix from (possibly non-unit) quaternion.
 * Assumes matrix is used to multiply column vector on the left:
 * vnew = mat vold.  Works correctly for right-handed coordinate system
 * and right-handed rotations. */
void Qt_ToMatrix(Quat q, HMatrix mat)
{

double Nq = Qt_Norm(q);
double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
double xs = q.x*s, ys = q.y*s, zs = q.z*s;
double wx = q.w*xs, wy = q.w*ys, wz = q.w*zs;
double xx = q.x*xs, xy = q.x*ys, xz = q.x*zs;
double yy = q.y*ys, yz = q.y*zs, zz = q.z*zs;
mat[X][X] = 1.0 - (yy + zz); mat[Y][X] = xy + wz; mat[Z][X] = xz - wy;
mat[X][Y] = xy - wz; mat[Y][Y] = 1.0 - (xx + zz); mat[Z][Y] = yz + wx;
mat[X][Z] = xz + wy; mat[Y][Z] = yz - wx; mat[Z][Z] = 1.0 - (xx + yy);
mat[X][W] = mat[Y][W] = mat[Z][W] = 0.0;
mat[W][X] = mat[W][Y] = mat[W][Z] = 0.0;
mat[W][W] = 1.0;

}
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/* Construct a unit quaternion from rotation matrix.  Assumes matrix is
 * used to multiply column vector on the left: vnew = mat vold.  Works
 * correctly for right-handed coordinate system and right-handed rotations.
 * Translation and perspective components ignored. */
Quat Qt_FromMatrix(HMatrix mat)
{
/* This algorithm avoids near-zero divides by looking for a large component
 *  — first w, then x, y, or z.  When the trace is greater than zero,
 * |w| is greater than 1/2, which is as small as a largest component can be.
 * Otherwise, the largest diagonal entry corresponds to the largest of |x|,
 * |y|, or |z|, one of which must be larger than |w|, and at least 1/2. */

Quat qu;
float tr, s;

tr = mat[X][X] + mat[Y][Y]+ mat[Z][Z];
if (tr >= 0.0) {

s = sqrt(tr + mat[W][W]);
qu.w = s*0.5;
s = 0.5 / s;
qu.x = (mat[Z][Y] - mat[Y][Z]) * s;
qu.y = (mat[X][Z] - mat[Z][X]) * s;
qu.z = (mat[Y][X] - mat[X][Y]) * s;

} else {
int h = X;
if (mat[Y][Y] > mat[X][X]) h = Y;
if (mat[Z][Z] > mat[h][h]) h = Z;
switch (h) {

#define caseMacro(i,j,k,I,J,K) \
case I:\

s = sqrt( (mat[I][I] - (mat[J][J]+mat[K][K])) + mat[W][W] );\
qu.i = s*0.5;\
s = 0.5 / s;\
qu.j = (mat[I][J] + mat[J][I]) * s;\
qu.k = (mat[K][I] + mat[I][K]) * s;\
qu.w = (mat[K][J] - mat[J][K]) * s;\
break

caseMacro(x,y,z,X,Y,Z);
caseMacro(y,z,x,Y,Z,X);
caseMacro(z,x,y,Z,X,Y);

#undefine caseMacro
}

}
if (mat[W][W] != 1.0) {

s = 1.0/sqrt(mat[W][W]);
qu.w *= s; qu.x *= s; qu.y *= s; qu.z *= s;

}
return (qu);

}

This last routine converts a rotation matrix to a unit quaternion, but it may not be
the same as the one with which you created the matrix. Part 2 of Theorem 1 implies
that quaternions are homogeneous coordinates for rotations. Thus q and –q give the
same rotation matrix, and the extraction routine can return either one; sometimes
the choice matters.

Remember that SO(3) has the topology of 3-dimensional real projective space (RP3),
but unit quaternions form a hypersphere (S3) in four dimensions, which is
topologically different. The identification of opposite points is what makes up the
difference.
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Remember, too, that SO(3) has a natural metric. To measure the distance from
rotation Q to Q´, look at Q´° Q–1. Since Q´ = (Q´° Q–1) ˚ Q, the composition Q´° Q–1 is

the rotation connecting them. By part 3 of Theorem 1 the scalar part of q´q* is cos Ω,
and indicates a rotation of 2Ω. But it is also ww´+v·v´ = ww´+xx´+yy´+zz´, the 4D dot
product of q and q´, thus cosine of the angular separation of q and q´ on the sphere.

Quaternion curves
Any continuous quaternion curve which does not pass through [0 , 0] gives a
continuous sequence of rotations, and so may be used for animation. However the
consequences of part 3 of Theorem 1 explored in the last section tell us that to gain
control of what happens with the rotations we should confine our attention to unit
quaternion curves.

Curves on a sphere are harder to create, understand, and control than ordinary
splines. The recent literature contains three main approaches: geometric
transliteration, differential equations, and arc blends. Here is a reference for each: J.
Schlag, “Using Geometric Construction to Interpolate Orientations with
Quaternions” in Graphics Gems II, Academic Press, 1991, pp. 377–380; A. Barr, B.
Currin, S. Gabriel, and J. Hughes, “Smooth Interpolation of Orientations with
Angular Velocity Constraints using Quaternions” in Proceedings of SIGGRAPH ’92,
ACM Press, 1992, pp. 313–320; W. Wang and B. Joe, “Orientation Interpolation in
Quaternion Space Using Spherical Biarcs” in Proceedings of Graphics Interface ’93,
Morgan Kaufmann, 1993, pp. 24–32.

A common point of reference is the circular arc. Between any two unit quaternions
q0 and q1 which are not opposite there is a unique shortest arc of the great circle
given by the intersection of the unit sphere with a 2D plane containing q0, q1, and
the origin. Planes which do not pass through the origin also intersect the sphere in
arcs, but ones which curve more. Great arcs traversed at constant speed are, in fact,
geodesics; that is, they are paths with minimal acceleration, and so as straight as
possible. A unit quaternion great circle arc gives a constant speed rotation around a
fixed axis, and can be written C(t) = (q1q0–1)tq0.

The geometric transliteration approach treats great arcs as the “moral equivalent” of
line segments and interprets geometric constructions like de Casteljau’s algorithm
in those terms. The differential equation approach notes that natural cubic splines
also minimize acceleration, and imposes a spherical constraint to get equations of
motion. The arc blend approach—by far the cheapest of the three—combines small
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arc segments to get a smooth curve. Given only two points to interpolate, all three
approaches normally give a great arc.

Quaternion calculus
Just as real differential calculus extends to vectors and complex numbers, it also
extends to quaternions. Although products do not commute, otherwise
differentiation looks familiar, and is still a linear operator.

In geometric transliteration the equivalent of linear interpolation, or lerp, is called
Slerp. Although Slerp has a geometric form,

Slerp(q0, q1; t)  =  q0 
sin Ω(1–t)

sin Ω   +  q1 
sin Ωt
sin Ω ; cos Ω = q0·q1

which is useful for implementation, the algebraic form (q1q0–1)tq0 is better for
analysis.

The derivative of qt with respect to t is ln(q) qt, so the derivative of Slerp(q0, q1; t)
with respect to t is ln(q1q0–1) Slerp(q0, q1; t). Euler’s identity holds, so the logarithm
of a unit quaternion q = [v̂ sin Ω, cos Ω] is just v̂Ω, a pure vector of length Ω.

Now observe that if ln(q1q0–1) = v̂Ω, then Slerp causes a rotation in 3D around axis
v̂  by an amount 2Ω in unit time, so  v̂Ω is half the angular velocity vector. Turning
this around, if we have angular velocity vector ω , the differential equation of
motion is

q̇  =  1/2 ω q .

This is also used in dynamics simulation, where ω can vary over time.

Quaternion bundle structure
Tracking an object with a camera requires care to avoid tilt but minimize twist; the
curve techniques mentioned so far do not achieve this. One approach is to exploit
the fiber bundle structures of SO(3) and S3 to limit the twist of an untilted sequence
obtained by other means.

Fiber bundles are similar to product spaces, but allow a richer global structure. Recall
that a product space comes with two projections, one to each factor, which concisely
capture the structure of the space. Thus if X is the product of X1 and X2, each point
p ∈ X is formed as a pair, 〈π1(p), π2(p)〉, where π1 and π2 are the projections π1:X→X1

and π2:X→X2. For example, a cylindrical band is the product of a circle with a line
segment, as in Figure 2.
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Figure 2. Product space.
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Figure 3. Fiber bundle.

Figure 3 depicts a Möbius band, which is a fiber bundle topologically different from
the cylindrical band. The twist makes it impossible to define a continuous projection
onto the line segment; yet projection onto the circle is still possible, and the inverse
image of a point on the circle is a line segment in the band. This asymmetry re-
appears in fiber bundle terminology: the total space of the bundle projects onto the
base space, and the inverse image of each base point—the fiber over that point—is a
copy of the fiber space. (Properly speaking, the projection map is also part of the
bundle.) A final, crucial, requirement is that the inverse image of some
neighborhood of each base point actually is a product of that neighborhood with the
fiber space.

We can exhibit both the rotations SO(3) and the unit quaternions S3 as fiber bundles
over the ordinary sphere S2 using the projection π(q) = qẑq–1 = q[(0, 0, 1), 0]q–1. Since
a rotated unit vector is still a unit vector, qẑq–1 gives a point on S2, as promised. The
fiber above π(q) consists of quaternions of the form q[(0, 0, sin τ), cos τ], rotations that
differ from q by a twist of 2τ around the z axis. Topologically, the fiber space is a
circle, S1. Neither of these bundles over S2 are product spaces, so there is no globally
consistent way to line up the fibers. There is, however, a natural way to lift a path on
S2 to a path on either bundle, which means we can line up fibers along the path.

Now notice that under the usual camera model we look down the z axis. Thus if q
controls the camera orientation, π(q) tells us the direction we are looking! To limit
twist, we want to alter the path on S3 without disturbing its projection to S2. Using
the natural lift, we can measure the twist from frame i to frame i+1 (quaternions qi

and qi+1) as follows. Let vi = π(qi), and set pi = √vi+1vi–1 . (To take the square root of
a quaternion geometrically, halve the arc between it and the identity.) The twist is
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simply the angle of ri = qi–1pi–1qi+1, which is a rotation around the z axis. If we think
there is too much twist, we can replace qi+1 by qi+1 [(0, 0, sin –∆), cos –∆], where 2∆ is
the amount of excess twist.

Quaternion user interfaces
No one in computer graphics would deny that homogeneous matrices are
invaluable, but few users would want to specify a camera transformation by typing
matrix entries. While not everyone agrees, many would argue that if you must type
in numbers for rotations, Euler angles are more meaningful than quaternions.
Preferably, however, input will come from graphical interaction, and here
quaternions excel.

The geometric construction used in the proof of Theorem 1 generated a unit
quaternion by using two points on a unit sphere. (One side note: If we call v1v0–1 a
vector quotient, every quaternion is such a quotient, though not uniquely.) We saw
that the rotation so specified had a natural geometric relationship to the points used.
Since it is easy to pick points on a sphere using interactive graphics, a user interface
can be built on this principle. Such a method is described in K. Shoemake,
“ARCBALL: A User Interface for Specifying Three-Dimensional Orientation Using a
Mouse” in Proceedings of Graphics Interface ’92, Morgan Kaufmann, 1992. It turns
out to have several desirable properties not found in other interfaces.

Quaternions have also lent themselves to direct graphical camera specification, as
described in M. Gleicher and A. Witkin, “Through-the-Lens Camera Control” in
Proceedings of SIGGRAPH ’92, ACM Press, 1992, pp. 331–340. Both papers mention
that, although implementations are possible without quaternions, nothing else is as
simple and robust.


